This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4198.82 1198.22 3697.89 3799.48 2899.09 54
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5495.53 6298.10 3396.20 10797.38 5599.24 7699.62 4
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
SR-MVS99.45 997.61 1499.20 16
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3699.04 298.26 3398.10 2399.50 2799.22 39
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6196.06 3698.72 2998.53 2498.41 2498.15 2299.46 3299.28 28
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5199.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3398.82 1198.29 2897.67 4599.51 2599.28 28
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS99.21 2398.29 37
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4896.12 5798.72 1497.19 6996.24 8399.17 9198.39 112
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 3998.07 3898.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5098.45 3498.89 697.46 6198.77 499.17 9199.37 20
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9196.80 4897.82 3797.90 4898.78 399.47 3199.26 33
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4293.26 5497.27 3790.84 6491.16 8397.31 4397.64 4297.70 5498.20 1999.33 6199.18 46
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 4993.04 6294.64 10389.18 9284.44 13894.79 6496.79 6097.23 6697.61 4799.24 7698.88 83
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 8997.94 4596.85 3597.66 2597.58 393.33 5896.84 4798.01 3697.13 7196.20 8599.09 10398.01 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6697.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
CDPH-MVS96.84 4597.49 3696.09 4798.92 3398.85 6198.61 2895.09 4196.00 6987.29 10595.45 4597.42 4297.16 5097.83 5097.94 3499.44 4298.92 78
CPTT-MVS97.78 2697.54 3598.05 2198.91 3499.05 3799.00 2096.96 3397.14 4195.92 1795.50 4398.78 2898.99 497.20 6796.07 8798.54 15799.04 64
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3598.85 6198.26 3893.25 5697.99 1595.56 2290.01 9798.03 4098.05 3497.91 4798.43 1099.44 4299.35 22
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3699.28 2498.47 3496.86 3497.04 4592.15 4997.57 2396.05 5997.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS97.78 2698.44 1897.02 3698.73 3799.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
OMC-MVS97.00 3996.92 4897.09 3498.69 3898.66 7297.85 4695.02 4298.09 1394.47 2793.15 5996.90 4597.38 4697.16 7096.82 7299.13 9897.65 141
MAR-MVS95.50 5695.60 6595.39 6198.67 3998.18 9295.89 9989.81 10794.55 10591.97 5292.99 6190.21 9097.30 4796.79 8097.49 4998.72 14398.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4099.05 3798.85 2597.23 2798.45 489.40 8797.51 2499.27 1496.88 5998.53 1597.81 4198.96 12099.59 8
CNLPA96.90 4296.28 5797.64 2898.56 4198.63 7796.85 6696.60 3697.73 1997.08 689.78 9996.28 5597.80 3996.73 8396.63 7498.94 12298.14 124
EPNet96.27 5396.97 4695.46 5998.47 4298.28 8697.41 5293.67 4995.86 7492.86 4297.51 2493.79 7091.76 13997.03 7497.03 6498.61 15399.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4298.98 4896.94 6393.89 4897.64 2691.44 5498.89 396.41 5197.20 4998.02 4597.29 6099.04 11498.85 87
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4499.29 2396.59 7793.20 5797.70 2289.94 7998.46 896.89 4696.71 6398.11 4297.95 3399.27 7299.01 68
MSDG94.82 6993.73 10396.09 4798.34 4597.43 10897.06 5896.05 3795.84 7590.56 6786.30 12789.10 10095.55 8496.13 11095.61 10399.00 11595.73 176
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4698.66 7298.00 4394.96 4397.17 3989.48 8492.91 6396.35 5297.53 4396.59 8895.90 9599.28 7097.82 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4799.28 2498.67 2797.38 2097.31 3590.36 7389.19 10193.58 7198.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 898.77 998.23 1598.15 4899.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 4999.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS96.86 4496.82 5096.91 3898.08 5098.20 9098.52 3397.20 2897.24 3891.42 5591.84 7598.45 3497.25 4897.07 7297.40 5498.95 12197.55 144
