This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5598.29 197.49 590.75 2297.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
SED-MVS95.91 296.28 294.80 3698.77 585.99 5797.13 1497.44 1490.31 3197.71 198.07 492.31 499.58 895.66 499.13 398.84 13
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6097.09 1696.73 8490.27 3397.04 1098.05 891.47 899.55 1595.62 899.08 798.45 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8897.51 489.13 6397.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 697.40 2089.03 6796.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 4
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2597.47 1091.73 996.10 1796.69 6389.90 1299.30 4294.70 1298.04 7399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 10096.96 5692.09 495.32 2397.08 4389.49 1599.33 3995.10 1198.85 1998.66 20
SD-MVS94.96 1295.33 893.88 6597.25 8086.69 3296.19 5197.11 4690.42 3096.95 1297.27 2989.53 1496.91 25094.38 1698.85 1998.03 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8386.33 4797.33 797.30 2991.38 1395.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4797.28 3185.90 15297.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5896.62 9688.14 9696.10 1796.96 5089.09 1898.94 8794.48 1598.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 7096.96 5691.75 894.02 4196.83 5688.12 2599.55 1593.41 3198.94 1698.28 54
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3497.48 987.76 10995.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11696.52 9980.00 22094.00 19397.08 4790.05 3795.65 2197.29 2889.66 1398.97 8393.95 2098.71 3498.50 28
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7195.21 10695.47 17789.44 5295.71 1997.70 1388.28 2399.35 3493.89 2298.78 2598.48 30
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 8396.93 6092.34 293.94 4296.58 7387.74 2999.44 3092.83 4198.40 5898.62 22
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 8197.34 2288.28 8995.30 2497.67 1585.90 5499.54 1993.91 2198.95 1598.60 23
9.1494.47 1897.79 5496.08 5997.44 1486.13 15095.10 2697.40 2388.34 2299.22 4993.25 3598.70 36
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6797.44 1486.67 13695.25 2597.31 2787.73 3099.24 4793.11 3898.76 3098.40 41
CS-MVS94.12 3794.44 1993.17 8396.55 9683.08 13197.63 396.95 5891.71 1093.50 5796.21 8785.61 5698.24 13793.64 2598.17 6598.19 62
HFP-MVS94.52 1894.40 2194.86 2798.61 1086.81 2696.94 2097.34 2288.63 7793.65 4997.21 3486.10 5099.49 2692.35 5298.77 2898.30 50
patch_mono-293.74 4994.32 2292.01 13397.54 6478.37 25793.40 21697.19 3888.02 9894.99 2897.21 3488.35 2198.44 12394.07 1998.09 7099.23 1
XVS94.45 2194.32 2294.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7097.16 4085.02 6699.49 2691.99 6498.56 5298.47 34
zzz-MVS94.47 1994.30 2495.00 1898.42 2286.95 2095.06 12096.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
CS-MVS-test94.02 3994.29 2593.24 7996.69 9083.24 12497.49 596.92 6192.14 392.90 6895.77 10785.02 6698.33 13293.03 3998.62 4898.13 68
ZNCC-MVS94.47 1994.28 2695.03 1698.52 1686.96 1996.85 2897.32 2788.24 9093.15 6297.04 4686.17 4999.62 192.40 5098.81 2298.52 26
ACMMPR94.43 2394.28 2694.91 2498.63 986.69 3296.94 2097.32 2788.63 7793.53 5697.26 3185.04 6599.54 1992.35 5298.78 2598.50 28
region2R94.43 2394.27 2894.92 2298.65 886.67 3496.92 2497.23 3588.60 7993.58 5397.27 2985.22 6299.54 1992.21 5598.74 3398.56 25
MTAPA94.42 2594.22 2995.00 1898.42 2286.95 2094.36 16996.97 5391.07 1593.14 6397.56 1684.30 7499.56 1093.43 2998.75 3198.47 34
Regformer-294.33 2894.22 2994.68 4195.54 13586.75 3194.57 15096.70 8991.84 794.41 3196.56 7587.19 3999.13 5793.50 2797.65 8698.16 65
CP-MVS94.34 2794.21 3194.74 4098.39 2586.64 3697.60 497.24 3388.53 8192.73 7797.23 3285.20 6399.32 4092.15 5898.83 2198.25 59
MCST-MVS94.45 2194.20 3295.19 1198.46 2087.50 1595.00 12297.12 4487.13 12392.51 8496.30 8289.24 1799.34 3693.46 2898.62 4898.73 16
dcpmvs_293.49 5694.19 3391.38 16597.69 6176.78 29094.25 17296.29 11388.33 8594.46 3096.88 5388.07 2698.64 10793.62 2698.09 7098.73 16
testtj94.39 2694.18 3495.00 1898.24 3386.77 3096.16 5297.23 3587.28 12194.85 2997.04 4686.99 4299.52 2391.54 7898.33 6198.71 18
SR-MVS94.23 3294.17 3594.43 5398.21 3585.78 6896.40 4196.90 6388.20 9494.33 3397.40 2384.75 7199.03 6793.35 3297.99 7498.48 30
#test#94.32 2994.14 3694.86 2798.61 1086.81 2696.43 3897.34 2287.51 11593.65 4997.21 3486.10 5099.49 2691.68 7698.77 2898.30 50
Regformer-194.22 3394.13 3794.51 4995.54 13586.36 4694.57 15096.44 10491.69 1194.32 3496.56 7587.05 4199.03 6793.35 3297.65 8698.15 66
MSLP-MVS++93.72 5094.08 3892.65 10897.31 7483.43 12095.79 7597.33 2590.03 3893.58 5396.96 5084.87 6997.76 17592.19 5798.66 4496.76 132
test117293.97 4294.07 3993.66 7498.11 3983.45 11996.26 4796.84 7088.33 8594.19 3697.43 2084.24 7699.01 7393.26 3497.98 7598.52 26
MP-MVScopyleft94.25 3094.07 3994.77 3898.47 1986.31 4996.71 3196.98 5289.04 6691.98 9397.19 3785.43 6099.56 1092.06 6398.79 2398.44 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3194.07 3994.75 3998.06 4386.90 2395.88 7196.94 5985.68 15895.05 2797.18 3887.31 3699.07 6191.90 7298.61 5098.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVS-pluss94.21 3494.00 4294.85 2998.17 3686.65 3594.82 13497.17 4286.26 14492.83 7297.87 1285.57 5899.56 1094.37 1798.92 1798.34 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3493.97 4394.90 2698.41 2486.82 2596.54 3697.19 3888.24 9093.26 5896.83 5685.48 5999.59 791.43 8298.40 5898.30 50
HPM-MVScopyleft94.02 3993.88 4494.43 5398.39 2585.78 6897.25 1097.07 4886.90 13192.62 8196.80 6084.85 7099.17 5392.43 4898.65 4698.33 46
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post93.82 4793.82 4593.82 6797.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2084.24 7699.01 7392.73 4297.80 8197.88 88
Regformer-493.91 4493.81 4694.19 6095.36 14085.47 7494.68 14296.41 10791.60 1293.75 4696.71 6185.95 5399.10 6093.21 3696.65 10598.01 80
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3697.48 6986.78 2895.65 8596.89 6489.40 5592.81 7396.97 4985.37 6199.24 4790.87 9298.69 3798.38 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS93.99 4193.78 4894.63 4498.50 1785.90 6596.87 2696.91 6288.70 7591.83 9997.17 3983.96 8099.55 1591.44 8198.64 4798.43 40
APD-MVS_3200maxsize93.78 4893.77 4993.80 7197.92 4784.19 10096.30 4396.87 6786.96 12793.92 4397.47 1883.88 8198.96 8692.71 4597.87 7998.26 58
PGM-MVS93.96 4393.72 5094.68 4198.43 2186.22 5295.30 9897.78 187.45 11893.26 5897.33 2684.62 7299.51 2490.75 9498.57 5198.32 49
DROMVSNet93.44 5893.71 5192.63 10995.21 14882.43 15297.27 996.71 8890.57 2992.88 6995.80 10583.16 8498.16 14393.68 2498.14 6797.31 109
RE-MVS-def93.68 5297.92 4784.57 8596.28 4596.76 8087.46 11693.75 4697.43 2082.94 8792.73 4297.80 8197.88 88
PHI-MVS93.89 4693.65 5394.62 4596.84 8686.43 4396.69 3297.49 585.15 17293.56 5596.28 8485.60 5799.31 4192.45 4798.79 2398.12 70
Regformer-393.68 5193.64 5493.81 7095.36 14084.61 8394.68 14295.83 15091.27 1493.60 5296.71 6185.75 5598.86 9492.87 4096.65 10597.96 82
ETH3D cwj APD-0.1693.91 4493.53 5595.06 1596.76 8887.78 994.92 12797.21 3784.33 18693.89 4497.09 4287.20 3899.29 4491.90 7298.44 5698.12 70
test_prior393.60 5493.53 5593.82 6797.29 7684.49 8994.12 17996.88 6587.67 11292.63 7996.39 8086.62 4498.87 9191.50 7998.67 4198.11 72
