SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 2 | 81.96 2 | 82.94 4 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 3 | 66.42 2 | 80.41 4 | 78.65 6 | 82.65 16 | 90.92 2 |
|
DVP-MVS |  | | 78.77 2 | 84.89 1 | 71.62 4 | 78.04 3 | 82.05 1 | 81.64 10 | 57.96 7 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 10 | 79.99 7 | 78.56 7 | 82.31 22 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 78.76 3 | 84.44 3 | 72.14 2 | 76.63 7 | 81.93 3 | 82.92 5 | 58.10 5 | 85.86 4 | 66.53 3 | 87.86 5 | 86.16 2 | 66.45 1 | 80.46 3 | 78.53 9 | 82.19 27 | 90.29 4 |
|
DPE-MVS |  | | 78.11 4 | 83.84 4 | 71.42 5 | 77.82 5 | 81.32 4 | 82.92 5 | 57.81 9 | 84.04 8 | 63.19 12 | 88.63 2 | 86.00 4 | 64.52 5 | 78.71 11 | 77.63 15 | 82.26 23 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 77.82 5 | 83.46 5 | 71.24 8 | 75.26 16 | 80.22 7 | 82.95 3 | 57.85 8 | 85.90 3 | 64.79 5 | 88.54 3 | 83.43 7 | 66.24 3 | 78.21 17 | 78.56 7 | 80.34 45 | 89.39 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 77.58 6 | 82.93 6 | 71.35 6 | 77.86 4 | 80.55 6 | 83.38 1 | 57.61 10 | 85.57 5 | 61.11 20 | 86.10 7 | 82.98 8 | 64.76 4 | 78.29 15 | 76.78 22 | 83.40 6 | 90.20 5 |
|
SMA-MVS |  | | 77.32 7 | 82.51 7 | 71.26 7 | 75.43 14 | 80.19 8 | 82.22 7 | 58.26 3 | 84.83 7 | 64.36 7 | 78.19 15 | 83.46 6 | 63.61 8 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 77.13 8 | 81.70 8 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 5 | 83.69 10 | 84.46 5 | 62.83 13 | 77.13 26 | 75.21 31 | 83.35 7 | 87.85 16 |
|
ACMMP_NAP | | | 76.15 9 | 81.17 9 | 70.30 11 | 74.09 20 | 79.47 10 | 81.59 12 | 57.09 14 | 81.38 11 | 63.89 10 | 79.02 13 | 80.48 19 | 62.24 17 | 80.05 6 | 79.12 4 | 82.94 11 | 88.64 9 |
|
HPM-MVS++ |  | | 76.01 10 | 80.47 12 | 70.81 9 | 76.60 8 | 74.96 35 | 80.18 17 | 58.36 2 | 81.96 10 | 63.50 11 | 78.80 14 | 82.53 11 | 64.40 6 | 78.74 10 | 78.84 5 | 81.81 32 | 87.46 18 |
|
APD-MVS |  | | 75.80 11 | 80.90 11 | 69.86 15 | 75.42 15 | 78.48 16 | 81.43 13 | 57.44 12 | 80.45 14 | 59.32 26 | 85.28 8 | 80.82 18 | 63.96 7 | 76.89 28 | 76.08 27 | 81.58 38 | 88.30 12 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 75.62 12 | 79.91 14 | 70.61 10 | 75.76 10 | 78.82 14 | 81.66 9 | 57.12 13 | 79.77 16 | 63.04 13 | 70.69 24 | 81.15 16 | 62.99 11 | 80.23 5 | 79.54 3 | 83.11 8 | 89.16 8 |
|
SteuartSystems-ACMMP | | | 75.23 13 | 79.60 15 | 70.13 13 | 76.81 6 | 78.92 12 | 81.74 8 | 57.99 6 | 75.30 29 | 59.83 25 | 75.69 18 | 78.45 24 | 60.48 29 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + MP. | | | 75.22 14 | 80.06 13 | 69.56 16 | 74.61 18 | 72.74 48 | 80.59 14 | 55.70 23 | 80.80 13 | 62.65 15 | 86.25 6 | 82.92 9 | 62.07 19 | 76.89 28 | 75.66 30 | 81.77 34 | 85.19 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HFP-MVS | | | 74.87 15 | 78.86 20 | 70.21 12 | 73.99 21 | 77.91 18 | 80.36 16 | 56.63 16 | 78.41 19 | 64.27 8 | 74.54 20 | 77.75 27 | 62.96 12 | 78.70 12 | 77.82 13 | 83.02 9 | 86.91 21 |
|
CSCG | | | 74.68 16 | 79.22 16 | 69.40 17 | 75.69 12 | 80.01 9 | 79.12 23 | 52.83 41 | 79.34 17 | 63.99 9 | 70.49 25 | 82.02 12 | 60.35 32 | 77.48 24 | 77.22 19 | 84.38 1 | 87.97 15 |
|
SD-MVS | | | 74.43 17 | 78.87 18 | 69.26 19 | 74.39 19 | 73.70 44 | 79.06 24 | 55.24 25 | 81.04 12 | 62.71 14 | 80.18 12 | 82.61 10 | 61.70 21 | 75.43 40 | 73.92 43 | 82.44 21 | 85.22 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 74.31 18 | 78.87 18 | 68.99 21 | 73.49 23 | 78.56 15 | 79.25 22 | 56.51 17 | 75.33 27 | 60.69 22 | 75.30 19 | 79.12 23 | 61.81 20 | 77.78 21 | 77.93 12 | 82.18 29 | 88.06 14 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 74.27 19 | 77.83 24 | 70.13 13 | 75.70 11 | 77.41 22 | 80.51 15 | 57.09 14 | 78.25 20 | 62.28 17 | 65.54 37 | 78.26 25 | 62.18 18 | 79.13 8 | 78.51 10 | 83.01 10 | 87.68 17 |
|
DeepPCF-MVS | | 66.49 1 | 74.25 20 | 80.97 10 | 66.41 31 | 67.75 50 | 78.87 13 | 75.61 38 | 54.16 33 | 84.86 6 | 58.22 32 | 77.94 16 | 81.01 17 | 62.52 15 | 78.34 13 | 77.38 16 | 80.16 48 | 88.40 11 |
|
train_agg | | | 73.89 21 | 78.25 22 | 68.80 23 | 75.25 17 | 72.27 50 | 79.75 18 | 56.05 20 | 74.87 32 | 58.97 27 | 81.83 11 | 79.76 21 | 61.05 25 | 77.39 25 | 76.01 28 | 81.71 35 | 85.61 29 |
|
DeepC-MVS | | 66.32 2 | 73.85 22 | 78.10 23 | 68.90 22 | 67.92 48 | 79.31 11 | 78.16 28 | 59.28 1 | 78.24 21 | 61.13 19 | 67.36 35 | 76.10 32 | 63.40 9 | 79.11 9 | 78.41 11 | 83.52 5 | 88.16 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMPR | | | 73.79 23 | 78.41 21 | 68.40 24 | 72.35 27 | 77.79 19 | 79.32 20 | 56.38 18 | 77.67 23 | 58.30 31 | 74.16 21 | 76.66 28 | 61.40 22 | 78.32 14 | 77.80 14 | 82.68 15 | 86.51 22 |
|
MCST-MVS | | | 73.67 24 | 77.39 25 | 69.33 18 | 76.26 9 | 78.19 17 | 78.77 25 | 54.54 30 | 75.33 27 | 59.99 24 | 67.96 31 | 79.23 22 | 62.43 16 | 78.00 18 | 75.71 29 | 84.02 2 | 87.30 19 |
|
PGM-MVS | | | 72.89 25 | 77.13 26 | 67.94 25 | 72.47 26 | 77.25 23 | 79.27 21 | 54.63 29 | 73.71 34 | 57.95 33 | 72.38 22 | 75.33 34 | 60.75 27 | 78.25 16 | 77.36 18 | 82.57 19 | 85.62 28 |