EPNet_dtu92.45 11795.02 7989.46 14498.02 5195.47 16694.79 11892.62 6694.97 9870.11 19094.76 5392.61 7784.07 20095.94 11395.56 10497.15 18695.82 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet96.84 4597.20 4196.42 4097.92 5299.24 3098.60 2993.51 5197.11 4293.07 3691.16 8397.24 4496.21 7298.24 3598.05 2699.22 8299.35 22
LS3D95.46 5995.14 7595.84 5297.91 5398.90 5898.58 3097.79 597.07 4483.65 12088.71 10488.64 10397.82 3797.49 5997.42 5299.26 7597.72 140
CS-MVS-test97.00 3997.85 3396.00 5097.77 5499.56 596.35 8591.95 7597.54 2992.20 4896.14 3596.00 6098.19 2898.46 1997.78 4299.57 1499.45 16
DELS-MVS96.06 5496.04 6196.07 4997.77 5499.25 2898.10 4193.26 5494.42 10792.79 4388.52 10893.48 7295.06 9398.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5697.44 10796.07 9293.17 5895.40 8483.86 11883.76 14288.72 10293.87 11394.25 15194.11 14598.87 12895.28 182
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5798.73 6797.59 5097.13 3092.50 13789.09 9489.85 9896.65 4996.90 5894.97 13994.89 12399.08 10498.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5898.15 9394.50 12491.99 7495.32 8791.31 5795.47 4483.44 13896.02 7596.56 8995.23 11498.69 14696.67 168
CS-MVS96.87 4397.41 3996.24 4597.42 5999.48 997.30 5591.83 8097.17 3993.02 4094.80 5194.45 6698.16 3098.61 1397.85 3999.69 199.50 12
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 5999.02 4595.89 9993.10 5996.16 6293.12 3491.99 7185.27 12394.66 9998.09 4397.34 5699.24 7699.08 55
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6298.94 5194.82 11796.03 3898.24 992.11 5095.80 4098.64 3295.51 8598.95 798.66 596.78 18999.20 42
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6397.98 9796.40 8385.39 15896.10 6691.07 5896.53 3296.34 5495.61 8297.65 5596.95 6796.21 19097.49 145
MVS_030496.31 5196.91 4995.62 5597.21 6499.20 3198.55 3193.10 5997.04 4589.73 8190.30 9396.35 5295.71 7898.14 3997.93 3699.38 5499.40 18
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6598.89 5995.90 9788.50 12495.32 8783.31 12171.99 19588.96 10194.10 11096.69 8496.49 7698.15 17099.10 52
HyFIR lowres test92.03 11891.55 14292.58 10697.13 6598.72 6894.65 12186.54 14393.58 12282.56 12467.75 20690.47 8895.67 7995.87 11595.54 10598.91 12598.93 77
OPM-MVS93.61 10292.43 12895.00 6896.94 6797.34 10997.78 4794.23 4689.64 16985.53 11288.70 10582.81 14196.28 7196.28 10395.00 12299.24 7697.22 153
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
X-MVStestdata96.60 6899.35 1796.82 6790.85 6198.72 2999.46 32
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7097.54 10397.99 4494.54 4497.81 1785.88 11196.73 3181.28 14896.99 5696.29 10295.21 11598.76 14296.73 167
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7198.97 4994.33 12691.84 7894.93 9990.37 7285.04 13394.99 6390.87 15498.12 4197.30 5899.30 6899.45 16
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7297.54 10397.40 5391.84 7894.66 10281.09 13395.70 4283.36 13995.10 9296.36 10095.71 10199.32 6399.03 65
HQP-MVS94.43 8294.57 8394.27 8696.41 7397.23 11296.89 6493.98 4795.94 7183.68 11995.01 4984.46 13095.58 8395.47 12794.85 12799.07 10699.00 69
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7396.80 12194.88 11693.54 5096.41 5690.16 7492.31 6983.11 14096.32 7096.22 10594.65 12999.22 8297.35 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RPSCF94.05 9094.00 9794.12 8896.20 7596.41 13596.61 7691.54 8595.83 7689.73 8196.94 3092.80 7595.35 8991.63 18990.44 19195.27 20293.94 193
test250694.32 8693.00 11595.87 5196.16 7699.39 1596.96 6192.80 6495.22 9394.47 2791.55 8070.45 19395.25 9098.29 2897.98 2999.59 798.10 126
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7699.39 1596.96 6192.80 6495.22 9392.38 4781.48 15280.31 14995.25 9098.29 2897.98 2999.59 798.05 127