TSAR-MVS + GP.93.66 5293.41 5794.41 5596.59 9486.78 2894.40 16293.93 24889.77 4694.21 3595.59 11487.35 3598.61 11192.72 4496.15 11497.83 92
MVS_111021_HR93.45 5793.31 5893.84 6696.99 8384.84 7993.24 22897.24 3388.76 7491.60 10495.85 10386.07 5298.66 10591.91 6998.16 6698.03 78
DELS-MVS93.43 6093.25 5993.97 6295.42 13985.04 7893.06 23597.13 4390.74 2491.84 9795.09 12786.32 4899.21 5091.22 8398.45 5597.65 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3 D test640093.64 5393.22 6094.92 2297.79 5486.84 2495.31 9597.26 3282.67 22393.81 4596.29 8387.29 3799.27 4589.87 10398.67 4198.65 21
HPM-MVS_fast93.40 6193.22 6093.94 6498.36 2784.83 8097.15 1396.80 7685.77 15592.47 8597.13 4182.38 9399.07 6190.51 9898.40 5897.92 86
CANet93.54 5593.20 6294.55 4795.65 13085.73 7094.94 12596.69 9191.89 690.69 11595.88 10281.99 10499.54 1993.14 3797.95 7798.39 42
train_agg93.44 5893.08 6394.52 4897.53 6586.49 4194.07 18696.78 7781.86 24392.77 7496.20 8987.63 3299.12 5892.14 5998.69 3797.94 83
abl_693.18 6793.05 6493.57 7697.52 6784.27 9995.53 8996.67 9287.85 10693.20 6197.22 3380.35 11499.18 5291.91 6997.21 9197.26 112
CSCG93.23 6693.05 6493.76 7298.04 4484.07 10296.22 5097.37 2184.15 18890.05 12595.66 11187.77 2899.15 5689.91 10298.27 6398.07 74
DeepC-MVS88.79 393.31 6292.99 6694.26 5896.07 11485.83 6694.89 12996.99 5189.02 6989.56 12897.37 2582.51 9299.38 3292.20 5698.30 6297.57 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior193.29 6392.97 6794.26 5897.38 7185.92 6293.92 19796.72 8681.96 23792.16 8996.23 8687.85 2798.97 8391.95 6898.55 5497.90 87
EI-MVSNet-Vis-set93.01 6992.92 6893.29 7795.01 15583.51 11894.48 15495.77 15490.87 1892.52 8396.67 6584.50 7399.00 7891.99 6494.44 14297.36 108
ACMMPcopyleft93.24 6592.88 6994.30 5798.09 4285.33 7696.86 2797.45 1388.33 8590.15 12497.03 4881.44 10799.51 2490.85 9395.74 11798.04 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs93.27 6492.75 7094.85 2995.70 12987.66 1396.33 4296.41 10790.00 3994.09 3994.60 15082.33 9598.62 11092.40 5092.86 16998.27 56
ETV-MVS92.74 7292.66 7192.97 9395.20 14984.04 10495.07 11796.51 10290.73 2592.96 6791.19 26784.06 7898.34 13091.72 7596.54 10896.54 141
EI-MVSNet-UG-set92.74 7292.62 7293.12 8594.86 16683.20 12694.40 16295.74 15790.71 2692.05 9296.60 7284.00 7998.99 8091.55 7793.63 15097.17 117
UA-Net92.83 7092.54 7393.68 7396.10 11284.71 8295.66 8396.39 10991.92 593.22 6096.49 7783.16 8498.87 9184.47 16895.47 12297.45 107
alignmvs93.08 6892.50 7494.81 3595.62 13287.61 1495.99 6596.07 13189.77 4694.12 3894.87 13480.56 11398.66 10592.42 4993.10 16498.15 66
casdiffmvs92.51 7592.43 7592.74 10394.41 18781.98 16294.54 15296.23 12089.57 5091.96 9496.17 9382.58 9198.01 16290.95 9095.45 12498.23 60
CDPH-MVS92.83 7092.30 7694.44 5197.79 5486.11 5494.06 18896.66 9380.09 26992.77 7496.63 7086.62 4499.04 6687.40 13198.66 4498.17 64
baseline92.39 7892.29 7792.69 10794.46 18481.77 16794.14 17896.27 11589.22 5991.88 9596.00 9782.35 9497.99 16491.05 8595.27 12998.30 50
MVS_111021_LR92.47 7692.29 7792.98 9295.99 11884.43 9693.08 23396.09 12988.20 9491.12 11295.72 11081.33 10997.76 17591.74 7497.37 9096.75 133
EIA-MVS91.95 8191.94 7991.98 13795.16 15080.01 21995.36 9296.73 8488.44 8289.34 13292.16 23483.82 8298.45 12289.35 10797.06 9497.48 105
VNet92.24 7991.91 8093.24 7996.59 9483.43 12094.84 13396.44 10489.19 6194.08 4095.90 10177.85 14998.17 14288.90 11393.38 15898.13 68
CPTT-MVS91.99 8091.80 8192.55 11398.24 3381.98 16296.76 3096.49 10381.89 24290.24 12096.44 7978.59 13898.61 11189.68 10497.85 8097.06 121
DPM-MVS92.58 7491.74 8295.08 1496.19 10789.31 592.66 24596.56 10183.44 20591.68 10395.04 12886.60 4798.99 8085.60 15597.92 7896.93 128
MG-MVS91.77 8491.70 8392.00 13697.08 8280.03 21893.60 21095.18 19787.85 10690.89 11496.47 7882.06 10298.36 12785.07 15997.04 9597.62 98
EPP-MVSNet91.70 8791.56 8492.13 13195.88 12280.50 20497.33 795.25 19386.15 14889.76 12795.60 11383.42 8398.32 13487.37 13393.25 16197.56 103
3Dnovator+87.14 492.42 7791.37 8595.55 695.63 13188.73 697.07 1896.77 7990.84 1984.02 25296.62 7175.95 16499.34 3687.77 12597.68 8498.59 24
MVSFormer91.68 8891.30 8692.80 9993.86 20883.88 10795.96 6895.90 14484.66 18291.76 10094.91 13277.92 14697.30 22189.64 10597.11 9297.24 113
DP-MVS Recon91.95 8191.28 8793.96 6398.33 2985.92 6294.66 14596.66 9382.69 22290.03 12695.82 10482.30 9699.03 6784.57 16796.48 11196.91 129
diffmvs91.37 9291.23 8891.77 15193.09 23180.27 20792.36 25595.52 17487.03 12691.40 10894.93 13180.08 11897.44 20492.13 6094.56 13897.61 99
Vis-MVSNetpermissive91.75 8591.23 8893.29 7795.32 14383.78 11096.14 5595.98 13789.89 4090.45 11796.58 7375.09 17698.31 13584.75 16596.90 9897.78 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+91.59 8991.11 9093.01 9194.35 19183.39 12294.60 14795.10 20187.10 12490.57 11693.10 20781.43 10898.07 15789.29 10994.48 14097.59 101
MVS_Test91.31 9391.11 9091.93 14194.37 18880.14 21193.46 21595.80 15286.46 13991.35 10993.77 18682.21 9898.09 15487.57 12994.95 13197.55 104
IS-MVSNet91.43 9091.09 9292.46 11795.87 12481.38 17996.95 1993.69 25789.72 4889.50 13095.98 9878.57 13997.77 17483.02 18596.50 11098.22 61
EPNet91.79 8391.02 9394.10 6190.10 32585.25 7796.03 6492.05 29292.83 187.39 16595.78 10679.39 12999.01 7388.13 12297.48 8898.05 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ91.18 9690.92 9491.96 13995.26 14682.60 15192.09 26595.70 15986.27 14391.84 9792.46 22479.70 12498.99 8089.08 11195.86 11694.29 230
PVSNet_Blended_VisFu91.38 9190.91 9592.80 9996.39 10283.17 12794.87 13196.66 9383.29 20989.27 13394.46 15480.29 11699.17 5387.57 12995.37 12596.05 159
xiu_mvs_v2_base91.13 9790.89 9691.86 14594.97 15882.42 15392.24 25995.64 16686.11 15191.74 10293.14 20579.67 12798.89 9089.06 11295.46 12394.28 231
3Dnovator86.66 591.73 8690.82 9794.44 5194.59 17886.37 4597.18 1297.02 5089.20 6084.31 24896.66 6673.74 19999.17 5386.74 14197.96 7697.79 94
PAPM_NR91.22 9590.78 9892.52 11597.60 6381.46 17694.37 16896.24 11986.39 14287.41 16294.80 14182.06 10298.48 11782.80 19195.37 12597.61 99
OMC-MVS91.23 9490.62 9993.08 8796.27 10584.07 10293.52 21295.93 14086.95 12889.51 12996.13 9578.50 14098.35 12985.84 15292.90 16896.83 131
nrg03091.08 9890.39 10093.17 8393.07 23286.91 2296.41 3996.26 11688.30 8888.37 14594.85 13782.19 9997.64 18691.09 8482.95 27994.96 193
FIs90.51 11190.35 10190.99 18793.99 20480.98 19095.73 7897.54 389.15 6286.72 17994.68 14681.83 10697.24 22985.18 15888.31 23294.76 203
PVSNet_Blended90.73 10390.32 10291.98 13796.12 10981.25 18192.55 25096.83 7282.04 23589.10 13592.56 22281.04 11198.85 9786.72 14395.91 11595.84 166
lupinMVS90.92 9990.21 10393.03 9093.86 20883.88 10792.81 24293.86 25279.84 27291.76 10094.29 16077.92 14698.04 15990.48 9997.11 9297.17 117
HQP_MVS90.60 11090.19 10491.82 14894.70 17482.73 14495.85 7296.22 12190.81 2086.91 17594.86 13574.23 18798.12 14488.15 12089.99 19694.63 206
FC-MVSNet-test90.27 11490.18 10590.53 19893.71 21479.85 22495.77 7697.59 289.31 5786.27 18994.67 14781.93 10597.01 24484.26 17088.09 23694.71 204
h-mvs3390.80 10090.15 10692.75 10296.01 11682.66 14895.43 9195.53 17389.80 4293.08 6595.64 11275.77 16599.00 7892.07 6178.05 33496.60 137
jason90.80 10090.10 10792.90 9693.04 23483.53 11793.08 23394.15 24280.22 26691.41 10794.91 13276.87 15297.93 16990.28 10096.90 9897.24 113
jason: jason.