|
DPM-MVS | | | 72.80 26 | 75.90 29 | 69.19 20 | 75.51 13 | 77.68 20 | 81.62 11 | 54.83 26 | 75.96 25 | 62.06 18 | 63.96 46 | 76.58 29 | 58.55 40 | 76.66 32 | 76.77 23 | 82.60 18 | 83.68 40 |
|
CP-MVS | | | 72.63 27 | 76.95 27 | 67.59 26 | 70.67 35 | 75.53 33 | 77.95 30 | 56.01 21 | 75.65 26 | 58.82 28 | 69.16 29 | 76.48 30 | 60.46 30 | 77.66 22 | 77.20 20 | 81.65 36 | 86.97 20 |
|
TSAR-MVS + ACMM | | | 72.56 28 | 79.07 17 | 64.96 40 | 73.24 24 | 73.16 47 | 78.50 26 | 48.80 66 | 79.34 17 | 55.32 40 | 85.04 9 | 81.49 15 | 58.57 39 | 75.06 43 | 73.75 44 | 75.35 106 | 85.61 29 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 29 | 76.11 28 | 67.21 28 | 68.93 44 | 77.46 21 | 76.54 34 | 54.35 31 | 74.92 31 | 58.64 30 | 65.18 39 | 74.04 42 | 62.62 14 | 77.92 19 | 77.02 21 | 82.16 30 | 86.21 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP |  | | 71.57 30 | 75.84 30 | 66.59 30 | 70.30 39 | 76.85 28 | 78.46 27 | 53.95 34 | 73.52 35 | 55.56 38 | 70.13 26 | 71.36 47 | 58.55 40 | 77.00 27 | 76.23 26 | 82.71 14 | 85.81 27 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDPH-MVS | | | 71.47 31 | 75.82 31 | 66.41 31 | 72.97 25 | 77.15 24 | 78.14 29 | 54.71 27 | 69.88 46 | 53.07 55 | 70.98 23 | 74.83 36 | 56.95 52 | 76.22 33 | 76.57 24 | 82.62 17 | 85.09 33 |
|
X-MVS | | | 71.18 32 | 75.66 32 | 65.96 35 | 71.71 29 | 76.96 25 | 77.26 32 | 55.88 22 | 72.75 37 | 54.48 47 | 64.39 43 | 74.47 37 | 54.19 65 | 77.84 20 | 77.37 17 | 82.21 26 | 85.85 26 |
|
HQP-MVS | | | 70.88 33 | 75.02 33 | 66.05 34 | 71.69 30 | 74.47 40 | 77.51 31 | 53.17 38 | 72.89 36 | 54.88 44 | 70.03 27 | 70.48 49 | 57.26 48 | 76.02 35 | 75.01 35 | 81.78 33 | 86.21 23 |
|
TSAR-MVS + GP. | | | 69.71 34 | 73.92 36 | 64.80 42 | 68.27 46 | 70.56 55 | 71.90 49 | 50.75 51 | 71.38 41 | 57.46 35 | 68.68 30 | 75.42 33 | 60.10 33 | 73.47 51 | 73.99 42 | 80.32 46 | 83.97 37 |
|
3Dnovator+ | | 62.63 4 | 69.51 35 | 72.62 39 | 65.88 36 | 68.21 47 | 76.47 29 | 73.50 48 | 52.74 42 | 70.85 42 | 58.65 29 | 55.97 76 | 69.95 50 | 61.11 24 | 76.80 30 | 75.09 32 | 81.09 41 | 83.23 43 |
|
MVS_0304 | | | 69.49 36 | 73.96 35 | 64.28 44 | 67.92 48 | 76.13 31 | 74.90 41 | 47.60 68 | 63.29 57 | 54.09 51 | 67.44 34 | 76.35 31 | 59.53 35 | 75.81 37 | 75.03 33 | 81.62 37 | 83.70 39 |
|
OPM-MVS | | | 69.33 37 | 71.05 45 | 67.32 27 | 72.34 28 | 75.70 32 | 79.57 19 | 56.34 19 | 55.21 74 | 53.81 52 | 59.51 63 | 68.96 55 | 59.67 34 | 77.61 23 | 76.44 25 | 82.19 27 | 83.88 38 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PHI-MVS | | | 69.27 38 | 74.84 34 | 62.76 50 | 66.83 53 | 74.83 36 | 73.88 46 | 49.32 60 | 70.61 43 | 50.93 62 | 69.62 28 | 74.84 35 | 57.25 49 | 75.53 39 | 74.32 40 | 78.35 66 | 84.17 36 |
|
LGP-MVS_train | | | 68.87 39 | 72.03 41 | 65.18 39 | 69.33 42 | 74.03 43 | 76.67 33 | 53.88 35 | 68.46 47 | 52.05 59 | 63.21 48 | 63.89 69 | 56.31 55 | 75.99 36 | 74.43 39 | 82.83 13 | 84.18 35 |
|
CANet | | | 68.77 40 | 73.01 37 | 63.83 45 | 68.30 45 | 75.19 34 | 73.73 47 | 47.90 67 | 63.86 53 | 54.84 45 | 67.51 33 | 74.36 40 | 57.62 44 | 74.22 48 | 73.57 47 | 80.56 43 | 82.36 45 |
|
CPTT-MVS | | | 68.76 41 | 73.01 37 | 63.81 46 | 65.42 60 | 73.66 45 | 76.39 36 | 52.08 43 | 72.61 38 | 50.33 64 | 60.73 59 | 72.65 45 | 59.43 36 | 73.32 52 | 72.12 49 | 79.19 59 | 85.99 25 |
|
ACMP | | 61.42 5 | 68.72 42 | 71.37 43 | 65.64 37 | 69.06 43 | 74.45 41 | 75.88 37 | 53.30 37 | 68.10 48 | 55.74 37 | 61.53 58 | 62.29 76 | 56.97 51 | 74.70 46 | 74.23 41 | 82.88 12 | 84.31 34 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSLP-MVS++ | | | 68.17 43 | 70.72 48 | 65.19 38 | 69.41 41 | 70.64 54 | 74.99 40 | 45.76 77 | 70.20 45 | 60.17 23 | 56.42 74 | 73.01 43 | 61.14 23 | 72.80 54 | 70.54 58 | 79.70 51 | 81.42 50 |
|
MAR-MVS | | | 68.04 44 | 70.74 47 | 64.90 41 | 71.68 31 | 76.33 30 | 74.63 43 | 50.48 55 | 63.81 54 | 55.52 39 | 54.88 82 | 69.90 51 | 57.39 47 | 75.42 41 | 74.79 37 | 79.71 50 | 80.03 55 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
AdaColmap |  | | 67.89 45 | 68.85 58 | 66.77 29 | 73.73 22 | 74.30 42 | 75.28 39 | 53.58 36 | 70.24 44 | 57.59 34 | 51.19 102 | 59.19 91 | 60.74 28 | 75.33 42 | 73.72 45 | 79.69 53 | 77.96 69 |
|
MVS_111021_HR | | | 67.62 46 | 70.39 49 | 64.39 43 | 69.77 40 | 70.45 57 | 71.44 52 | 51.72 47 | 60.77 63 | 55.06 42 | 62.14 55 | 66.40 66 | 58.13 43 | 76.13 34 | 74.79 37 | 80.19 47 | 82.04 48 |
|
ACMM | | 60.30 7 | 67.58 47 | 68.82 59 | 66.13 33 | 70.59 36 | 72.01 52 | 76.54 34 | 54.26 32 | 65.64 52 | 54.78 46 | 50.35 105 | 61.72 80 | 58.74 38 | 75.79 38 | 75.03 33 | 81.88 31 | 81.17 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PCF-MVS | | 59.98 8 | 67.32 48 | 71.04 46 | 62.97 49 | 64.77 62 | 74.49 39 | 74.78 42 | 49.54 57 | 67.44 49 | 54.39 50 | 58.35 68 | 72.81 44 | 55.79 61 | 71.54 61 | 69.24 69 | 78.57 61 | 83.41 41 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 67.02 49 | 71.57 42 | 61.71 51 | 71.01 34 | 74.81 37 | 71.62 50 | 38.91 158 | 71.86 40 | 60.70 21 | 64.97 41 | 67.88 63 | 51.88 91 | 76.77 31 | 74.98 36 | 76.11 94 | 69.75 122 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DROMVSNet | | | 67.01 50 | 70.27 52 | 63.21 47 | 67.21 51 | 70.47 56 | 69.01 55 | 46.96 71 | 59.16 66 | 53.23 54 | 64.01 45 | 69.71 53 | 60.37 31 | 74.92 44 | 71.24 55 | 82.50 20 | 82.41 44 |