test111193.94 9392.78 11795.29 6396.14 7899.42 1196.79 7092.85 6395.08 9791.39 5680.69 15779.86 15295.00 9498.28 3198.00 2899.58 1198.11 125
UA-Net93.96 9295.95 6291.64 11696.06 7998.59 7995.29 10890.00 10291.06 15782.87 12290.64 9098.06 3986.06 18798.14 3998.20 1999.58 1196.96 161
UGNet94.92 6696.63 5292.93 10496.03 8098.63 7794.53 12391.52 8696.23 6090.03 7692.87 6496.10 5886.28 18696.68 8596.60 7599.16 9499.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 8294.38 8794.50 8296.01 8197.69 10195.85 10292.09 7395.74 7789.12 9395.14 4782.62 14394.77 9595.73 12194.67 12899.14 9799.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS89.56 1591.71 12392.50 12390.79 12895.94 8298.44 8387.05 19891.38 8993.15 12692.98 4184.78 13485.14 12678.27 20592.47 17794.44 14099.10 10299.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch91.82 12192.51 12291.02 12295.83 8396.88 11795.05 11184.55 17193.85 11782.01 12682.51 14891.71 7990.52 16195.07 13793.03 16798.13 17194.52 184
CANet_DTU93.92 9596.57 5390.83 12695.63 8498.39 8496.99 6087.38 13496.26 5971.97 17996.31 3393.02 7394.53 10297.38 6396.83 7198.49 16097.79 133
ACMH90.77 1391.51 12891.63 14191.38 11995.62 8596.87 11991.76 17189.66 10991.58 15278.67 14286.73 11678.12 15893.77 11694.59 14294.54 13698.78 14098.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8698.93 5397.74 4893.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
thres600view793.49 10592.37 13194.79 7795.42 8798.93 5396.58 7892.31 6893.04 12787.88 10186.62 11876.94 16697.09 5496.82 7795.63 10299.45 3698.63 97
thres40093.56 10392.43 12894.87 7495.40 8898.91 5696.70 7492.38 6792.93 12988.19 10086.69 11777.35 16397.13 5196.75 8295.85 9799.42 4798.56 99
thres20093.62 10192.54 12194.88 7295.36 8998.93 5396.75 7292.31 6892.84 13088.28 9886.99 11477.81 16297.13 5196.82 7795.92 9399.45 3698.49 105
thres100view90093.55 10492.47 12794.81 7695.33 9098.74 6696.78 7192.30 7192.63 13388.29 9687.21 11278.01 16096.78 6196.38 9795.92 9399.38 5498.40 111
tfpn200view993.64 10092.57 12094.89 7195.33 9098.94 5196.82 6792.31 6892.63 13388.29 9687.21 11278.01 16097.12 5396.82 7795.85 9799.45 3698.56 99
IS_MVSNet95.28 6396.43 5693.94 8995.30 9299.01 4795.90 9791.12 9194.13 11387.50 10491.23 8294.45 6694.17 10898.45 2098.50 799.65 399.23 37
CMPMVSbinary65.18 1784.76 19783.10 20386.69 18595.29 9395.05 17888.37 19385.51 15780.27 21171.31 18368.37 20473.85 17885.25 19187.72 20487.75 20194.38 21088.70 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
canonicalmvs95.25 6595.45 6995.00 6895.27 9498.72 6896.89 6489.82 10696.51 5490.84 6493.72 5786.01 11897.66 4195.78 11997.94 3499.54 1999.50 12
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9598.64 7595.56 10590.99 9294.42 10785.02 11490.88 8994.65 6588.01 17698.17 3798.37 1699.57 1498.53 102
CLD-MVS94.79 7194.36 8895.30 6295.21 9697.46 10697.23 5692.24 7296.43 5591.77 5392.69 6584.31 13196.06 7395.52 12595.03 11999.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline194.59 7794.47 8594.72 7895.16 9797.97 9896.07 9291.94 7694.86 10089.98 7791.60 7985.87 12095.64 8097.07 7296.90 6899.52 2097.06 160
TDRefinement89.07 16088.15 16990.14 13795.16 9796.88 11795.55 10690.20 10089.68 16876.42 15576.67 16974.30 17684.85 19493.11 16791.91 18598.64 15294.47 185
ACMH+90.88 1291.41 12991.13 14591.74 11595.11 9996.95 11693.13 14389.48 11392.42 13979.93 13785.13 13278.02 15993.82 11593.49 16293.88 15198.94 12297.99 129
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10095.81 15596.46 8289.49 11296.33 5890.16 7492.55 6790.26 8995.83 7795.52 12596.03 9099.06 10999.33 24
Anonymous20240521192.18 13395.04 10198.20 9096.14 8991.79 8293.93 11474.60 17888.38 10696.48 6895.17 13595.82 10099.00 11599.15 49