API-MVS90.66 10690.07 10892.45 11896.36 10384.57 8596.06 6395.22 19682.39 22689.13 13494.27 16380.32 11598.46 11980.16 23896.71 10394.33 227
xiu_mvs_v1_base_debu90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
xiu_mvs_v1_base_debi90.64 10790.05 10992.40 11993.97 20584.46 9293.32 21895.46 17885.17 16992.25 8694.03 16870.59 23698.57 11390.97 8794.67 13394.18 232
test_yl90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
DCV-MVSNet90.69 10490.02 11292.71 10495.72 12782.41 15594.11 18195.12 19985.63 16091.49 10594.70 14474.75 18098.42 12586.13 14892.53 17397.31 109
VDD-MVS90.74 10289.92 11493.20 8196.27 10583.02 13395.73 7893.86 25288.42 8492.53 8296.84 5562.09 31398.64 10790.95 9092.62 17297.93 85
PVSNet_BlendedMVS89.98 12089.70 11590.82 19196.12 10981.25 18193.92 19796.83 7283.49 20489.10 13592.26 23281.04 11198.85 9786.72 14387.86 24092.35 310
PS-MVSNAJss89.97 12189.62 11691.02 18491.90 26480.85 19595.26 10395.98 13786.26 14486.21 19094.29 16079.70 12497.65 18388.87 11488.10 23494.57 211
OPM-MVS90.12 11689.56 11791.82 14893.14 22983.90 10694.16 17795.74 15788.96 7087.86 15295.43 11772.48 21697.91 17088.10 12390.18 19593.65 265
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba89.96 12289.50 11891.33 16892.90 24081.82 16596.68 3392.37 28089.03 6787.00 17194.85 13773.05 20897.65 18391.03 8688.63 22194.51 215
112190.42 11289.49 11993.20 8197.27 7884.46 9292.63 24695.51 17571.01 35291.20 11196.21 8782.92 8899.05 6380.56 23198.07 7296.10 155
XVG-OURS-SEG-HR89.95 12389.45 12091.47 16294.00 20381.21 18491.87 26896.06 13385.78 15488.55 14195.73 10974.67 18397.27 22588.71 11589.64 20595.91 162
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22695.74 12675.85 30295.61 8690.80 32787.66 11487.83 15495.40 11876.79 15496.46 27778.37 25496.73 10297.80 93
GeoE90.05 11889.43 12291.90 14495.16 15080.37 20695.80 7494.65 22683.90 19387.55 16194.75 14378.18 14497.62 18981.28 21793.63 15097.71 96
CANet_DTU90.26 11589.41 12392.81 9893.46 22283.01 13493.48 21394.47 22989.43 5487.76 15794.23 16470.54 24099.03 6784.97 16096.39 11296.38 143
MAR-MVS90.30 11389.37 12493.07 8996.61 9384.48 9195.68 8195.67 16182.36 22887.85 15392.85 21276.63 15898.80 10180.01 23996.68 10495.91 162
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs289.88 12789.34 12591.51 15994.83 16881.12 18793.94 19693.91 25189.80 4293.08 6593.60 19175.77 16597.66 18192.07 6177.07 34195.74 171
mvs_anonymous89.37 14489.32 12689.51 24993.47 22174.22 31491.65 27594.83 21882.91 21885.45 21393.79 18481.23 11096.36 28386.47 14594.09 14497.94 83
UniMVSNet_NR-MVSNet89.92 12589.29 12791.81 15093.39 22383.72 11194.43 16097.12 4489.80 4286.46 18293.32 19683.16 8497.23 23084.92 16181.02 30794.49 220
HQP-MVS89.80 12889.28 12891.34 16794.17 19481.56 17094.39 16496.04 13588.81 7185.43 21693.97 17573.83 19797.96 16687.11 13889.77 20394.50 218
PAPR90.02 11989.27 12992.29 12795.78 12580.95 19292.68 24496.22 12181.91 24086.66 18093.75 18882.23 9798.44 12379.40 24994.79 13297.48 105
mvs-test189.45 13789.14 13090.38 21193.33 22477.63 27894.95 12494.36 23387.70 11087.10 17092.81 21673.45 20298.03 16185.57 15693.04 16595.48 177
LFMVS90.08 11789.13 13192.95 9496.71 8982.32 15796.08 5989.91 34186.79 13292.15 9196.81 5862.60 31198.34 13087.18 13593.90 14698.19 62
UniMVSNet (Re)89.80 12889.07 13292.01 13393.60 21884.52 8894.78 13797.47 1089.26 5886.44 18592.32 22982.10 10097.39 21684.81 16480.84 31194.12 236
AdaColmapbinary89.89 12689.07 13292.37 12297.41 7083.03 13294.42 16195.92 14182.81 22086.34 18794.65 14873.89 19599.02 7180.69 22895.51 12095.05 188
VPA-MVSNet89.62 13088.96 13491.60 15693.86 20882.89 13995.46 9097.33 2587.91 10188.43 14493.31 19774.17 19097.40 21387.32 13482.86 28494.52 214
UGNet89.95 12388.95 13592.95 9494.51 18183.31 12395.70 8095.23 19489.37 5687.58 15993.94 17664.00 30298.78 10283.92 17496.31 11396.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 13188.92 13691.67 15495.47 13881.15 18692.38 25494.78 22283.11 21289.06 13794.32 15878.67 13796.61 26481.57 21490.89 18997.24 113
LPG-MVS_test89.45 13788.90 13791.12 17594.47 18281.49 17495.30 9896.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 16092.13 26396.09 12987.90 10285.37 22292.45 22574.38 18597.56 19287.15 13690.43 19193.93 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.10 14988.86 13989.80 23891.84 26678.30 25993.70 20795.01 20485.73 15687.15 16795.28 11979.87 12197.21 23283.81 17687.36 24693.88 248
XVG-OURS89.40 14388.70 14091.52 15894.06 19781.46 17691.27 28096.07 13186.14 14988.89 13995.77 10768.73 26797.26 22787.39 13289.96 19895.83 167
iter_conf_final89.42 14088.69 14191.60 15695.12 15382.93 13795.75 7792.14 28987.32 12087.12 16994.07 16667.09 27897.55 19390.61 9689.01 21694.32 228
test111189.10 14988.64 14290.48 20595.53 13774.97 30796.08 5984.89 36288.13 9790.16 12396.65 6763.29 30798.10 14686.14 14696.90 9898.39 42
Fast-Effi-MVS+89.41 14188.64 14291.71 15394.74 17080.81 19693.54 21195.10 20183.11 21286.82 17890.67 28479.74 12397.75 17880.51 23393.55 15296.57 139
test_djsdf89.03 15688.64 14290.21 21690.74 31179.28 24095.96 6895.90 14484.66 18285.33 22492.94 21174.02 19397.30 22189.64 10588.53 22394.05 242
RRT_MVS89.09 15188.62 14590.49 20292.85 24179.65 22896.41 3994.41 23188.22 9285.50 20994.77 14269.36 25597.31 21989.33 10886.73 25394.51 215
test_low_dy_conf_00189.07 15388.60 14690.49 20292.39 25179.71 22796.07 6294.84 21786.25 14686.34 18794.97 13069.61 25197.31 21988.59 11688.35 23194.44 225
bld_raw_conf00589.19 14788.56 14791.09 17992.62 24681.17 18596.45 3791.24 31689.08 6486.16 19294.82 14068.16 27397.63 18790.03 10188.46 22694.47 223
ECVR-MVScopyleft89.09 15188.53 14890.77 19395.62 13275.89 30196.16 5284.22 36487.89 10490.20 12196.65 6763.19 30998.10 14685.90 15196.94 9698.33 46
CDS-MVSNet89.45 13788.51 14992.29 12793.62 21783.61 11693.01 23694.68 22581.95 23887.82 15593.24 20178.69 13696.99 24580.34 23593.23 16296.28 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DU-MVS89.34 14588.50 15091.85 14793.04 23483.72 11194.47 15796.59 9889.50 5186.46 18293.29 19977.25 15097.23 23084.92 16181.02 30794.59 209
114514_t89.51 13488.50 15092.54 11498.11 3981.99 16195.16 11296.36 11170.19 35485.81 19695.25 12176.70 15698.63 10982.07 20296.86 10197.00 125
VDDNet89.56 13388.49 15292.76 10195.07 15482.09 15996.30 4393.19 26481.05 26291.88 9596.86 5461.16 32398.33 13288.43 11992.49 17597.84 91
ACMM84.12 989.14 14888.48 15391.12 17594.65 17781.22 18395.31 9596.12 12885.31 16885.92 19594.34 15670.19 24498.06 15885.65 15488.86 21994.08 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu88.65 16788.35 15489.54 24693.33 22476.39 29694.47 15794.36 23387.70 11085.43 21689.56 30673.45 20297.26 22785.57 15691.28 18294.97 190