|
3Dnovator | | 60.86 6 | 66.99 51 | 70.32 50 | 63.11 48 | 66.63 54 | 74.52 38 | 71.56 51 | 45.76 77 | 67.37 50 | 55.00 43 | 54.31 87 | 68.19 59 | 58.49 42 | 73.97 49 | 73.63 46 | 81.22 40 | 80.23 54 |
|
CS-MVS | | | 65.88 52 | 69.71 54 | 61.41 52 | 61.76 80 | 68.14 67 | 67.65 61 | 44.00 105 | 59.14 67 | 52.69 56 | 65.19 38 | 68.13 60 | 60.90 26 | 74.74 45 | 71.58 51 | 81.46 39 | 81.04 52 |
|
DELS-MVS | | | 65.87 53 | 70.30 51 | 60.71 54 | 64.05 70 | 72.68 49 | 70.90 53 | 45.43 81 | 57.49 69 | 49.05 69 | 64.43 42 | 68.66 56 | 55.11 63 | 74.31 47 | 73.02 48 | 79.70 51 | 81.51 49 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 65.62 54 | 72.06 40 | 58.11 68 | 63.94 71 | 71.05 53 | 64.49 94 | 43.18 126 | 74.08 33 | 47.35 72 | 64.17 44 | 71.97 46 | 51.17 94 | 71.87 58 | 70.74 56 | 78.51 64 | 80.56 53 |
|
QAPM | | | 65.27 55 | 69.49 56 | 60.35 55 | 65.43 59 | 72.20 51 | 65.69 84 | 47.23 69 | 63.46 55 | 49.14 67 | 53.56 88 | 71.04 48 | 57.01 50 | 72.60 56 | 71.41 53 | 77.62 70 | 82.14 47 |
|
casdiffmvs_mvg |  | | 65.26 56 | 69.48 57 | 60.33 56 | 62.99 75 | 69.34 60 | 69.80 54 | 45.27 83 | 63.38 56 | 51.11 61 | 65.12 40 | 69.75 52 | 53.51 73 | 71.74 59 | 68.86 75 | 79.33 55 | 78.19 68 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CS-MVS-test | | | 65.18 57 | 68.70 60 | 61.07 53 | 61.92 77 | 68.06 69 | 67.09 69 | 45.18 85 | 58.47 68 | 52.02 60 | 65.76 36 | 66.44 65 | 59.24 37 | 72.71 55 | 70.05 63 | 80.98 42 | 79.40 58 |
|
OMC-MVS | | | 65.16 58 | 71.35 44 | 57.94 72 | 52.95 148 | 68.82 62 | 69.00 56 | 38.28 166 | 79.89 15 | 55.20 41 | 62.76 51 | 68.31 58 | 56.14 58 | 71.30 63 | 68.70 77 | 76.06 98 | 79.67 56 |
|
EPNet | | | 65.14 59 | 69.54 55 | 60.00 58 | 66.61 55 | 67.67 75 | 67.53 63 | 55.32 24 | 62.67 59 | 46.22 79 | 67.74 32 | 65.93 67 | 48.07 109 | 72.17 57 | 72.12 49 | 76.28 90 | 78.47 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
casdiffmvs |  | | 64.09 60 | 68.13 61 | 59.37 63 | 61.81 78 | 68.32 66 | 68.48 59 | 44.45 95 | 61.95 60 | 49.12 68 | 63.04 49 | 69.67 54 | 53.83 69 | 70.46 72 | 66.06 116 | 78.55 62 | 77.43 71 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 63.65 61 | 66.92 62 | 59.83 60 | 60.03 92 | 73.44 46 | 66.33 75 | 48.95 62 | 52.20 93 | 50.81 63 | 56.07 75 | 60.25 87 | 53.56 71 | 73.23 53 | 70.01 64 | 79.30 56 | 83.24 42 |
|
Effi-MVS+ | | | 63.28 62 | 65.96 69 | 60.17 57 | 64.26 66 | 68.06 69 | 68.78 58 | 45.71 79 | 54.08 77 | 46.64 76 | 55.92 77 | 63.13 73 | 55.94 59 | 70.38 75 | 71.43 52 | 79.68 54 | 78.70 62 |
|
ETV-MVS | | | 63.23 63 | 66.08 68 | 59.91 59 | 63.13 74 | 68.13 68 | 67.62 62 | 44.62 92 | 53.39 82 | 46.23 78 | 58.74 65 | 58.19 94 | 57.45 46 | 73.60 50 | 71.38 54 | 80.39 44 | 79.13 59 |
|
MVS_111021_LR | | | 63.05 64 | 66.43 65 | 59.10 64 | 61.33 83 | 63.77 114 | 65.87 81 | 43.58 115 | 60.20 64 | 53.70 53 | 62.09 56 | 62.38 75 | 55.84 60 | 70.24 76 | 68.08 82 | 74.30 114 | 78.28 67 |
|
OpenMVS |  | 57.13 9 | 62.81 65 | 65.75 70 | 59.39 62 | 66.47 56 | 69.52 59 | 64.26 96 | 43.07 128 | 61.34 62 | 50.19 65 | 47.29 123 | 64.41 68 | 54.60 64 | 70.18 77 | 68.62 79 | 77.73 68 | 78.89 61 |
|
CNLPA | | | 62.78 66 | 66.31 66 | 58.65 66 | 58.47 102 | 68.41 65 | 65.98 80 | 41.22 143 | 78.02 22 | 56.04 36 | 46.65 126 | 59.50 90 | 57.50 45 | 69.67 80 | 65.27 128 | 72.70 138 | 76.67 78 |
|
TSAR-MVS + COLMAP | | | 62.65 67 | 69.90 53 | 54.19 97 | 46.31 185 | 66.73 86 | 65.49 86 | 41.36 141 | 76.57 24 | 46.31 77 | 76.80 17 | 56.68 100 | 53.27 80 | 69.50 81 | 66.65 106 | 72.40 143 | 76.36 85 |
|
GeoE | | | 62.43 68 | 64.79 77 | 59.68 61 | 64.15 69 | 67.17 82 | 68.80 57 | 44.42 96 | 55.65 73 | 47.38 71 | 51.54 99 | 62.51 74 | 54.04 68 | 69.99 78 | 68.07 83 | 79.28 57 | 78.57 63 |
|
MVS_Test | | | 62.40 69 | 66.23 67 | 57.94 72 | 59.77 96 | 64.77 105 | 66.50 74 | 41.76 137 | 57.26 70 | 49.33 66 | 62.68 52 | 67.47 64 | 53.50 75 | 68.57 92 | 66.25 113 | 76.77 82 | 76.58 80 |
|
DI_MVS_plusplus_trai | | | 61.88 70 | 65.17 74 | 58.06 69 | 60.05 91 | 65.26 99 | 66.03 78 | 44.22 97 | 55.75 72 | 46.73 74 | 54.64 85 | 68.12 61 | 54.13 67 | 69.13 84 | 66.66 105 | 77.18 77 | 76.61 79 |
|
diffmvs |  | | 61.64 71 | 66.55 64 | 55.90 88 | 56.63 124 | 63.71 115 | 67.13 68 | 41.27 142 | 59.49 65 | 46.70 75 | 63.93 47 | 68.01 62 | 50.46 95 | 67.30 117 | 65.51 124 | 73.24 131 | 77.87 70 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_BlendedMVS | | | 61.63 72 | 64.82 75 | 57.91 74 | 57.21 120 | 67.55 77 | 63.47 100 | 46.08 75 | 54.72 75 | 52.46 57 | 58.59 66 | 60.73 83 | 51.82 92 | 70.46 72 | 65.20 130 | 76.44 87 | 76.50 83 |