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10298.51 8197.11 5791.82 8194.28 11089.20 9186.60 11986.85 11196.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10396.79 12494.29 12791.13 9093.84 11888.26 9990.40 9285.23 12594.65 10196.54 9195.31 11199.38 5499.28 28
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10498.64 7594.97 11390.70 9595.34 8689.67 8391.66 7893.84 6995.42 8897.32 6497.00 6599.58 1199.47 15
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10598.57 8095.42 10779.49 19195.37 8590.98 5986.54 12094.26 6895.44 8797.80 5395.19 11698.97 11898.38 113
EIA-MVS95.50 5696.19 5994.69 7994.83 10698.88 6095.93 9691.50 8794.47 10689.43 8593.14 6092.72 7697.05 5597.82 5297.13 6399.43 4599.15 49
ETV-MVS96.31 5197.47 3894.96 7094.79 10798.78 6496.08 9191.41 8896.16 6290.50 6895.76 4196.20 5697.39 4598.42 2397.82 4099.57 1499.18 46
MVS_Test94.82 6995.66 6493.84 9294.79 10798.35 8596.49 8189.10 11796.12 6587.09 10792.58 6690.61 8796.48 6896.51 9596.89 6999.11 10198.54 101
Anonymous2023121193.49 10592.33 13294.84 7594.78 10998.00 9696.11 9091.85 7794.86 10090.91 6074.69 17789.18 9896.73 6294.82 14095.51 10698.67 14799.24 36
baseline94.83 6895.82 6393.68 9494.75 11097.80 9996.51 8088.53 12397.02 4789.34 8992.93 6292.18 7894.69 9895.78 11996.08 8698.27 16898.97 76
DROMVSNet96.49 4997.63 3495.16 6494.75 11098.69 7097.39 5488.97 11896.34 5792.02 5196.04 3796.46 5098.21 2698.41 2497.96 3299.61 699.55 10
MVSTER94.89 6795.07 7894.68 8094.71 11296.68 12797.00 5990.57 9795.18 9593.05 3895.21 4686.41 11593.72 11797.59 5795.88 9699.00 11598.50 104
EPMVS90.88 13492.12 13489.44 14594.71 11297.24 11193.55 13476.81 19895.89 7281.77 12891.49 8186.47 11493.87 11390.21 19690.07 19395.92 19393.49 199
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11498.51 8196.03 9491.66 8395.70 7889.36 8886.48 12285.03 12896.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive94.31 8794.21 9194.42 8494.64 11598.28 8696.36 8491.56 8496.77 4988.89 9588.97 10284.23 13296.01 7696.05 11196.41 7899.05 11398.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11698.26 8897.51 5190.63 9695.88 7389.34 8980.54 15989.36 9595.48 8696.33 10196.27 8299.17 9198.78 93
thisisatest053094.54 7995.47 6893.46 9894.51 11798.65 7494.66 12090.72 9395.69 8086.90 10893.80 5589.44 9494.74 9696.98 7694.86 12499.19 8998.85 87
tttt051794.52 8095.44 7093.44 9994.51 11798.68 7194.61 12290.72 9395.61 8286.84 10993.78 5689.26 9794.74 9697.02 7594.86 12499.20 8898.87 85
ADS-MVSNet89.80 14991.33 14488.00 16694.43 11996.71 12692.29 15974.95 20896.07 6777.39 14788.67 10686.09 11793.26 12488.44 20289.57 19695.68 19693.81 196
tpmrst88.86 16489.62 15687.97 16794.33 12095.98 14592.62 15176.36 20194.62 10476.94 15185.98 12882.80 14292.80 12986.90 20887.15 20494.77 20793.93 194
PMMVS94.61 7695.56 6693.50 9794.30 12196.74 12594.91 11589.56 11195.58 8387.72 10296.15 3492.86 7496.06 7395.47 12795.02 12098.43 16597.09 156
CostFormer90.69 13590.48 15390.93 12494.18 12296.08 14394.03 12978.20 19493.47 12389.96 7890.97 8880.30 15093.72 11787.66 20688.75 19895.51 19996.12 172
USDC90.69 13590.52 15290.88 12594.17 12396.43 13495.82 10386.76 14093.92 11576.27 15786.49 12174.30 17693.67 11995.04 13893.36 16098.61 15394.13 189
Vis-MVSNetpermissive92.77 11295.00 8090.16 13594.10 12498.79 6394.76 11988.26 12592.37 14279.95 13688.19 11091.58 8084.38 19797.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+92.93 11193.86 10091.86 11294.07 12598.09 9595.59 10485.98 15094.27 11179.54 14091.12 8681.81 14596.71 6396.67 8696.06 8899.27 7298.98 72
GeoE92.52 11692.64 11992.39 10993.96 12697.76 10096.01 9585.60 15593.23 12583.94 11781.56 15184.80 12995.63 8196.22 10595.83 9999.19 8999.07 59
IterMVS-LS92.56 11593.18 11291.84 11393.90 12794.97 18094.99 11286.20 14794.18 11282.68 12385.81 12987.36 11094.43 10395.31 13196.02 9198.87 12898.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dps90.11 14789.37 16090.98 12393.89 12896.21 14093.49 13677.61 19691.95 14892.74 4588.85 10378.77 15792.37 13287.71 20587.71 20295.80 19594.38 187