ab-mvs89.41 14188.35 15492.60 11095.15 15282.65 14992.20 26195.60 16883.97 19288.55 14193.70 19074.16 19198.21 14182.46 19689.37 20896.94 127
ACMP84.23 889.01 15888.35 15490.99 18794.73 17181.27 18095.07 11795.89 14686.48 13883.67 26094.30 15969.33 25697.99 16487.10 14088.55 22293.72 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.30 17688.32 15788.27 27694.71 17372.41 33493.15 22990.98 32287.77 10879.25 31891.96 24678.35 14295.75 30883.04 18495.62 11896.65 136
MVSTER88.84 16288.29 15890.51 20192.95 23880.44 20593.73 20495.01 20484.66 18287.15 16793.12 20672.79 21297.21 23287.86 12487.36 24693.87 249
TAMVS89.21 14688.29 15891.96 13993.71 21482.62 15093.30 22294.19 24082.22 23087.78 15693.94 17678.83 13396.95 24777.70 26292.98 16796.32 144
sss88.93 16088.26 16090.94 19094.05 19880.78 19791.71 27295.38 18781.55 25188.63 14093.91 18075.04 17795.47 31982.47 19591.61 18096.57 139
QAPM89.51 13488.15 16193.59 7594.92 16284.58 8496.82 2996.70 8978.43 29283.41 26796.19 9273.18 20799.30 4277.11 26996.54 10896.89 130
BH-untuned88.60 16988.13 16290.01 22995.24 14778.50 25393.29 22394.15 24284.75 18084.46 23893.40 19375.76 16797.40 21377.59 26394.52 13994.12 236
iter_conf0588.85 16188.08 16391.17 17494.27 19281.64 16995.18 10992.15 28886.23 14787.28 16694.07 16663.89 30597.55 19390.63 9589.00 21794.32 228
PLCcopyleft84.53 789.06 15588.03 16492.15 13097.27 7882.69 14794.29 17095.44 18379.71 27484.01 25394.18 16576.68 15798.75 10377.28 26693.41 15795.02 189
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_part189.00 15987.99 16592.04 13295.94 12183.81 10996.14 5596.05 13486.44 14085.69 19993.73 18971.57 22297.66 18185.80 15380.54 31594.66 205
CNLPA89.07 15387.98 16692.34 12396.87 8584.78 8194.08 18593.24 26281.41 25384.46 23895.13 12675.57 17296.62 26177.21 26793.84 14895.61 175
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16092.68 24583.01 13494.92 12796.31 11289.88 4185.53 20693.85 18376.63 15896.96 24681.91 20679.87 32594.50 218
HY-MVS83.01 1289.03 15687.94 16892.29 12794.86 16682.77 14092.08 26694.49 22881.52 25286.93 17392.79 21878.32 14398.23 13879.93 24090.55 19095.88 164
IterMVS-LS88.36 17487.91 16989.70 24293.80 21178.29 26093.73 20495.08 20385.73 15684.75 23191.90 24879.88 12096.92 24983.83 17582.51 28593.89 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051788.61 16887.78 17091.11 17894.96 15977.81 27295.35 9389.69 34585.09 17488.05 15094.59 15166.93 28098.48 11783.27 18292.13 17897.03 123
CHOSEN 1792x268888.84 16287.69 17192.30 12696.14 10881.42 17890.01 30295.86 14874.52 32887.41 16293.94 17675.46 17398.36 12780.36 23495.53 11997.12 120
WR-MVS88.38 17287.67 17290.52 20093.30 22680.18 20993.26 22595.96 13988.57 8085.47 21292.81 21676.12 16096.91 25081.24 21882.29 28794.47 223
thisisatest053088.67 16687.61 17391.86 14594.87 16580.07 21494.63 14689.90 34284.00 19188.46 14393.78 18566.88 28298.46 11983.30 18192.65 17197.06 121
jajsoiax88.24 17787.50 17490.48 20590.89 30580.14 21195.31 9595.65 16584.97 17684.24 24994.02 17165.31 29697.42 20688.56 11788.52 22493.89 246
BH-RMVSNet88.37 17387.48 17591.02 18495.28 14479.45 23292.89 24093.07 26685.45 16586.91 17594.84 13970.35 24197.76 17573.97 29594.59 13795.85 165
VPNet88.20 17887.47 17690.39 20993.56 21979.46 23194.04 18995.54 17288.67 7686.96 17294.58 15269.33 25697.15 23484.05 17380.53 31794.56 212
NR-MVSNet88.58 17087.47 17691.93 14193.04 23484.16 10194.77 13896.25 11889.05 6580.04 31093.29 19979.02 13297.05 24281.71 21380.05 32294.59 209
WR-MVS_H87.80 18887.37 17889.10 25793.23 22778.12 26395.61 8697.30 2987.90 10283.72 25892.01 24579.65 12896.01 29676.36 27480.54 31593.16 284
1112_ss88.42 17187.33 17991.72 15294.92 16280.98 19092.97 23894.54 22778.16 29783.82 25693.88 18178.78 13597.91 17079.45 24589.41 20796.26 147
OpenMVScopyleft83.78 1188.74 16587.29 18093.08 8792.70 24485.39 7596.57 3596.43 10678.74 28880.85 29696.07 9669.64 25099.01 7378.01 26096.65 10594.83 200
mvs_tets88.06 18387.28 18190.38 21190.94 30179.88 22295.22 10595.66 16385.10 17384.21 25093.94 17663.53 30697.40 21388.50 11888.40 22993.87 249
baseline188.10 18087.28 18190.57 19694.96 15980.07 21494.27 17191.29 31486.74 13387.41 16294.00 17376.77 15596.20 28880.77 22679.31 33095.44 178
CP-MVSNet87.63 19687.26 18388.74 26693.12 23076.59 29395.29 10096.58 9988.43 8383.49 26692.98 21075.28 17495.83 30478.97 25181.15 30393.79 254
anonymousdsp87.84 18687.09 18490.12 22289.13 33680.54 20394.67 14495.55 17082.05 23383.82 25692.12 23771.47 22597.15 23487.15 13687.80 24292.67 299
v2v48287.84 18687.06 18590.17 21890.99 29779.23 24394.00 19395.13 19884.87 17785.53 20692.07 24374.45 18497.45 20284.71 16681.75 29593.85 252
BH-w/o87.57 20287.05 18689.12 25694.90 16477.90 26892.41 25293.51 25982.89 21983.70 25991.34 26175.75 16897.07 24075.49 28293.49 15492.39 308
TAPA-MVS84.62 688.16 17987.01 18791.62 15596.64 9280.65 19994.39 16496.21 12476.38 30886.19 19195.44 11579.75 12298.08 15662.75 35295.29 12796.13 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS87.32 21186.88 18888.63 26992.99 23776.33 29895.33 9496.61 9788.22 9283.30 27193.07 20873.03 21095.79 30778.36 25581.00 30993.75 260
V4287.68 19186.86 18990.15 22090.58 31680.14 21194.24 17495.28 19283.66 19885.67 20091.33 26274.73 18297.41 21184.43 16981.83 29392.89 294
XXY-MVS87.65 19386.85 19090.03 22692.14 25680.60 20293.76 20395.23 19482.94 21784.60 23394.02 17174.27 18695.49 31881.04 22083.68 27294.01 244
HyFIR lowres test88.09 18186.81 19191.93 14196.00 11780.63 20090.01 30295.79 15373.42 33687.68 15892.10 24073.86 19697.96 16680.75 22791.70 17997.19 116
F-COLMAP87.95 18486.80 19291.40 16496.35 10480.88 19494.73 14095.45 18179.65 27582.04 28494.61 14971.13 22798.50 11676.24 27791.05 18794.80 202
v114487.61 19986.79 19390.06 22591.01 29679.34 23693.95 19595.42 18683.36 20885.66 20191.31 26574.98 17897.42 20683.37 18082.06 28993.42 274
bld_raw_dy_0_6487.60 20086.73 19490.21 21691.72 27080.26 20895.09 11688.61 35085.68 15885.55 20394.38 15563.93 30496.66 25887.73 12687.84 24193.72 262
Fast-Effi-MVS+-dtu87.44 20786.72 19589.63 24492.04 26077.68 27794.03 19093.94 24785.81 15382.42 27891.32 26470.33 24297.06 24180.33 23690.23 19494.14 235
thres100view90087.63 19686.71 19690.38 21196.12 10978.55 25095.03 12191.58 30587.15 12288.06 14992.29 23168.91 26498.10 14670.13 31691.10 18394.48 221
v887.50 20686.71 19689.89 23291.37 28379.40 23394.50 15395.38 18784.81 17983.60 26391.33 26276.05 16197.42 20682.84 18980.51 31992.84 296
thres600view787.65 19386.67 19890.59 19596.08 11378.72 24694.88 13091.58 30587.06 12588.08 14892.30 23068.91 26498.10 14670.05 31991.10 18394.96 193
tfpn200view987.58 20186.64 19990.41 20895.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.48 221
thres40087.62 19886.64 19990.57 19695.99 11878.64 24894.58 14891.98 29686.94 12988.09 14691.77 25069.18 26198.10 14670.13 31691.10 18394.96 193