|
PVSNet_Blended | | | 61.63 72 | 64.82 75 | 57.91 74 | 57.21 120 | 67.55 77 | 63.47 100 | 46.08 75 | 54.72 75 | 52.46 57 | 58.59 66 | 60.73 83 | 51.82 92 | 70.46 72 | 65.20 130 | 76.44 87 | 76.50 83 |
|
EIA-MVS | | | 61.53 74 | 63.79 82 | 58.89 65 | 63.82 72 | 67.61 76 | 65.35 87 | 42.15 136 | 49.98 101 | 45.66 82 | 57.47 72 | 56.62 101 | 56.59 54 | 70.91 69 | 69.15 70 | 79.78 49 | 74.80 96 |
|
TAPA-MVS | | 54.74 10 | 60.85 75 | 66.61 63 | 54.12 99 | 47.38 181 | 65.33 97 | 65.35 87 | 36.51 175 | 75.16 30 | 48.82 70 | 54.70 84 | 63.51 71 | 53.31 79 | 68.36 94 | 64.97 134 | 73.37 126 | 74.27 99 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Fast-Effi-MVS+ | | | 60.36 76 | 63.35 83 | 56.87 82 | 58.70 99 | 65.86 94 | 65.08 90 | 37.11 172 | 53.00 87 | 45.36 84 | 52.12 96 | 56.07 107 | 56.27 56 | 71.28 64 | 69.42 68 | 78.71 60 | 75.69 90 |
|
Effi-MVS+-dtu | | | 60.34 77 | 62.32 87 | 58.03 71 | 64.31 64 | 67.44 79 | 65.99 79 | 42.26 133 | 49.55 104 | 42.00 101 | 48.92 113 | 59.79 89 | 56.27 56 | 68.07 103 | 67.03 97 | 77.35 75 | 75.45 92 |
|
LS3D | | | 60.20 78 | 61.70 88 | 58.45 67 | 64.18 67 | 67.77 72 | 67.19 65 | 48.84 65 | 61.67 61 | 41.27 105 | 45.89 138 | 51.81 122 | 54.18 66 | 68.78 87 | 66.50 111 | 75.03 109 | 69.48 128 |
|
FA-MVS(training) | | | 60.00 79 | 63.14 85 | 56.33 86 | 59.50 97 | 64.30 110 | 65.15 89 | 38.75 163 | 56.20 71 | 45.77 80 | 53.08 89 | 56.45 102 | 52.10 89 | 69.04 86 | 67.67 91 | 76.69 83 | 75.27 95 |
|
DCV-MVSNet | | | 59.49 80 | 64.00 81 | 54.23 96 | 61.81 78 | 64.33 109 | 61.42 106 | 43.77 108 | 52.85 88 | 38.94 119 | 55.62 79 | 62.15 78 | 43.24 134 | 69.39 82 | 67.66 92 | 76.22 92 | 75.97 87 |
|
EPP-MVSNet | | | 59.39 81 | 65.45 72 | 52.32 114 | 60.96 85 | 67.70 74 | 58.42 124 | 44.75 90 | 49.71 103 | 27.23 167 | 59.03 64 | 62.20 77 | 43.34 131 | 70.71 70 | 69.13 71 | 79.25 58 | 79.63 57 |
|
ACMH+ | | 53.71 12 | 59.26 82 | 60.28 101 | 58.06 69 | 64.17 68 | 68.46 64 | 67.51 64 | 50.93 50 | 52.46 91 | 35.83 131 | 40.83 174 | 45.12 167 | 52.32 86 | 69.88 79 | 69.00 74 | 77.59 72 | 76.21 86 |
|
PLC |  | 52.09 14 | 59.21 83 | 62.47 86 | 55.41 92 | 53.24 146 | 64.84 104 | 64.47 95 | 40.41 152 | 65.92 51 | 44.53 88 | 46.19 134 | 55.69 108 | 55.33 62 | 68.24 98 | 65.30 127 | 74.50 112 | 71.09 113 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v10 | | | 59.17 84 | 60.60 97 | 57.50 77 | 57.95 105 | 66.73 86 | 67.09 69 | 44.11 98 | 46.85 132 | 45.42 83 | 48.18 119 | 51.07 124 | 53.63 70 | 67.84 107 | 66.59 109 | 76.79 81 | 76.92 76 |
|
CANet_DTU | | | 58.88 85 | 64.68 78 | 52.12 115 | 55.77 128 | 66.75 85 | 63.92 97 | 37.04 173 | 53.32 83 | 37.45 127 | 59.81 61 | 61.81 79 | 44.43 126 | 68.25 96 | 67.47 95 | 74.12 116 | 75.33 93 |
|
v1144 | | | 58.88 85 | 60.16 105 | 57.39 78 | 58.03 104 | 67.26 80 | 67.14 67 | 44.46 94 | 45.17 144 | 44.33 89 | 47.81 120 | 49.92 132 | 53.20 81 | 67.77 109 | 66.62 108 | 77.15 78 | 76.58 80 |
|
v8 | | | 58.88 85 | 60.57 99 | 56.92 81 | 57.35 115 | 65.69 96 | 66.69 73 | 42.64 130 | 47.89 127 | 45.77 80 | 49.04 110 | 52.98 117 | 52.77 82 | 67.51 114 | 65.57 123 | 76.26 91 | 75.30 94 |
|
v2v482 | | | 58.69 88 | 60.12 108 | 57.03 80 | 57.16 122 | 66.05 93 | 67.17 66 | 43.52 117 | 46.33 136 | 45.19 85 | 49.46 109 | 51.02 125 | 52.51 84 | 67.30 117 | 66.03 117 | 76.61 84 | 74.62 97 |
|
v1192 | | | 58.51 89 | 59.66 112 | 57.17 79 | 57.82 106 | 67.72 73 | 66.21 77 | 44.83 89 | 44.15 152 | 43.49 92 | 46.68 125 | 47.94 136 | 53.55 72 | 67.39 116 | 66.51 110 | 77.13 79 | 77.20 74 |
|
UA-Net | | | 58.50 90 | 64.68 78 | 51.30 119 | 66.97 52 | 67.13 83 | 53.68 159 | 45.65 80 | 49.51 106 | 31.58 146 | 62.91 50 | 68.47 57 | 35.85 169 | 68.20 99 | 67.28 96 | 74.03 117 | 69.24 132 |
|
Vis-MVSNet |  | | 58.48 91 | 65.70 71 | 50.06 126 | 53.40 145 | 67.20 81 | 60.24 114 | 43.32 123 | 48.83 115 | 30.23 152 | 62.38 54 | 61.61 81 | 40.35 145 | 71.03 66 | 69.77 65 | 72.82 134 | 79.11 60 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MSDG | | | 58.46 92 | 58.97 123 | 57.85 76 | 66.27 58 | 66.23 92 | 67.72 60 | 42.33 132 | 53.43 81 | 43.68 91 | 43.39 160 | 45.35 163 | 49.75 98 | 68.66 90 | 67.77 88 | 77.38 74 | 67.96 137 |
|
FC-MVSNet-train | | | 58.40 93 | 63.15 84 | 52.85 110 | 64.29 65 | 61.84 123 | 55.98 143 | 46.47 73 | 53.06 85 | 34.96 134 | 61.95 57 | 56.37 105 | 39.49 147 | 68.67 89 | 68.36 81 | 75.92 100 | 71.81 110 |
|
ET-MVSNet_ETH3D | | | 58.38 94 | 61.57 89 | 54.67 95 | 42.15 198 | 65.26 99 | 65.70 82 | 43.82 107 | 48.84 114 | 42.34 98 | 59.76 62 | 47.76 139 | 56.68 53 | 67.02 124 | 68.60 80 | 77.33 76 | 73.73 105 |
|