tpm cat188.90 16287.78 17890.22 13493.88 12995.39 16993.79 13278.11 19592.55 13689.43 8581.31 15379.84 15391.40 14284.95 20986.34 20794.68 20994.09 190
PatchmatchNetpermissive90.56 13792.49 12488.31 15793.83 13096.86 12092.42 15576.50 20095.96 7078.31 14391.96 7389.66 9393.48 12190.04 19889.20 19795.32 20093.73 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap89.42 15288.58 16490.40 13293.80 13195.45 16793.96 13186.54 14392.24 14576.49 15480.83 15570.44 19493.37 12294.45 14693.30 16398.26 16993.37 200
SCA90.92 13393.04 11488.45 15493.72 13297.33 11092.77 14776.08 20396.02 6878.26 14491.96 7390.86 8493.99 11290.98 19390.04 19495.88 19494.06 192
RPMNet90.19 14492.03 13788.05 16393.46 13395.95 14893.41 13774.59 20992.40 14075.91 15984.22 13986.41 11592.49 13094.42 14793.85 15398.44 16396.96 161
gg-mvs-nofinetune86.17 19188.57 16583.36 19893.44 13498.15 9396.58 7872.05 21274.12 21649.23 22064.81 21090.85 8589.90 16997.83 5096.84 7098.97 11897.41 148
MDTV_nov1_ep1391.57 12693.18 11289.70 14193.39 13596.97 11593.53 13580.91 18895.70 7881.86 12792.40 6889.93 9193.25 12591.97 18690.80 18995.25 20394.46 186
CR-MVSNet90.16 14591.96 13888.06 16293.32 13695.95 14893.36 13975.99 20492.40 14075.19 16583.18 14485.37 12292.05 13495.21 13394.56 13498.47 16297.08 158
test-LLR91.62 12593.56 10889.35 14793.31 13796.57 13092.02 16787.06 13892.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
test0.0.03 191.97 11993.91 9889.72 14093.31 13796.40 13691.34 17687.06 13893.86 11681.67 12991.15 8589.16 9986.02 18895.08 13695.09 11798.91 12596.64 170
CVMVSNet89.77 15091.66 14087.56 17693.21 13995.45 16791.94 17089.22 11589.62 17069.34 19683.99 14185.90 11984.81 19594.30 15095.28 11296.85 18897.09 156
PatchT89.13 15991.71 13986.11 19092.92 14095.59 16283.64 20675.09 20791.87 14975.19 16582.63 14785.06 12792.05 13495.21 13394.56 13497.76 17997.08 158
Fast-Effi-MVS+91.87 12092.08 13591.62 11892.91 14197.21 11394.93 11484.60 16993.61 12181.49 13183.50 14378.95 15596.62 6596.55 9096.22 8499.16 9498.51 103
IterMVS-SCA-FT90.24 14292.48 12687.63 17392.85 14294.30 19693.79 13281.47 18792.66 13269.95 19184.66 13688.38 10689.99 16795.39 13094.34 14197.74 18297.63 142
baseline293.01 11094.17 9491.64 11692.83 14397.49 10593.40 13887.53 13293.67 12086.07 11091.83 7686.58 11291.36 14396.38 9795.06 11898.67 14798.20 122
IterMVS90.20 14392.43 12887.61 17492.82 14494.31 19594.11 12881.54 18592.97 12869.90 19284.71 13588.16 10989.96 16895.25 13294.17 14497.31 18497.46 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 11293.60 10691.80 11492.63 14596.80 12195.24 10989.14 11690.30 16684.58 11586.76 11590.65 8690.42 16295.89 11496.49 7698.79 13998.32 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm87.95 17289.44 15986.21 18992.53 14694.62 19091.40 17476.36 20191.46 15369.80 19487.43 11175.14 17191.55 14189.85 20090.60 19095.61 19796.96 161
Effi-MVS+-dtu91.78 12293.59 10789.68 14392.44 14797.11 11494.40 12584.94 16592.43 13875.48 16191.09 8783.75 13693.55 12096.61 8795.47 10797.24 18598.67 95
testgi89.42 15291.50 14387.00 18392.40 14895.59 16289.15 19285.27 16292.78 13172.42 17791.75 7776.00 16984.09 19994.38 14893.82 15598.65 15196.15 171
Fast-Effi-MVS+-dtu91.19 13093.64 10488.33 15692.19 14996.46 13393.99 13081.52 18692.59 13571.82 18092.17 7085.54 12191.68 14095.73 12194.64 13098.80 13798.34 115
FC-MVSNet-test91.63 12493.82 10289.08 14892.02 15096.40 13693.26 14187.26 13593.72 11977.26 14888.61 10789.86 9285.50 19095.72 12395.02 12099.16 9497.44 147
GA-MVS89.28 15590.75 15187.57 17591.77 15196.48 13292.29 15987.58 13190.61 16365.77 20184.48 13776.84 16789.46 17095.84 11693.68 15698.52 15897.34 151
UniMVSNet_ETH3D88.47 16686.00 19691.35 12091.55 15296.29 13892.53 15288.81 11985.58 19982.33 12567.63 20766.87 20894.04 11191.49 19095.24 11398.84 13198.92 78