Baseline_NR-MVSNet87.07 22386.63 20188.40 27291.44 27877.87 27094.23 17592.57 27784.12 18985.74 19892.08 24177.25 15096.04 29382.29 19979.94 32391.30 327
miper_ehance_all_eth87.22 21786.62 20289.02 26092.13 25777.40 28390.91 28694.81 22081.28 25684.32 24690.08 29579.26 13096.62 26183.81 17682.94 28093.04 289
Anonymous2024052988.09 18186.59 20392.58 11296.53 9881.92 16495.99 6595.84 14974.11 33189.06 13795.21 12361.44 31898.81 10083.67 17987.47 24397.01 124
131487.51 20486.57 20490.34 21492.42 25079.74 22692.63 24695.35 19178.35 29380.14 30791.62 25774.05 19297.15 23481.05 21993.53 15394.12 236
AUN-MVS87.78 18986.54 20591.48 16194.82 16981.05 18893.91 20093.93 24883.00 21586.93 17393.53 19269.50 25397.67 18086.14 14677.12 34095.73 172
Test_1112_low_res87.65 19386.51 20691.08 18094.94 16179.28 24091.77 27094.30 23676.04 31383.51 26592.37 22777.86 14897.73 17978.69 25389.13 21496.22 148
c3_l87.14 22286.50 20789.04 25992.20 25477.26 28491.22 28294.70 22482.01 23684.34 24590.43 28878.81 13496.61 26483.70 17881.09 30493.25 279
v1087.25 21486.38 20889.85 23391.19 28979.50 23094.48 15495.45 18183.79 19683.62 26291.19 26775.13 17597.42 20681.94 20580.60 31392.63 301
UniMVSNet_ETH3D87.53 20386.37 20991.00 18692.44 24978.96 24594.74 13995.61 16784.07 19085.36 22394.52 15359.78 33197.34 21882.93 18687.88 23996.71 135
v14419287.19 22086.35 21089.74 23990.64 31478.24 26193.92 19795.43 18481.93 23985.51 20891.05 27574.21 18997.45 20282.86 18881.56 29793.53 268
v119287.25 21486.33 21190.00 23090.76 31079.04 24493.80 20195.48 17682.57 22485.48 21191.18 26973.38 20697.42 20682.30 19882.06 28993.53 268
v14887.04 22486.32 21289.21 25390.94 30177.26 28493.71 20694.43 23084.84 17884.36 24490.80 28176.04 16297.05 24282.12 20179.60 32793.31 276
LS3D87.89 18586.32 21292.59 11196.07 11482.92 13895.23 10494.92 21175.66 31582.89 27495.98 9872.48 21699.21 5068.43 32695.23 13095.64 174
test250687.21 21886.28 21490.02 22895.62 13273.64 31996.25 4971.38 37787.89 10490.45 11796.65 6755.29 34698.09 15486.03 15096.94 9698.33 46
PEN-MVS86.80 22886.27 21588.40 27292.32 25375.71 30495.18 10996.38 11087.97 9982.82 27593.15 20473.39 20595.92 29976.15 27879.03 33293.59 266
thres20087.21 21886.24 21690.12 22295.36 14078.53 25193.26 22592.10 29086.42 14188.00 15191.11 27369.24 26098.00 16369.58 32091.04 18893.83 253
miper_enhance_ethall86.90 22686.18 21789.06 25891.66 27577.58 28090.22 29894.82 21979.16 28084.48 23789.10 30979.19 13196.66 25884.06 17282.94 28092.94 292
Anonymous20240521187.68 19186.13 21892.31 12596.66 9180.74 19894.87 13191.49 30980.47 26589.46 13195.44 11554.72 34898.23 13882.19 20089.89 20097.97 81
X-MVStestdata88.31 17586.13 21894.85 2998.54 1486.60 3896.93 2297.19 3890.66 2792.85 7023.41 37685.02 6699.49 2691.99 6498.56 5298.47 34
FMVSNet387.40 20986.11 22091.30 16993.79 21383.64 11494.20 17694.81 22083.89 19484.37 24191.87 24968.45 27096.56 26978.23 25785.36 25893.70 264
MVS87.44 20786.10 22191.44 16392.61 24783.62 11592.63 24695.66 16367.26 35881.47 28892.15 23577.95 14598.22 14079.71 24295.48 12192.47 305
PCF-MVS84.11 1087.74 19086.08 22292.70 10694.02 19984.43 9689.27 31295.87 14773.62 33584.43 24094.33 15778.48 14198.86 9470.27 31294.45 14194.81 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192086.97 22586.06 22389.69 24390.53 31978.11 26493.80 20195.43 18481.90 24185.33 22491.05 27572.66 21397.41 21182.05 20381.80 29493.53 268
thisisatest051587.33 21085.99 22491.37 16693.49 22079.55 22990.63 29089.56 34880.17 26787.56 16090.86 27867.07 27998.28 13681.50 21593.02 16696.29 145
cl2286.78 22985.98 22589.18 25592.34 25277.62 27990.84 28794.13 24481.33 25583.97 25490.15 29373.96 19496.60 26684.19 17182.94 28093.33 275
GBi-Net87.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
test187.26 21285.98 22591.08 18094.01 20083.10 12895.14 11394.94 20783.57 20084.37 24191.64 25366.59 28796.34 28478.23 25785.36 25893.79 254
EPNet_dtu86.49 24185.94 22888.14 28190.24 32372.82 32694.11 18192.20 28686.66 13779.42 31792.36 22873.52 20095.81 30671.26 30693.66 14995.80 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D87.51 20485.91 22992.32 12493.70 21683.93 10592.33 25690.94 32384.16 18772.09 35492.52 22369.90 24595.85 30389.20 11088.36 23097.17 117
v124086.78 22985.85 23089.56 24590.45 32077.79 27393.61 20995.37 18981.65 24785.43 21691.15 27171.50 22497.43 20581.47 21682.05 29193.47 272
FMVSNet287.19 22085.82 23191.30 16994.01 20083.67 11394.79 13694.94 20783.57 20083.88 25592.05 24466.59 28796.51 27277.56 26485.01 26193.73 261
cl____86.52 23885.78 23288.75 26492.03 26176.46 29490.74 28894.30 23681.83 24583.34 26990.78 28275.74 17096.57 26781.74 21181.54 29893.22 281
DIV-MVS_self_test86.53 23785.78 23288.75 26492.02 26276.45 29590.74 28894.30 23681.83 24583.34 26990.82 28075.75 16896.57 26781.73 21281.52 29993.24 280
eth_miper_zixun_eth86.50 23985.77 23488.68 26791.94 26375.81 30390.47 29294.89 21282.05 23384.05 25190.46 28775.96 16396.77 25482.76 19279.36 32993.46 273
v7n86.81 22785.76 23589.95 23190.72 31279.25 24295.07 11795.92 14184.45 18582.29 27990.86 27872.60 21597.53 19679.42 24880.52 31893.08 288
TR-MVS86.78 22985.76 23589.82 23594.37 18878.41 25592.47 25192.83 27081.11 26186.36 18692.40 22668.73 26797.48 19973.75 29889.85 20293.57 267
pm-mvs186.61 23485.54 23789.82 23591.44 27880.18 20995.28 10294.85 21583.84 19581.66 28792.62 22172.45 21896.48 27479.67 24378.06 33392.82 297
PatchMatch-RL86.77 23285.54 23790.47 20795.88 12282.71 14690.54 29192.31 28379.82 27384.32 24691.57 26068.77 26696.39 28073.16 30093.48 15692.32 311
DTE-MVSNet86.11 24585.48 23987.98 28491.65 27674.92 30894.93 12695.75 15687.36 11982.26 28093.04 20972.85 21195.82 30574.04 29477.46 33893.20 282
test-LLR85.87 24985.41 24087.25 30090.95 29971.67 33789.55 30689.88 34383.41 20684.54 23587.95 32767.25 27595.11 32481.82 20893.37 15994.97 190
baseline286.50 23985.39 24189.84 23491.12 29376.70 29191.88 26788.58 35182.35 22979.95 31190.95 27773.42 20497.63 18780.27 23789.95 19995.19 185
PAPM86.68 23385.39 24190.53 19893.05 23379.33 23989.79 30594.77 22378.82 28581.95 28593.24 20176.81 15397.30 22166.94 33593.16 16394.95 196
DP-MVS87.25 21485.36 24392.90 9697.65 6283.24 12494.81 13592.00 29474.99 32381.92 28695.00 12972.66 21399.05 6366.92 33792.33 17696.40 142
GA-MVS86.61 23485.27 24490.66 19491.33 28678.71 24790.40 29393.81 25585.34 16785.12 22689.57 30561.25 32097.11 23880.99 22389.59 20696.15 149
SCA86.32 24385.18 24589.73 24192.15 25576.60 29291.12 28391.69 30383.53 20385.50 20988.81 31366.79 28396.48 27476.65 27290.35 19396.12 152
Anonymous2023121186.59 23685.13 24690.98 18996.52 9981.50 17296.14 5596.16 12573.78 33383.65 26192.15 23563.26 30897.37 21782.82 19081.74 29694.06 241