IB-MVS | | 54.11 11 | 58.36 95 | 60.70 96 | 55.62 90 | 58.67 100 | 68.02 71 | 61.56 103 | 43.15 127 | 46.09 138 | 44.06 90 | 44.24 152 | 50.99 127 | 48.71 103 | 66.70 127 | 70.33 59 | 77.60 71 | 78.50 64 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IterMVS-LS | | | 58.30 96 | 61.39 90 | 54.71 94 | 59.92 94 | 58.40 154 | 59.42 116 | 43.64 113 | 48.71 118 | 40.25 112 | 57.53 71 | 58.55 93 | 52.15 88 | 65.42 145 | 65.34 126 | 72.85 132 | 75.77 88 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 52.42 13 | 58.24 97 | 59.56 117 | 56.70 84 | 66.34 57 | 69.59 58 | 66.71 72 | 49.12 61 | 46.08 139 | 28.90 159 | 42.67 169 | 41.20 186 | 52.60 83 | 71.39 62 | 70.28 60 | 76.51 86 | 75.72 89 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v144192 | | | 58.23 98 | 59.40 119 | 56.87 82 | 57.56 107 | 66.89 84 | 65.70 82 | 45.01 87 | 44.06 153 | 42.88 94 | 46.61 127 | 48.09 135 | 53.49 76 | 66.94 125 | 65.90 120 | 76.61 84 | 77.29 72 |
|
MS-PatchMatch | | | 58.19 99 | 60.20 104 | 55.85 89 | 65.17 61 | 64.16 111 | 64.82 91 | 41.48 140 | 50.95 96 | 42.17 100 | 45.38 144 | 56.42 103 | 48.08 108 | 68.30 95 | 66.70 104 | 73.39 125 | 69.46 130 |
|
IS_MVSNet | | | 57.95 100 | 64.26 80 | 50.60 121 | 61.62 82 | 65.25 101 | 57.18 130 | 45.42 82 | 50.79 97 | 26.49 172 | 57.81 70 | 60.05 88 | 34.51 173 | 71.24 65 | 70.20 62 | 78.36 65 | 74.44 98 |
|
v1921920 | | | 57.89 101 | 59.02 122 | 56.58 85 | 57.55 108 | 66.66 90 | 64.72 93 | 44.70 91 | 43.55 156 | 42.73 95 | 46.17 135 | 46.93 149 | 53.51 73 | 66.78 126 | 65.75 122 | 76.29 89 | 77.28 73 |
|
Anonymous20231211 | | | 57.71 102 | 60.79 94 | 54.13 98 | 61.68 81 | 65.81 95 | 60.81 111 | 43.70 112 | 51.97 94 | 39.67 114 | 34.82 189 | 63.59 70 | 43.31 132 | 68.55 93 | 66.63 107 | 75.59 101 | 74.13 101 |
|
v1240 | | | 57.55 103 | 58.63 126 | 56.29 87 | 57.30 118 | 66.48 91 | 63.77 98 | 44.56 93 | 42.77 166 | 42.48 97 | 45.64 141 | 46.28 156 | 53.46 77 | 66.32 132 | 65.80 121 | 76.16 93 | 77.13 75 |
|
MVSTER | | | 57.19 104 | 61.11 92 | 52.62 112 | 50.82 168 | 58.79 150 | 61.55 104 | 37.86 169 | 48.81 116 | 41.31 104 | 57.43 73 | 52.10 120 | 48.60 104 | 68.19 100 | 66.75 103 | 75.56 102 | 75.68 91 |
|
UGNet | | | 57.03 105 | 65.25 73 | 47.44 155 | 46.54 184 | 66.73 86 | 56.30 138 | 43.28 124 | 50.06 100 | 32.99 138 | 62.57 53 | 63.26 72 | 33.31 178 | 68.25 96 | 67.58 93 | 72.20 146 | 78.29 66 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EG-PatchMatch MVS | | | 56.98 106 | 58.24 130 | 55.50 91 | 64.66 63 | 68.62 63 | 61.48 105 | 43.63 114 | 38.44 191 | 41.44 102 | 38.05 181 | 46.18 158 | 43.95 127 | 71.71 60 | 70.61 57 | 77.87 67 | 74.08 102 |
|
V42 | | | 56.97 107 | 60.14 106 | 53.28 104 | 48.16 177 | 62.78 120 | 66.30 76 | 37.93 168 | 47.44 129 | 42.68 96 | 48.19 118 | 52.59 119 | 51.90 90 | 67.46 115 | 65.94 119 | 72.72 136 | 76.55 82 |
|
UniMVSNet_NR-MVSNet | | | 56.94 108 | 61.14 91 | 52.05 116 | 60.02 93 | 65.21 102 | 57.44 128 | 52.93 40 | 49.37 107 | 24.31 179 | 54.62 86 | 50.54 128 | 39.04 149 | 68.69 88 | 68.84 76 | 78.53 63 | 70.72 115 |
|
HyFIR lowres test | | | 56.87 109 | 58.60 127 | 54.84 93 | 56.62 125 | 69.27 61 | 64.77 92 | 42.21 134 | 45.66 142 | 37.50 126 | 33.08 192 | 57.47 99 | 53.33 78 | 65.46 144 | 67.94 84 | 74.60 111 | 71.35 112 |
|
thisisatest0530 | | | 56.68 110 | 59.68 111 | 53.19 106 | 52.97 147 | 60.96 133 | 59.41 117 | 40.51 148 | 48.26 124 | 41.06 107 | 52.67 92 | 46.30 155 | 49.78 96 | 67.66 112 | 67.83 86 | 75.39 104 | 74.07 103 |
|
CostFormer | | | 56.57 111 | 59.13 121 | 53.60 101 | 57.52 110 | 61.12 130 | 66.94 71 | 35.95 177 | 53.44 80 | 44.68 87 | 55.87 78 | 54.44 111 | 48.21 106 | 60.37 166 | 58.33 173 | 68.27 164 | 70.33 120 |
|
tttt0517 | | | 56.53 112 | 59.59 113 | 52.95 109 | 52.66 150 | 60.99 132 | 59.21 119 | 40.51 148 | 47.89 127 | 40.40 110 | 52.50 95 | 46.04 159 | 49.78 96 | 67.75 110 | 67.83 86 | 75.15 107 | 74.17 100 |
|
ECVR-MVS |  | | 56.44 113 | 60.74 95 | 51.42 118 | 60.39 89 | 64.55 107 | 58.69 122 | 48.87 63 | 53.91 78 | 26.76 170 | 45.55 143 | 53.43 115 | 37.71 157 | 70.96 67 | 69.49 66 | 76.08 95 | 67.32 144 |
|
Fast-Effi-MVS+-dtu | | | 56.30 114 | 59.29 120 | 52.82 111 | 58.64 101 | 64.89 103 | 65.56 85 | 32.89 195 | 45.80 141 | 35.04 133 | 45.89 138 | 54.14 112 | 49.41 99 | 67.16 120 | 66.45 112 | 75.37 105 | 70.69 117 |
|
baseline2 | | | 55.89 115 | 57.82 133 | 53.64 100 | 57.36 114 | 61.09 131 | 59.75 115 | 40.45 150 | 47.38 130 | 41.26 106 | 51.23 101 | 46.90 150 | 48.11 107 | 65.63 142 | 64.38 139 | 74.90 110 | 68.16 136 |
|
TranMVSNet+NR-MVSNet | | | 55.87 116 | 60.14 106 | 50.88 120 | 59.46 98 | 63.82 113 | 57.93 126 | 52.98 39 | 48.94 113 | 20.52 187 | 52.87 91 | 47.33 145 | 36.81 165 | 69.12 85 | 69.03 73 | 77.56 73 | 69.89 121 |
|
CHOSEN 1792x2688 | | | 55.85 117 | 58.01 131 | 53.33 103 | 57.26 119 | 62.82 119 | 63.29 102 | 41.55 139 | 46.65 134 | 38.34 120 | 34.55 190 | 53.50 113 | 52.43 85 | 67.10 122 | 67.56 94 | 67.13 168 | 73.92 104 |
|
test2506 | | | 55.82 118 | 59.57 116 | 51.46 117 | 60.39 89 | 64.55 107 | 58.69 122 | 48.87 63 | 53.91 78 | 26.99 168 | 48.97 111 | 41.72 185 | 37.71 157 | 70.96 67 | 69.49 66 | 76.08 95 | 67.37 142 |
|