TAMVS90.54 13990.87 15090.16 13591.48 15396.61 12993.26 14186.08 14887.71 18581.66 13083.11 14684.04 13390.42 16294.54 14394.60 13198.04 17595.48 180
tfpnnormal88.50 16587.01 18790.23 13391.36 15495.78 15792.74 14890.09 10183.65 20476.33 15671.46 19869.58 19991.84 13795.54 12494.02 14899.06 10999.03 65
GBi-Net93.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
test193.81 9794.18 9293.38 10091.34 15595.86 15196.22 8688.68 12095.23 9090.40 6986.39 12391.16 8194.40 10596.52 9296.30 7999.21 8597.79 133
FMVSNet293.30 10893.36 11193.22 10391.34 15595.86 15196.22 8688.24 12695.15 9689.92 8081.64 15089.36 9594.40 10596.77 8196.98 6699.21 8597.79 133
FMVSNet393.79 9994.17 9493.35 10291.21 15895.99 14496.62 7588.68 12095.23 9090.40 6986.39 12391.16 8194.11 10995.96 11296.67 7399.07 10697.79 133
TransMVSNet (Re)87.73 17886.79 18988.83 15090.76 15994.40 19391.33 17789.62 11084.73 20175.41 16372.73 19171.41 18986.80 18294.53 14493.93 15099.06 10995.83 174
LTVRE_ROB87.32 1687.55 17988.25 16886.73 18490.66 16095.80 15693.05 14484.77 16683.35 20560.32 21383.12 14567.39 20693.32 12394.36 14994.86 12498.28 16798.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EG-PatchMatch MVS86.68 18787.24 18386.02 19190.58 16196.26 13991.08 18081.59 18484.96 20069.80 19471.35 19975.08 17384.23 19894.24 15293.35 16198.82 13295.46 181
TESTMET0.1,191.07 13193.56 10888.17 15890.43 16296.57 13092.02 16782.83 18092.34 14375.05 16890.20 9488.64 10390.93 15096.19 10894.07 14697.75 18096.90 164
pm-mvs189.19 15889.02 16189.38 14690.40 16395.74 15892.05 16588.10 12886.13 19577.70 14573.72 18679.44 15488.97 17395.81 11894.51 13899.08 10497.78 138
NR-MVSNet89.34 15488.66 16390.13 13890.40 16395.61 16093.04 14589.91 10391.22 15578.96 14177.72 16768.90 20289.16 17294.24 15293.95 14999.32 6398.99 70
FMVSNet191.54 12790.93 14892.26 11090.35 16595.27 17395.22 11087.16 13791.37 15487.62 10375.45 17283.84 13594.43 10396.52 9296.30 7998.82 13297.74 139
test-mter90.95 13293.54 11087.93 16890.28 16696.80 12191.44 17382.68 18192.15 14774.37 17289.57 10088.23 10890.88 15396.37 9994.31 14297.93 17797.37 149
pmmvs490.55 13889.91 15591.30 12190.26 16794.95 18192.73 14987.94 12993.44 12485.35 11382.28 14976.09 16893.02 12893.56 16092.26 18398.51 15996.77 166
MVS-HIRNet85.36 19586.89 18883.57 19790.13 16894.51 19183.57 20772.61 21188.27 18171.22 18468.97 20281.81 14588.91 17493.08 16891.94 18494.97 20689.64 209
thisisatest051590.12 14692.06 13687.85 16990.03 16996.17 14187.83 19587.45 13391.71 15177.15 14985.40 13184.01 13485.74 18995.41 12993.30 16398.88 12798.43 107
SixPastTwentyTwo88.37 16789.47 15887.08 18190.01 17095.93 15087.41 19685.32 15990.26 16770.26 18886.34 12671.95 18690.93 15092.89 17291.72 18698.55 15697.22 153
UniMVSNet (Re)90.03 14889.61 15790.51 13189.97 17196.12 14292.32 15789.26 11490.99 15880.95 13478.25 16675.08 17391.14 14693.78 15593.87 15299.41 4899.21 41
pmnet_mix0286.12 19287.12 18684.96 19489.82 17294.12 19784.88 20486.63 14291.78 15065.60 20280.76 15676.98 16586.61 18487.29 20784.80 21096.21 19094.09 190
our_test_389.78 17393.84 19985.59 201
UniMVSNet_NR-MVSNet90.35 14189.96 15490.80 12789.66 17495.83 15492.48 15390.53 9890.96 15979.57 13879.33 16377.14 16493.21 12692.91 17194.50 13999.37 5799.05 62
v888.21 17087.94 17588.51 15389.62 17595.01 17992.31 15884.99 16488.94 17274.70 17075.03 17473.51 18090.67 15892.11 18292.74 17598.80 13798.24 120
WR-MVS_H87.93 17387.85 17688.03 16589.62 17595.58 16490.47 18585.55 15687.20 19076.83 15274.42 18172.67 18486.37 18593.22 16693.04 16699.33 6198.83 89
pmmvs587.83 17788.09 17087.51 17889.59 17795.48 16589.75 19084.73 16786.07 19771.44 18280.57 15870.09 19790.74 15794.47 14592.87 17198.82 13297.10 155
gm-plane-assit83.26 20185.29 19880.89 20189.52 17889.89 21170.26 21778.24 19377.11 21458.01 21774.16 18366.90 20790.63 16097.20 6796.05 8998.66 15095.68 177