D2MVS85.90 24885.09 24788.35 27490.79 30877.42 28291.83 26995.70 15980.77 26480.08 30990.02 29666.74 28596.37 28181.88 20787.97 23891.26 328
tpmrst85.35 25884.99 24886.43 31490.88 30667.88 35888.71 32191.43 31180.13 26886.08 19488.80 31573.05 20896.02 29582.48 19483.40 27895.40 180
cascas86.43 24284.98 24990.80 19292.10 25980.92 19390.24 29695.91 14373.10 33983.57 26488.39 32065.15 29797.46 20184.90 16391.43 18194.03 243
PMMVS85.71 25384.96 25087.95 28588.90 33977.09 28688.68 32290.06 33772.32 34586.47 18190.76 28372.15 21994.40 33081.78 21093.49 15492.36 309
CostFormer85.77 25284.94 25188.26 27791.16 29272.58 33289.47 31091.04 32176.26 31186.45 18489.97 29870.74 23496.86 25382.35 19787.07 25195.34 183
LTVRE_ROB82.13 1386.26 24484.90 25290.34 21494.44 18681.50 17292.31 25894.89 21283.03 21479.63 31592.67 21969.69 24997.79 17371.20 30786.26 25491.72 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo85.97 24784.86 25389.32 25190.92 30382.19 15892.11 26494.19 24078.76 28778.77 32091.63 25668.38 27196.56 26975.01 28993.95 14589.20 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE86.00 24684.84 25489.45 25091.20 28878.00 26591.70 27395.55 17085.05 17582.97 27392.25 23354.49 34997.48 19982.93 18687.45 24592.89 294
CVMVSNet84.69 27184.79 25584.37 33291.84 26664.92 36693.70 20791.47 31066.19 36086.16 19295.28 11967.18 27793.33 34580.89 22590.42 19294.88 198
PatchmatchNetpermissive85.85 25084.70 25689.29 25291.76 26975.54 30588.49 32491.30 31381.63 24985.05 22788.70 31771.71 22096.24 28774.61 29289.05 21596.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet78.82 1885.55 25484.65 25788.23 27994.72 17271.93 33587.12 33792.75 27378.80 28684.95 22990.53 28664.43 30196.71 25774.74 29093.86 14796.06 158
OurMVSNet-221017-085.35 25884.64 25887.49 29490.77 30972.59 33194.01 19294.40 23284.72 18179.62 31693.17 20361.91 31596.72 25581.99 20481.16 30193.16 284
miper_lstm_enhance85.27 26184.59 25987.31 29791.28 28774.63 30987.69 33394.09 24681.20 26081.36 29189.85 30174.97 17994.30 33381.03 22279.84 32693.01 290
IterMVS-SCA-FT85.45 25584.53 26088.18 28091.71 27276.87 28990.19 29992.65 27685.40 16681.44 28990.54 28566.79 28395.00 32781.04 22081.05 30592.66 300
RPSCF85.07 26484.27 26187.48 29592.91 23970.62 34791.69 27492.46 27876.20 31282.67 27795.22 12263.94 30397.29 22477.51 26585.80 25694.53 213
MS-PatchMatch85.05 26584.16 26287.73 28891.42 28178.51 25291.25 28193.53 25877.50 29980.15 30691.58 25861.99 31495.51 31575.69 28194.35 14389.16 351
FMVSNet185.85 25084.11 26391.08 18092.81 24283.10 12895.14 11394.94 20781.64 24882.68 27691.64 25359.01 33596.34 28475.37 28483.78 26993.79 254
tpm84.73 26984.02 26486.87 31190.33 32168.90 35489.06 31789.94 34080.85 26385.75 19789.86 30068.54 26995.97 29777.76 26184.05 26895.75 170
CHOSEN 280x42085.15 26383.99 26588.65 26892.47 24878.40 25679.68 36492.76 27274.90 32581.41 29089.59 30469.85 24895.51 31579.92 24195.29 12792.03 315
IterMVS84.88 26783.98 26687.60 29091.44 27876.03 30090.18 30092.41 27983.24 21181.06 29590.42 28966.60 28694.28 33479.46 24480.98 31092.48 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs485.43 25683.86 26790.16 21990.02 32882.97 13690.27 29492.67 27575.93 31480.73 29791.74 25271.05 22895.73 30978.85 25283.46 27691.78 318
CR-MVSNet85.35 25883.76 26890.12 22290.58 31679.34 23685.24 34791.96 29878.27 29485.55 20387.87 33071.03 22995.61 31073.96 29689.36 20995.40 180
ACMH80.38 1785.36 25783.68 26990.39 20994.45 18580.63 20094.73 14094.85 21582.09 23277.24 32892.65 22060.01 32997.58 19072.25 30484.87 26292.96 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-mter84.54 27283.64 27087.25 30090.95 29971.67 33789.55 30689.88 34379.17 27984.54 23587.95 32755.56 34395.11 32481.82 20893.37 15994.97 190
MDTV_nov1_ep1383.56 27191.69 27469.93 35187.75 33291.54 30778.60 29084.86 23088.90 31269.54 25296.03 29470.25 31388.93 218
ACMH+81.04 1485.05 26583.46 27289.82 23594.66 17679.37 23494.44 15994.12 24582.19 23178.04 32392.82 21558.23 33797.54 19573.77 29782.90 28392.54 302
IB-MVS80.51 1585.24 26283.26 27391.19 17292.13 25779.86 22391.75 27191.29 31483.28 21080.66 29988.49 31961.28 31998.46 11980.99 22379.46 32895.25 184
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal84.72 27083.23 27489.20 25492.79 24380.05 21694.48 15495.81 15182.38 22781.08 29491.21 26669.01 26396.95 24761.69 35480.59 31490.58 341
MSDG84.86 26883.09 27590.14 22193.80 21180.05 21689.18 31593.09 26578.89 28378.19 32191.91 24765.86 29597.27 22568.47 32588.45 22793.11 286
TransMVSNet (Re)84.43 27383.06 27688.54 27091.72 27078.44 25495.18 10992.82 27182.73 22179.67 31492.12 23773.49 20195.96 29871.10 31168.73 35991.21 330
tpm284.08 27582.94 27787.48 29591.39 28271.27 33989.23 31490.37 33171.95 34784.64 23289.33 30767.30 27496.55 27175.17 28687.09 25094.63 206
SixPastTwentyTwo83.91 27882.90 27886.92 30890.99 29770.67 34693.48 21391.99 29585.54 16377.62 32792.11 23960.59 32596.87 25276.05 27977.75 33593.20 282
TESTMET0.1,183.74 28082.85 27986.42 31589.96 32971.21 34189.55 30687.88 35377.41 30083.37 26887.31 33556.71 34093.65 34280.62 23092.85 17094.40 226
pmmvs584.21 27482.84 28088.34 27588.95 33876.94 28892.41 25291.91 30075.63 31680.28 30491.18 26964.59 30095.57 31177.09 27083.47 27592.53 303
EPMVS83.90 27982.70 28187.51 29290.23 32472.67 32888.62 32381.96 36981.37 25485.01 22888.34 32166.31 29094.45 32975.30 28587.12 24995.43 179
tpmvs83.35 28482.07 28287.20 30491.07 29571.00 34488.31 32791.70 30278.91 28280.49 30287.18 33869.30 25997.08 23968.12 33083.56 27493.51 271
COLMAP_ROBcopyleft80.39 1683.96 27682.04 28389.74 23995.28 14479.75 22594.25 17292.28 28475.17 32178.02 32493.77 18658.60 33697.84 17265.06 34585.92 25591.63 321
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030483.46 28181.92 28488.10 28290.63 31577.49 28193.26 22593.75 25680.04 27080.44 30387.24 33747.94 36395.55 31275.79 28088.16 23391.26 328
test0.0.03 182.41 28981.69 28584.59 33088.23 34672.89 32590.24 29687.83 35483.41 20679.86 31289.78 30267.25 27588.99 36565.18 34383.42 27791.90 317
pmmvs683.42 28281.60 28688.87 26288.01 34977.87 27094.96 12394.24 23974.67 32778.80 31991.09 27460.17 32896.49 27377.06 27175.40 34592.23 313
RPMNet83.95 27781.53 28791.21 17190.58 31679.34 23685.24 34796.76 8071.44 34985.55 20382.97 35670.87 23298.91 8961.01 35689.36 20995.40 180
AllTest83.42 28281.39 28889.52 24795.01 15577.79 27393.12 23090.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
PatchT82.68 28781.27 28986.89 31090.09 32670.94 34584.06 35390.15 33474.91 32485.63 20283.57 35369.37 25494.87 32865.19 34288.50 22594.84 199
USDC82.76 28581.26 29087.26 29991.17 29074.55 31089.27 31293.39 26178.26 29575.30 34192.08 24154.43 35096.63 26071.64 30585.79 25790.61 338