v7n | | | 55.67 119 | 57.46 138 | 53.59 102 | 56.06 126 | 65.29 98 | 61.06 109 | 43.26 125 | 40.17 182 | 37.99 123 | 40.79 175 | 45.27 166 | 47.09 113 | 67.67 111 | 66.21 114 | 76.08 95 | 76.82 77 |
|
GA-MVS | | | 55.67 119 | 58.33 128 | 52.58 113 | 55.23 133 | 63.09 116 | 61.08 108 | 40.15 154 | 42.95 161 | 37.02 129 | 52.61 93 | 47.68 140 | 47.51 111 | 65.92 138 | 65.35 125 | 74.49 113 | 70.68 118 |
|
v148 | | | 55.58 121 | 57.61 137 | 53.20 105 | 54.59 138 | 61.86 122 | 61.18 107 | 38.70 164 | 44.30 151 | 42.25 99 | 47.53 121 | 50.24 131 | 48.73 102 | 65.15 146 | 62.61 156 | 73.79 119 | 71.61 111 |
|
DU-MVS | | | 55.41 122 | 59.59 113 | 50.54 123 | 54.60 136 | 62.97 117 | 57.44 128 | 51.80 45 | 48.62 121 | 24.31 179 | 51.99 97 | 47.00 148 | 39.04 149 | 68.11 101 | 67.75 89 | 76.03 99 | 70.72 115 |
|
NR-MVSNet | | | 55.35 123 | 59.46 118 | 50.56 122 | 61.33 83 | 62.97 117 | 57.91 127 | 51.80 45 | 48.62 121 | 20.59 186 | 51.99 97 | 44.73 173 | 34.10 176 | 68.58 91 | 68.64 78 | 77.66 69 | 70.67 119 |
|
test1111 | | | 55.24 124 | 59.98 109 | 49.71 127 | 59.80 95 | 64.10 112 | 56.48 137 | 49.34 59 | 52.27 92 | 21.56 184 | 44.49 150 | 51.96 121 | 35.93 168 | 70.59 71 | 69.07 72 | 75.13 108 | 67.40 140 |
|
GBi-Net | | | 55.20 125 | 60.25 102 | 49.31 130 | 52.42 151 | 61.44 125 | 57.03 131 | 44.04 101 | 49.18 110 | 30.47 148 | 48.28 115 | 58.19 94 | 38.22 152 | 68.05 104 | 66.96 98 | 73.69 121 | 69.65 123 |
|
test1 | | | 55.20 125 | 60.25 102 | 49.31 130 | 52.42 151 | 61.44 125 | 57.03 131 | 44.04 101 | 49.18 110 | 30.47 148 | 48.28 115 | 58.19 94 | 38.22 152 | 68.05 104 | 66.96 98 | 73.69 121 | 69.65 123 |
|
baseline | | | 55.19 127 | 60.88 93 | 48.55 143 | 49.87 172 | 58.10 159 | 58.70 121 | 34.75 181 | 52.82 89 | 39.48 118 | 60.18 60 | 60.86 82 | 45.41 121 | 61.05 162 | 60.74 165 | 63.10 181 | 72.41 108 |
|
UniMVSNet (Re) | | | 55.15 128 | 60.39 100 | 49.03 136 | 55.31 130 | 64.59 106 | 55.77 144 | 50.63 52 | 48.66 120 | 20.95 185 | 51.47 100 | 50.40 129 | 34.41 175 | 67.81 108 | 67.89 85 | 77.11 80 | 71.88 109 |
|
FMVSNet2 | | | 55.04 129 | 59.95 110 | 49.31 130 | 52.42 151 | 61.44 125 | 57.03 131 | 44.08 100 | 49.55 104 | 30.40 151 | 46.89 124 | 58.84 92 | 38.22 152 | 67.07 123 | 66.21 114 | 73.69 121 | 69.65 123 |
|
FMVSNet3 | | | 54.78 130 | 59.58 115 | 49.17 133 | 52.37 154 | 61.31 129 | 56.72 136 | 44.04 101 | 49.18 110 | 30.47 148 | 48.28 115 | 58.19 94 | 38.09 155 | 65.48 143 | 65.20 130 | 73.31 128 | 69.45 131 |
|
pmmvs4 | | | 54.66 131 | 56.07 142 | 53.00 108 | 54.63 135 | 57.08 165 | 60.43 113 | 44.10 99 | 51.69 95 | 40.55 109 | 46.55 130 | 44.79 172 | 45.95 119 | 62.54 155 | 63.66 144 | 72.36 144 | 66.20 151 |
|
baseline1 | | | 54.48 132 | 58.69 124 | 49.57 128 | 60.63 88 | 58.29 157 | 55.70 145 | 44.95 88 | 49.20 109 | 29.62 155 | 54.77 83 | 54.75 110 | 35.29 170 | 67.15 121 | 64.08 140 | 71.21 153 | 62.58 174 |
|
FMVSNet1 | | | 54.08 133 | 58.68 125 | 48.71 140 | 50.90 167 | 61.35 128 | 56.73 135 | 43.94 106 | 45.91 140 | 29.32 158 | 42.72 168 | 56.26 106 | 37.70 159 | 68.05 104 | 66.96 98 | 73.69 121 | 69.50 127 |
|
thisisatest0515 | | | 53.85 134 | 56.84 141 | 50.37 124 | 50.25 171 | 58.17 158 | 55.99 142 | 39.90 155 | 41.88 171 | 38.16 122 | 45.91 137 | 45.30 164 | 44.58 125 | 66.15 136 | 66.89 101 | 73.36 127 | 73.57 106 |
|
Baseline_NR-MVSNet | | | 53.50 135 | 57.89 132 | 48.37 146 | 54.60 136 | 59.25 147 | 56.10 139 | 51.84 44 | 49.32 108 | 17.92 194 | 45.38 144 | 47.68 140 | 36.93 164 | 68.11 101 | 65.95 118 | 72.84 133 | 69.57 126 |
|
IterMVS | | | 53.45 136 | 57.12 139 | 49.17 133 | 49.23 174 | 60.93 134 | 59.05 120 | 34.63 183 | 44.53 147 | 33.22 136 | 51.09 104 | 51.01 126 | 48.38 105 | 62.43 157 | 60.79 164 | 70.54 157 | 69.05 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm cat1 | | | 53.30 137 | 53.41 159 | 53.17 107 | 58.16 103 | 59.15 148 | 63.73 99 | 38.27 167 | 50.73 98 | 46.98 73 | 45.57 142 | 44.00 179 | 49.20 100 | 55.90 193 | 54.02 192 | 62.65 183 | 64.50 165 |
|
anonymousdsp | | | 52.84 138 | 57.78 134 | 47.06 156 | 40.24 201 | 58.95 149 | 53.70 158 | 33.54 191 | 36.51 198 | 32.69 141 | 43.88 154 | 45.40 162 | 47.97 110 | 67.17 119 | 70.28 60 | 74.22 115 | 82.29 46 |
|
UniMVSNet_ETH3D | | | 52.62 139 | 55.98 143 | 48.70 141 | 51.04 165 | 60.71 135 | 56.87 134 | 46.74 72 | 42.52 168 | 26.96 169 | 42.50 170 | 45.95 160 | 37.87 156 | 66.22 134 | 65.15 133 | 72.74 135 | 68.78 135 |
|
tfpn200view9 | | | 52.53 140 | 55.51 145 | 49.06 135 | 57.31 116 | 60.24 137 | 55.42 149 | 43.77 108 | 42.85 164 | 27.81 163 | 43.00 166 | 45.06 169 | 37.32 161 | 66.38 129 | 64.54 136 | 72.71 137 | 66.54 146 |
|
CDS-MVSNet | | | 52.42 141 | 57.06 140 | 47.02 157 | 53.92 143 | 58.30 156 | 55.50 147 | 46.47 73 | 42.52 168 | 29.38 157 | 49.50 108 | 52.85 118 | 28.49 188 | 66.70 127 | 66.89 101 | 68.34 163 | 62.63 173 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thres200 | | | 52.39 142 | 55.37 148 | 48.90 137 | 57.39 113 | 60.18 138 | 55.60 146 | 43.73 110 | 42.93 162 | 27.41 165 | 43.35 161 | 45.09 168 | 36.61 166 | 66.36 130 | 63.92 143 | 72.66 139 | 65.78 156 |