v1088.00 17187.96 17388.05 16389.44 17994.68 18792.36 15683.35 17689.37 17172.96 17673.98 18472.79 18391.35 14493.59 15792.88 17098.81 13598.42 109
V4288.31 16887.95 17488.73 15189.44 17995.34 17092.23 16187.21 13688.83 17474.49 17174.89 17673.43 18190.41 16492.08 18492.77 17498.60 15598.33 116
v14887.51 18086.79 18988.36 15589.39 18195.21 17589.84 18988.20 12787.61 18777.56 14673.38 18970.32 19686.80 18290.70 19492.31 18198.37 16697.98 131
CP-MVSNet87.89 17687.27 18288.62 15289.30 18295.06 17790.60 18485.78 15287.43 18975.98 15874.60 17868.14 20590.76 15593.07 16993.60 15799.30 6898.98 72
v114487.92 17587.79 17788.07 16089.27 18395.15 17692.17 16285.62 15488.52 17871.52 18173.80 18572.40 18591.06 14893.54 16192.80 17298.81 13598.33 116
DU-MVS89.67 15188.84 16290.63 13089.26 18495.61 16092.48 15389.91 10391.22 15579.57 13877.72 16771.18 19093.21 12692.53 17594.57 13399.35 6099.05 62
WR-MVS87.93 17388.09 17087.75 17089.26 18495.28 17190.81 18286.69 14188.90 17375.29 16474.31 18273.72 17985.19 19392.26 17893.32 16299.27 7298.81 91
Baseline_NR-MVSNet89.27 15688.01 17290.73 12989.26 18493.71 20092.71 15089.78 10890.73 16081.28 13273.53 18772.85 18292.30 13392.53 17593.84 15499.07 10698.88 83
N_pmnet84.80 19685.10 20084.45 19589.25 18792.86 20384.04 20586.21 14588.78 17566.73 20072.41 19474.87 17585.21 19288.32 20386.45 20595.30 20192.04 203
v2v48288.25 16987.71 17988.88 14989.23 18895.28 17192.10 16387.89 13088.69 17773.31 17575.32 17371.64 18791.89 13692.10 18392.92 16998.86 13097.99 129
PS-CasMVS87.33 18386.68 19288.10 15989.22 18994.93 18290.35 18785.70 15386.44 19474.01 17373.43 18866.59 21190.04 16692.92 17093.52 15899.28 7098.91 81
TranMVSNet+NR-MVSNet89.23 15788.48 16690.11 13989.07 19095.25 17492.91 14690.43 9990.31 16577.10 15076.62 17071.57 18891.83 13892.12 18194.59 13299.32 6398.92 78
v119287.51 18087.31 18187.74 17189.04 19194.87 18592.07 16485.03 16388.49 17970.32 18772.65 19270.35 19591.21 14593.59 15792.80 17298.78 14098.42 109
v14419287.40 18287.20 18487.64 17288.89 19294.88 18491.65 17284.70 16887.80 18471.17 18573.20 19070.91 19190.75 15692.69 17392.49 17898.71 14498.43 107
PEN-MVS87.22 18586.50 19488.07 16088.88 19394.44 19290.99 18186.21 14586.53 19373.66 17474.97 17566.56 21289.42 17191.20 19293.48 15999.24 7698.31 119
v192192087.31 18487.13 18587.52 17788.87 19494.72 18691.96 16984.59 17088.28 18069.86 19372.50 19370.03 19891.10 14793.33 16492.61 17798.71 14498.44 106
pmmvs685.98 19384.89 20187.25 18088.83 19594.35 19489.36 19185.30 16178.51 21375.44 16262.71 21275.41 17087.65 17893.58 15992.40 18096.89 18797.29 152
v124086.89 18686.75 19187.06 18288.75 19694.65 18991.30 17884.05 17287.49 18868.94 19771.96 19668.86 20390.65 15993.33 16492.72 17698.67 14798.24 120
anonymousdsp88.90 16291.00 14786.44 18788.74 19795.97 14690.40 18682.86 17988.77 17667.33 19981.18 15481.44 14790.22 16596.23 10494.27 14399.12 10099.16 48
EU-MVSNet85.62 19487.65 18083.24 19988.54 19892.77 20487.12 19785.32 15986.71 19164.54 20478.52 16575.11 17278.35 20492.25 17992.28 18295.58 19895.93 173
DTE-MVSNet86.67 18886.09 19587.35 17988.45 19994.08 19890.65 18386.05 14986.13 19572.19 17874.58 18066.77 21087.61 17990.31 19593.12 16599.13 9897.62 143
FMVSNet590.36 14090.93 14889.70 14187.99 20092.25 20592.03 16683.51 17592.20 14684.13 11685.59 13086.48 11392.43 13194.61 14194.52 13798.13 17190.85 206
v7n86.43 18986.52 19386.33 18887.91 20194.93 18290.15 18883.05 17786.57 19270.21 18971.48 19766.78 20987.72 17794.19 15492.96 16898.92 12498.76 94
test20.0382.92 20285.52 19779.90 20487.75 20291.84 20682.80 20882.99 17882.65 20960.32 21378.90 16470.50 19267.10 21292.05 18590.89 18898.44 16391.80 204
MDTV_nov1_ep13_2view86.30 19088.27 16784.01 19687.71 20394.67 18888.08 19476.78 19990.59 16468.66 19880.46 16080.12 15187.58 18089.95 19988.20 20095.25 20393.90 195