EU-MVSNet81.32 30380.95 29182.42 34188.50 34263.67 36793.32 21891.33 31264.02 36280.57 30192.83 21461.21 32292.27 35476.34 27580.38 32091.32 326
Patchmtry82.71 28680.93 29288.06 28390.05 32776.37 29784.74 35191.96 29872.28 34681.32 29287.87 33071.03 22995.50 31768.97 32280.15 32192.32 311
CL-MVSNet_self_test81.74 29580.53 29385.36 32485.96 35772.45 33390.25 29593.07 26681.24 25879.85 31387.29 33670.93 23192.52 35266.95 33469.23 35591.11 334
MIMVSNet82.59 28880.53 29388.76 26391.51 27778.32 25886.57 34090.13 33579.32 27680.70 29888.69 31852.98 35593.07 34966.03 34088.86 21994.90 197
our_test_381.93 29280.46 29586.33 31688.46 34373.48 32188.46 32591.11 31776.46 30676.69 33288.25 32366.89 28194.36 33168.75 32379.08 33191.14 332
EG-PatchMatch MVS82.37 29080.34 29688.46 27190.27 32279.35 23592.80 24394.33 23577.14 30473.26 35190.18 29247.47 36596.72 25570.25 31387.32 24889.30 348
tpm cat181.96 29180.27 29787.01 30691.09 29471.02 34387.38 33691.53 30866.25 35980.17 30586.35 34268.22 27296.15 29169.16 32182.29 28793.86 251
dp81.47 30180.23 29885.17 32789.92 33065.49 36486.74 33890.10 33676.30 31081.10 29387.12 33962.81 31095.92 29968.13 32979.88 32494.09 239
testgi80.94 30880.20 29983.18 33787.96 35066.29 36191.28 27990.70 32983.70 19778.12 32292.84 21351.37 35790.82 36163.34 34982.46 28692.43 306
K. test v381.59 29880.15 30085.91 32189.89 33169.42 35392.57 24987.71 35585.56 16273.44 35089.71 30355.58 34295.52 31477.17 26869.76 35392.78 298
ppachtmachnet_test81.84 29380.07 30187.15 30588.46 34374.43 31389.04 31892.16 28775.33 31977.75 32588.99 31066.20 29195.37 32065.12 34477.60 33691.65 320
Patchmatch-RL test81.67 29679.96 30286.81 31285.42 36171.23 34082.17 36087.50 35778.47 29177.19 32982.50 35770.81 23393.48 34382.66 19372.89 34995.71 173
ADS-MVSNet81.56 29979.78 30386.90 30991.35 28471.82 33683.33 35689.16 34972.90 34182.24 28185.77 34664.98 29893.76 34064.57 34683.74 27095.12 186
Anonymous2023120681.03 30679.77 30484.82 32987.85 35170.26 34991.42 27892.08 29173.67 33477.75 32589.25 30862.43 31293.08 34861.50 35582.00 29291.12 333
ADS-MVSNet281.66 29779.71 30587.50 29391.35 28474.19 31583.33 35688.48 35272.90 34182.24 28185.77 34664.98 29893.20 34764.57 34683.74 27095.12 186
FMVSNet581.52 30079.60 30687.27 29891.17 29077.95 26691.49 27792.26 28576.87 30576.16 33587.91 32951.67 35692.34 35367.74 33181.16 30191.52 322
gg-mvs-nofinetune81.77 29479.37 30788.99 26190.85 30777.73 27686.29 34179.63 37374.88 32683.19 27269.05 36760.34 32696.11 29275.46 28394.64 13693.11 286
Patchmatch-test81.37 30279.30 30887.58 29190.92 30374.16 31680.99 36287.68 35670.52 35376.63 33388.81 31371.21 22692.76 35160.01 36086.93 25295.83 167
KD-MVS_self_test80.20 31279.24 30983.07 33885.64 36065.29 36591.01 28593.93 24878.71 28976.32 33486.40 34159.20 33492.93 35072.59 30269.35 35491.00 336
Anonymous2024052180.44 31079.21 31084.11 33585.75 35967.89 35792.86 24193.23 26375.61 31775.59 34087.47 33450.03 35894.33 33271.14 31081.21 30090.12 343
CMPMVSbinary59.16 2180.52 30979.20 31184.48 33183.98 36467.63 36089.95 30493.84 25464.79 36166.81 36291.14 27257.93 33895.17 32276.25 27688.10 23490.65 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040281.30 30479.17 31287.67 28993.19 22878.17 26292.98 23791.71 30175.25 32076.02 33890.31 29059.23 33396.37 28150.22 36783.63 27388.47 357
test20.0379.95 31479.08 31382.55 34085.79 35867.74 35991.09 28491.08 31881.23 25974.48 34689.96 29961.63 31690.15 36260.08 35876.38 34289.76 344
LF4IMVS80.37 31179.07 31484.27 33486.64 35369.87 35289.39 31191.05 32076.38 30874.97 34390.00 29747.85 36494.25 33574.55 29380.82 31288.69 355
JIA-IIPM81.04 30578.98 31587.25 30088.64 34073.48 32181.75 36189.61 34773.19 33882.05 28373.71 36466.07 29495.87 30271.18 30984.60 26492.41 307
pmmvs-eth3d80.97 30778.72 31687.74 28784.99 36379.97 22190.11 30191.65 30475.36 31873.51 34986.03 34359.45 33293.96 33975.17 28672.21 35089.29 349
UnsupCasMVSNet_eth80.07 31378.27 31785.46 32385.24 36272.63 33088.45 32694.87 21482.99 21671.64 35788.07 32656.34 34191.75 35873.48 29963.36 36492.01 316
TinyColmap79.76 31677.69 31885.97 31891.71 27273.12 32389.55 30690.36 33275.03 32272.03 35590.19 29146.22 36696.19 29063.11 35081.03 30688.59 356
TDRefinement79.81 31577.34 31987.22 30379.24 37175.48 30693.12 23092.03 29376.45 30775.01 34291.58 25849.19 36196.44 27870.22 31569.18 35689.75 345
MIMVSNet179.38 31877.28 32085.69 32286.35 35473.67 31891.61 27692.75 27378.11 29872.64 35388.12 32548.16 36291.97 35760.32 35777.49 33791.43 325
YYNet179.22 31977.20 32185.28 32688.20 34872.66 32985.87 34390.05 33974.33 33062.70 36487.61 33266.09 29392.03 35566.94 33572.97 34891.15 331
MDA-MVSNet_test_wron79.21 32077.19 32285.29 32588.22 34772.77 32785.87 34390.06 33774.34 32962.62 36587.56 33366.14 29291.99 35666.90 33873.01 34791.10 335
OpenMVS_ROBcopyleft74.94 1979.51 31777.03 32386.93 30787.00 35276.23 29992.33 25690.74 32868.93 35674.52 34588.23 32449.58 36096.62 26157.64 36284.29 26587.94 359
MDA-MVSNet-bldmvs78.85 32176.31 32486.46 31389.76 33273.88 31788.79 32090.42 33079.16 28059.18 36688.33 32260.20 32794.04 33662.00 35368.96 35791.48 324
DSMNet-mixed76.94 32676.29 32578.89 34483.10 36756.11 37487.78 33179.77 37260.65 36475.64 33988.71 31661.56 31788.34 36660.07 35989.29 21192.21 314
PM-MVS78.11 32476.12 32684.09 33683.54 36670.08 35088.97 31985.27 36179.93 27174.73 34486.43 34034.70 37193.48 34379.43 24772.06 35188.72 354
KD-MVS_2432*160078.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
miper_refine_blended78.50 32276.02 32785.93 31986.22 35574.47 31184.80 34992.33 28179.29 27776.98 33085.92 34453.81 35393.97 33767.39 33257.42 36789.36 346
new-patchmatchnet76.41 32775.17 32980.13 34382.65 36959.61 36987.66 33491.08 31878.23 29669.85 35883.22 35454.76 34791.63 36064.14 34864.89 36289.16 351
PVSNet_073.20 2077.22 32574.83 33084.37 33290.70 31371.10 34283.09 35889.67 34672.81 34373.93 34883.13 35560.79 32493.70 34168.54 32450.84 37088.30 358
UnsupCasMVSNet_bld76.23 32873.27 33185.09 32883.79 36572.92 32485.65 34693.47 26071.52 34868.84 36079.08 36149.77 35993.21 34666.81 33960.52 36689.13 353
MVS-HIRNet73.70 32972.20 33278.18 34791.81 26856.42 37382.94 35982.58 36755.24 36668.88 35966.48 36855.32 34595.13 32358.12 36188.42 22883.01 362
new_pmnet72.15 33070.13 33378.20 34682.95 36865.68 36283.91 35482.40 36862.94 36364.47 36379.82 36042.85 36886.26 36857.41 36374.44 34682.65 364
pmmvs371.81 33168.71 33481.11 34275.86 37270.42 34886.74 33883.66 36558.95 36568.64 36180.89 35936.93 37089.52 36463.10 35163.59 36383.39 361
N_pmnet68.89 33268.44 33570.23 35189.07 33728.79 38388.06 32819.50 38469.47 35571.86 35684.93 34861.24 32191.75 35854.70 36477.15 33990.15 342
FPMVS64.63 33462.55 33670.88 35070.80 37456.71 37184.42 35284.42 36351.78 36849.57 36881.61 35823.49 37581.48 37140.61 37276.25 34374.46 367