|
thres400 | | | 52.38 143 | 55.51 145 | 48.74 139 | 57.49 111 | 60.10 140 | 55.45 148 | 43.54 116 | 42.90 163 | 26.72 171 | 43.34 162 | 45.03 171 | 36.61 166 | 66.20 135 | 64.53 137 | 72.66 139 | 66.43 147 |
|
IterMVS-SCA-FT | | | 52.18 144 | 57.75 135 | 45.68 162 | 51.01 166 | 62.06 121 | 55.10 152 | 34.75 181 | 44.85 145 | 32.86 140 | 51.13 103 | 51.22 123 | 48.74 101 | 62.47 156 | 61.51 160 | 51.61 207 | 71.02 114 |
|
EPNet_dtu | | | 52.05 145 | 58.26 129 | 44.81 167 | 54.10 141 | 50.09 186 | 52.01 164 | 40.82 146 | 53.03 86 | 27.41 165 | 54.90 81 | 57.96 98 | 26.72 190 | 62.97 152 | 62.70 155 | 67.78 166 | 66.19 152 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres100view900 | | | 52.04 146 | 54.81 152 | 48.80 138 | 57.31 116 | 59.33 145 | 55.30 150 | 42.92 129 | 42.85 164 | 27.81 163 | 43.00 166 | 45.06 169 | 36.99 163 | 64.74 148 | 63.51 145 | 72.47 142 | 65.21 160 |
|
COLMAP_ROB |  | 46.52 15 | 51.99 147 | 54.86 151 | 48.63 142 | 49.13 175 | 61.73 124 | 60.53 112 | 36.57 174 | 53.14 84 | 32.95 139 | 37.10 182 | 38.68 197 | 40.49 144 | 65.72 140 | 63.08 149 | 72.11 147 | 64.60 164 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TransMVSNet (Re) | | | 51.92 148 | 55.38 147 | 47.88 152 | 60.95 86 | 59.90 141 | 53.95 156 | 45.14 86 | 39.47 185 | 24.85 176 | 43.87 155 | 46.51 154 | 29.15 185 | 67.55 113 | 65.23 129 | 73.26 130 | 65.16 161 |
|
thres600view7 | | | 51.91 149 | 55.14 149 | 48.14 148 | 57.43 112 | 60.18 138 | 54.60 154 | 43.73 110 | 42.61 167 | 25.20 175 | 43.10 165 | 44.47 176 | 35.19 171 | 66.36 130 | 63.28 148 | 72.66 139 | 66.01 154 |
|
pmmvs-eth3d | | | 51.33 150 | 52.25 169 | 50.26 125 | 50.82 168 | 54.65 170 | 56.03 141 | 43.45 122 | 43.51 157 | 37.20 128 | 39.20 178 | 39.04 196 | 42.28 137 | 61.85 160 | 62.78 153 | 71.78 149 | 64.72 163 |
|
USDC | | | 51.11 151 | 53.71 156 | 48.08 150 | 44.76 190 | 55.99 168 | 53.01 163 | 40.90 144 | 52.49 90 | 36.14 130 | 44.67 149 | 33.66 207 | 43.27 133 | 63.23 151 | 61.10 162 | 70.39 158 | 64.82 162 |
|
pm-mvs1 | | | 51.02 152 | 55.55 144 | 45.73 161 | 54.16 140 | 58.52 152 | 50.92 166 | 42.56 131 | 40.32 180 | 25.67 174 | 43.66 157 | 50.34 130 | 30.06 183 | 65.85 139 | 63.97 142 | 70.99 155 | 66.21 150 |
|
SCA | | | 50.99 153 | 53.22 163 | 48.40 145 | 51.07 164 | 56.78 166 | 50.25 168 | 39.05 157 | 48.31 123 | 41.38 103 | 49.54 107 | 46.70 153 | 46.00 118 | 58.31 176 | 56.28 176 | 62.65 183 | 56.60 191 |
|
CR-MVSNet | | | 50.47 154 | 52.61 165 | 47.98 151 | 49.03 176 | 52.94 175 | 48.27 175 | 38.86 160 | 44.41 148 | 39.59 115 | 44.34 151 | 44.65 175 | 46.63 115 | 58.97 171 | 60.31 166 | 65.48 173 | 62.66 171 |
|
dps | | | 50.42 155 | 51.20 176 | 49.51 129 | 55.88 127 | 56.07 167 | 53.73 157 | 38.89 159 | 43.66 154 | 40.36 111 | 45.66 140 | 37.63 201 | 45.23 122 | 59.05 169 | 56.18 177 | 62.94 182 | 60.16 182 |
|
Vis-MVSNet (Re-imp) | | | 50.37 156 | 57.73 136 | 41.80 181 | 57.53 109 | 54.35 171 | 45.70 189 | 45.24 84 | 49.80 102 | 13.43 200 | 58.23 69 | 56.42 103 | 20.11 201 | 62.96 153 | 63.36 147 | 68.76 162 | 58.96 186 |
|
MDTV_nov1_ep13 | | | 50.32 157 | 52.43 168 | 47.86 153 | 49.87 172 | 54.70 169 | 58.10 125 | 34.29 185 | 45.59 143 | 37.71 124 | 47.44 122 | 47.42 144 | 41.86 139 | 58.07 179 | 55.21 185 | 65.34 175 | 58.56 187 |
|
tfpnnormal | | | 50.16 158 | 52.19 170 | 47.78 154 | 56.86 123 | 58.37 155 | 54.15 155 | 44.01 104 | 38.35 193 | 25.94 173 | 36.10 185 | 37.89 199 | 34.50 174 | 65.93 137 | 63.42 146 | 71.26 152 | 65.28 159 |
|
PatchMatch-RL | | | 50.11 159 | 51.56 173 | 48.43 144 | 46.23 186 | 51.94 179 | 50.21 169 | 38.62 165 | 46.62 135 | 37.51 125 | 42.43 171 | 39.38 194 | 52.24 87 | 60.98 163 | 59.56 169 | 65.76 172 | 60.01 184 |
|
PatchmatchNet |  | | 49.92 160 | 51.29 174 | 48.32 147 | 51.83 158 | 51.86 180 | 53.38 162 | 37.63 171 | 47.90 126 | 40.83 108 | 48.54 114 | 45.30 164 | 45.19 123 | 56.86 183 | 53.99 194 | 61.08 188 | 54.57 194 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TDRefinement | | | 49.31 161 | 52.44 167 | 45.67 163 | 30.44 211 | 59.42 144 | 59.24 118 | 39.78 156 | 48.76 117 | 31.20 147 | 35.73 186 | 29.90 211 | 42.81 136 | 64.24 150 | 62.59 157 | 70.55 156 | 66.43 147 |
|
test-LLR | | | 49.28 162 | 50.29 180 | 48.10 149 | 55.26 131 | 47.16 194 | 49.52 170 | 43.48 120 | 39.22 186 | 31.98 142 | 43.65 158 | 47.93 137 | 41.29 142 | 56.80 184 | 55.36 183 | 67.08 169 | 61.94 175 |
|
CMPMVS |  | 37.70 17 | 49.24 163 | 52.71 164 | 45.19 164 | 45.97 187 | 51.23 182 | 47.44 181 | 29.31 200 | 43.04 160 | 44.69 86 | 34.45 191 | 48.35 134 | 43.64 128 | 62.59 154 | 59.82 168 | 60.08 189 | 69.48 128 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PEN-MVS | | | 49.21 164 | 54.32 154 | 43.24 176 | 54.33 139 | 59.26 146 | 47.04 183 | 51.37 49 | 41.67 172 | 9.97 208 | 46.22 133 | 41.80 184 | 22.97 198 | 60.52 164 | 64.03 141 | 73.73 120 | 66.75 145 |