Anonymous2023120683.84 20085.19 19982.26 20087.38 20492.87 20285.49 20283.65 17486.07 19763.44 20868.42 20369.01 20175.45 20893.34 16392.44 17998.12 17394.20 188
FPMVS75.84 20874.59 21177.29 20886.92 20583.89 21685.01 20380.05 19082.91 20760.61 21265.25 20960.41 21563.86 21375.60 21473.60 21687.29 21780.47 214
MIMVSNet88.99 16191.07 14686.57 18686.78 20695.62 15991.20 17975.40 20690.65 16276.57 15384.05 14082.44 14491.01 14995.84 11695.38 10998.48 16193.50 198
tmp_tt66.88 21186.07 20773.86 21868.22 21833.38 22096.88 4880.67 13588.23 10978.82 15649.78 21782.68 21277.47 21483.19 219
PM-MVS84.72 19884.47 20285.03 19384.67 20891.57 20786.27 20082.31 18387.65 18670.62 18676.54 17156.41 21988.75 17592.59 17489.85 19597.54 18396.66 169
pmmvs-eth3d84.33 19982.94 20485.96 19284.16 20990.94 20886.55 19983.79 17384.25 20275.85 16070.64 20056.43 21887.44 18192.20 18090.41 19297.97 17695.68 177
new-patchmatchnet78.49 20778.19 21078.84 20684.13 21090.06 21077.11 21580.39 18979.57 21259.64 21666.01 20855.65 22075.62 20784.55 21080.70 21296.14 19290.77 207
new_pmnet81.53 20382.68 20580.20 20283.47 21189.47 21282.21 21078.36 19287.86 18360.14 21567.90 20569.43 20082.03 20289.22 20187.47 20394.99 20587.39 211
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21297.66 10296.72 7389.89 10595.62 8187.17 10696.00 3883.69 13796.99 5693.78 15595.34 11099.06 10998.18 123
pmmvs379.16 20680.12 20878.05 20779.36 21386.59 21478.13 21473.87 21076.42 21557.51 21870.59 20157.02 21784.66 19690.10 19788.32 19994.75 20891.77 205
PMVScopyleft63.12 1867.27 21166.39 21468.30 21077.98 21460.24 22159.53 22176.82 19766.65 21760.74 21154.39 21459.82 21651.24 21673.92 21770.52 21783.48 21879.17 216
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs80.11 20480.24 20779.94 20377.01 21593.21 20178.86 21385.94 15182.71 20860.86 21079.71 16251.77 22183.71 20175.60 21486.37 20693.28 21192.35 201
ambc73.83 21276.23 21685.13 21582.27 20984.16 20365.58 20352.82 21523.31 22673.55 20991.41 19185.26 20992.97 21294.70 183
Gipumacopyleft68.35 21066.71 21370.27 20974.16 21768.78 21963.93 22071.77 21383.34 20654.57 21934.37 21731.88 22368.69 21183.30 21185.53 20888.48 21579.78 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet180.03 20580.93 20678.97 20572.46 21890.73 20980.81 21182.44 18280.39 21063.64 20657.57 21364.93 21376.37 20691.66 18891.55 18798.07 17489.70 208
PMMVS264.36 21365.94 21562.52 21367.37 21977.44 21764.39 21969.32 21761.47 21834.59 22146.09 21641.03 22248.02 21974.56 21678.23 21391.43 21382.76 213
EMVS49.98 21546.76 21853.74 21564.96 22051.29 22337.81 22369.35 21651.83 21922.69 22429.57 21925.06 22457.28 21444.81 22056.11 21970.32 22168.64 219
E-PMN50.67 21447.85 21753.96 21464.13 22150.98 22438.06 22269.51 21551.40 22024.60 22329.46 22024.39 22556.07 21548.17 21959.70 21871.40 22070.84 218
test_method72.96 20978.68 20966.28 21250.17 22264.90 22075.45 21650.90 21987.89 18262.54 20962.98 21168.34 20470.45 21091.90 18782.41 21188.19 21692.35 201
MVEpermissive50.86 1949.54 21651.43 21647.33 21644.14 22359.20 22236.45 22460.59 21841.47 22131.14 22229.58 21817.06 22748.52 21862.22 21874.63 21563.12 22275.87 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21716.94 2196.42 2183.15 2246.08 2259.51 2263.84 22121.46 2225.31 22527.49 2216.76 22810.89 22017.06 22115.01 2205.84 22324.75 220
GG-mvs-BLEND66.17 21294.91 8132.63 2171.32 22596.64 12891.40 1740.85 22394.39 1092.20 22690.15 9695.70 612.27 22296.39 9695.44 10897.78 17895.68 177
test1239.58 21813.53 2204.97 2191.31 2265.47 2268.32 2272.95 22218.14 2232.03 22720.82 2222.34 22910.60 22110.00 22214.16 2214.60 22423.77 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def63.50 207
9.1499.28 12
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 225
NP-MVS95.32 87
Patchmtry95.96 14793.36 13975.99 20475.19 165
DeepMVS_CXcopyleft86.86 21379.50 21270.43 21490.73 16063.66 20580.36 16160.83 21479.68 20376.23 21389.46 21486.53 212