LCM-MVSNet66.00 33362.16 33777.51 34864.51 37858.29 37083.87 35590.90 32448.17 36954.69 36773.31 36516.83 38186.75 36765.47 34161.67 36587.48 360
PMMVS259.60 33656.40 33869.21 35268.83 37546.58 37873.02 36977.48 37655.07 36749.21 36972.95 36617.43 38080.04 37249.32 36844.33 37280.99 366
EGC-MVSNET61.97 33556.37 33978.77 34589.63 33473.50 32089.12 31682.79 3660.21 3811.24 38284.80 34939.48 36990.04 36344.13 36975.94 34472.79 368
Gipumacopyleft57.99 33854.91 34067.24 35388.51 34165.59 36352.21 37290.33 33343.58 37142.84 37251.18 37320.29 37885.07 36934.77 37370.45 35251.05 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 33754.22 34172.86 34956.50 38156.67 37280.75 36386.00 35873.09 34037.39 37364.63 37022.17 37679.49 37343.51 37023.96 37582.43 365
test_method50.52 34048.47 34256.66 35652.26 38218.98 38541.51 37481.40 37010.10 37644.59 37175.01 36328.51 37368.16 37453.54 36549.31 37182.83 363
PMVScopyleft47.18 2252.22 33948.46 34363.48 35445.72 38346.20 37973.41 36878.31 37441.03 37230.06 37565.68 3696.05 38283.43 37030.04 37465.86 36060.80 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 34242.29 34446.03 35865.58 37737.41 38073.51 36764.62 37833.99 37328.47 37747.87 37419.90 37967.91 37522.23 37624.45 37432.77 373
EMVS42.07 34341.12 34544.92 35963.45 37935.56 38273.65 36663.48 37933.05 37426.88 37845.45 37521.27 37767.14 37619.80 37723.02 37632.06 374
tmp_tt35.64 34439.24 34624.84 36014.87 38423.90 38462.71 37051.51 3836.58 37836.66 37462.08 37144.37 36730.34 38052.40 36622.00 37720.27 375
MVEpermissive39.65 2343.39 34138.59 34757.77 35556.52 38048.77 37755.38 37158.64 38129.33 37528.96 37652.65 3724.68 38364.62 37728.11 37533.07 37359.93 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.14 34529.52 3480.00 3640.00 3870.00 3880.00 37595.76 1550.00 3820.00 38394.29 16075.66 1710.00 3830.00 3810.00 3810.00 379
wuyk23d21.27 34620.48 34923.63 36168.59 37636.41 38149.57 3736.85 3859.37 3777.89 3794.46 3814.03 38431.37 37917.47 37816.07 3783.12 376
testmvs8.92 34711.52 3501.12 3631.06 3850.46 38786.02 3420.65 3860.62 3792.74 3809.52 3790.31 3860.45 3822.38 3790.39 3792.46 378
test1238.76 34811.22 3511.39 3620.85 3860.97 38685.76 3450.35 3870.54 3802.45 3818.14 3800.60 3850.48 3812.16 3800.17 3802.71 377
ab-mvs-re7.82 34910.43 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38393.88 1810.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas6.64 3508.86 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38279.70 1240.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS198.86 185.54 7398.29 197.49 589.79 4596.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
PC_three_145282.47 22597.09 997.07 4592.72 198.04 15992.70 4699.02 1298.86 10
No_MVS96.52 197.78 5790.86 196.85 6899.61 396.03 199.06 999.07 5
test_one_060198.58 1285.83 6697.44 1491.05 1796.78 1398.06 691.45 11
eth-test20.00 387
eth-test0.00 387
ZD-MVS98.15 3786.62 3797.07 4883.63 19994.19 3696.91 5287.57 3499.26 4691.99 6498.44 56
IU-MVS98.77 586.00 5596.84 7081.26 25797.26 795.50 1099.13 399.03 7
OPU-MVS96.21 398.00 4690.85 397.13 1497.08 4392.59 298.94 8792.25 5498.99 1498.84 13
test_241102_TWO97.44 1490.31 3197.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_241102_ONE98.77 585.99 5797.44 1490.26 3597.71 197.96 1092.31 499.38 32
save fliter97.85 5085.63 7195.21 10696.82 7489.44 52
test_0728_THIRD90.75 2297.04 1098.05 892.09 699.55 1595.64 699.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 4397.09 1697.49 599.61 395.62 899.08 798.99 8
test072698.78 385.93 6097.19 1197.47 1090.27 3397.64 498.13 191.47 8
GSMVS96.12 152
test_part298.55 1387.22 1896.40 14
sam_mvs171.70 22196.12 152
sam_mvs70.60 235
ambc83.06 33979.99 37063.51 36877.47 36592.86 26974.34 34784.45 35028.74 37295.06 32673.06 30168.89 35890.61 338
MTGPAbinary96.97 53
test_post188.00 3299.81 37869.31 25895.53 31376.65 272
test_post10.29 37770.57 23995.91 301
patchmatchnet-post83.76 35271.53 22396.48 274
GG-mvs-BLEND87.94 28689.73 33377.91 26787.80 33078.23 37580.58 30083.86 35159.88 33095.33 32171.20 30792.22 17790.60 340
MTMP96.16 5260.64 380
gm-plane-assit89.60 33568.00 35677.28 30388.99 31097.57 19179.44 246
test9_res91.91 6998.71 3498.07 74
TEST997.53 6586.49 4194.07 18696.78 7781.61 25092.77 7496.20 8987.71 3199.12 58
test_897.49 6886.30 5094.02 19196.76 8081.86 24392.70 7896.20 8987.63 3299.02 71
agg_prior290.54 9798.68 3998.27 56
agg_prior97.38 7185.92 6296.72 8692.16 8998.97 83
TestCases89.52 24795.01 15577.79 27390.89 32577.41 30076.12 33693.34 19454.08 35197.51 19768.31 32784.27 26693.26 277
test_prior485.96 5994.11 181
test_prior294.12 17987.67 11292.63 7996.39 8086.62 4491.50 7998.67 41
test_prior93.82 6797.29 7684.49 8996.88 6598.87 9198.11 72
旧先验293.36 21771.25 35094.37 3297.13 23786.74 141
新几何293.11 232
新几何193.10 8697.30 7584.35 9895.56 16971.09 35191.26 11096.24 8582.87 8998.86 9479.19 25098.10 6996.07 157
旧先验196.79 8781.81 16695.67 16196.81 5886.69 4397.66 8596.97 126
无先验93.28 22496.26 11673.95 33299.05 6380.56 23196.59 138
原ACMM292.94 239
原ACMM192.01 13397.34 7381.05 18896.81 7578.89 28390.45 11795.92 10082.65 9098.84 9980.68 22998.26 6496.14 150
test22296.55 9681.70 16892.22 26095.01 20468.36 35790.20 12196.14 9480.26 11797.80 8196.05 159
testdata298.75 10378.30 256
segment_acmp87.16 40
testdata90.49 20296.40 10177.89 26995.37 18972.51 34493.63 5196.69 6382.08 10197.65 18383.08 18397.39 8995.94 161
testdata192.15 26287.94 100
test1294.34 5697.13 8186.15 5396.29 11391.04 11385.08 6499.01 7398.13 6897.86 90
plane_prior794.70 17482.74 143
plane_prior694.52 18082.75 14174.23 187
plane_prior596.22 12198.12 14488.15 12089.99 19694.63 206
plane_prior494.86 135
plane_prior382.75 14190.26 3586.91 175
plane_prior295.85 7290.81 20
plane_prior194.59 178
plane_prior82.73 14495.21 10689.66 4989.88 201
n20.00 388
nn0.00 388
door-mid85.49 359
lessismore_v086.04 31788.46 34368.78 35580.59 37173.01 35290.11 29455.39 34496.43 27975.06 28865.06 36192.90 293
LGP-MVS_train91.12 17594.47 18281.49 17496.14 12686.73 13485.45 21395.16 12469.89 24698.10 14687.70 12789.23 21293.77 258
test1196.57 100
door85.33 360
HQP5-MVS81.56 170
HQP-NCC94.17 19494.39 16488.81 7185.43 216
ACMP_Plane94.17 19494.39 16488.81 7185.43 216
BP-MVS87.11 138
HQP4-MVS85.43 21697.96 16694.51 215
HQP3-MVS96.04 13589.77 203
HQP2-MVS73.83 197
NP-MVS94.37 18882.42 15393.98 174
MDTV_nov1_ep13_2view55.91 37587.62 33573.32 33784.59 23470.33 24274.65 29195.50 176
ACMMP++_ref87.47 243
ACMMP++88.01 237
Test By Simon80.02 119
ITE_SJBPF88.24 27891.88 26577.05 28792.92 26885.54 16380.13 30893.30 19857.29 33996.20 28872.46 30384.71 26391.49 323
DeepMVS_CXcopyleft56.31 35774.23 37351.81 37656.67 38244.85 37048.54 37075.16 36227.87 37458.74 37840.92 37152.22 36958.39 371