|
PMMVS | | | 49.20 165 | 54.28 155 | 43.28 175 | 34.13 206 | 45.70 201 | 48.98 173 | 26.09 208 | 46.31 137 | 34.92 135 | 55.22 80 | 53.47 114 | 47.48 112 | 59.43 168 | 59.04 171 | 68.05 165 | 60.77 179 |
|
gg-mvs-nofinetune | | | 49.07 166 | 52.56 166 | 45.00 166 | 61.99 76 | 59.78 142 | 53.55 161 | 41.63 138 | 31.62 207 | 12.08 202 | 29.56 201 | 53.28 116 | 29.57 184 | 66.27 133 | 64.49 138 | 71.19 154 | 62.92 170 |
|
tpm | | | 48.82 167 | 51.27 175 | 45.96 160 | 54.10 141 | 47.35 193 | 56.05 140 | 30.23 199 | 46.70 133 | 43.21 93 | 52.54 94 | 47.55 143 | 37.28 162 | 54.11 198 | 50.50 201 | 54.90 200 | 60.12 183 |
|
WR-MVS | | | 48.78 168 | 55.06 150 | 41.45 182 | 55.50 129 | 60.40 136 | 43.77 197 | 49.99 56 | 41.92 170 | 8.10 213 | 45.24 147 | 45.56 161 | 17.47 202 | 61.57 161 | 64.60 135 | 73.85 118 | 66.14 153 |
|
CP-MVSNet | | | 48.37 169 | 53.53 158 | 42.34 178 | 51.35 161 | 58.01 160 | 46.56 184 | 50.54 53 | 41.62 173 | 10.61 204 | 46.53 131 | 40.68 190 | 23.18 196 | 58.71 174 | 61.83 158 | 71.81 148 | 67.36 143 |
|
pmmvs6 | | | 48.35 170 | 51.64 172 | 44.51 169 | 51.92 157 | 57.94 161 | 49.44 172 | 42.17 135 | 34.45 200 | 24.62 178 | 28.87 203 | 46.90 150 | 29.07 187 | 64.60 149 | 63.08 149 | 69.83 159 | 65.68 157 |
|
PS-CasMVS | | | 48.18 171 | 53.25 162 | 42.27 179 | 51.26 162 | 57.94 161 | 46.51 185 | 50.52 54 | 41.30 174 | 10.56 205 | 45.35 146 | 40.34 192 | 23.04 197 | 58.66 175 | 61.79 159 | 71.74 150 | 67.38 141 |
|
PatchT | | | 48.08 172 | 51.03 177 | 44.64 168 | 42.96 195 | 50.12 185 | 40.36 204 | 35.09 179 | 43.17 159 | 39.59 115 | 42.00 172 | 39.96 193 | 46.63 115 | 58.97 171 | 60.31 166 | 63.21 180 | 62.66 171 |
|
tpmrst | | | 48.08 172 | 49.88 184 | 45.98 159 | 52.71 149 | 48.11 191 | 53.62 160 | 33.70 190 | 48.70 119 | 39.74 113 | 48.96 112 | 46.23 157 | 40.29 146 | 50.14 207 | 49.28 203 | 55.80 197 | 57.71 189 |
|
DTE-MVSNet | | | 48.03 174 | 53.28 161 | 41.91 180 | 54.64 134 | 57.50 163 | 44.63 196 | 51.66 48 | 41.02 176 | 7.97 214 | 46.26 132 | 40.90 187 | 20.24 200 | 60.45 165 | 62.89 152 | 72.33 145 | 63.97 166 |
|
WR-MVS_H | | | 47.65 175 | 53.67 157 | 40.63 185 | 51.45 159 | 59.74 143 | 44.71 195 | 49.37 58 | 40.69 178 | 7.61 215 | 46.04 136 | 44.34 178 | 17.32 203 | 57.79 180 | 61.18 161 | 73.30 129 | 65.86 155 |
|
MDTV_nov1_ep13_2view | | | 47.62 176 | 49.72 185 | 45.18 165 | 48.05 178 | 53.70 173 | 54.90 153 | 33.80 189 | 39.90 184 | 29.79 154 | 38.85 179 | 41.89 183 | 39.17 148 | 58.99 170 | 55.55 182 | 65.34 175 | 59.17 185 |
|
SixPastTwentyTwo | | | 47.55 177 | 50.25 182 | 44.41 170 | 47.30 182 | 54.31 172 | 47.81 178 | 40.36 153 | 33.76 201 | 19.93 189 | 43.75 156 | 32.77 209 | 42.07 138 | 59.82 167 | 60.94 163 | 68.98 160 | 66.37 149 |
|
TinyColmap | | | 47.08 178 | 47.56 192 | 46.52 158 | 42.35 197 | 53.44 174 | 51.77 165 | 40.70 147 | 43.44 158 | 31.92 144 | 29.78 200 | 23.72 217 | 45.04 124 | 61.99 159 | 59.54 170 | 67.35 167 | 61.03 178 |
|
pmmvs5 | | | 47.07 179 | 51.02 178 | 42.46 177 | 45.18 189 | 51.47 181 | 48.23 177 | 33.09 194 | 38.17 194 | 28.62 161 | 46.60 128 | 43.48 180 | 30.74 181 | 58.28 177 | 58.63 172 | 68.92 161 | 60.48 180 |
|
LTVRE_ROB | | 44.17 16 | 47.06 180 | 50.15 183 | 43.44 173 | 51.39 160 | 58.42 153 | 42.90 199 | 43.51 118 | 22.27 215 | 14.85 198 | 41.94 173 | 34.57 205 | 45.43 120 | 62.28 158 | 62.77 154 | 62.56 185 | 68.83 134 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPMNet | | | 46.41 181 | 48.72 187 | 43.72 171 | 47.77 180 | 52.94 175 | 46.02 188 | 33.92 187 | 44.41 148 | 31.82 145 | 36.89 183 | 37.42 202 | 37.41 160 | 53.88 199 | 54.02 192 | 65.37 174 | 61.47 177 |
|
RPSCF | | | 46.41 181 | 54.42 153 | 37.06 195 | 25.70 218 | 45.14 202 | 45.39 191 | 20.81 212 | 62.79 58 | 35.10 132 | 44.92 148 | 55.60 109 | 43.56 129 | 56.12 190 | 52.45 198 | 51.80 206 | 63.91 167 |
|
CVMVSNet | | | 46.38 183 | 52.01 171 | 39.81 187 | 42.40 196 | 50.26 184 | 46.15 186 | 37.68 170 | 40.03 183 | 15.09 197 | 46.56 129 | 47.56 142 | 33.72 177 | 56.50 188 | 55.65 181 | 63.80 179 | 67.53 138 |
|
TESTMET0.1,1 | | | 46.09 184 | 50.29 180 | 41.18 183 | 36.91 204 | 47.16 194 | 49.52 170 | 20.32 213 | 39.22 186 | 31.98 142 | 43.65 158 | 47.93 137 | 41.29 142 | 56.80 184 | 55.36 183 | 67.08 169 | 61.94 175 |
|
test-mter | | | 45.30 185 | 50.37 179 | 39.38 188 | 33.65 208 | 46.99 196 | 47.59 179 | 18.59 214 | 38.75 189 | 28.00 162 | 43.28 163 | 46.82 152 | 41.50 141 | 57.28 182 | 55.78 180 | 66.93 171 | 63.70 168 |
|
gm-plane-assit | | | 44.74 186 | 45.95 194 | 43.33 174 | 60.88 87 | 46.79 199 | 36.97 208 | 32.24 198 | 24.15 213 | 11.79 203 | 29.26 202 | 32.97 208 | 46.64 114 | 65.09 147 | 62.95 151 | 71.45 151 | 60.42 181 |
|
EPMVS | | | 44.66 187 | 47.86 191 | 40.92 184 | 47.97 179 | 44.70 203 | 47.58 180 | 33.27 192 | 48.11 125 | 29.58 156 | 49.65 106 | 44.38 177 | 34.65 172 | 51.71 202 | 47.90 205 | 52.49 205 | 48.57 206 |
|
PM-MVS | | | 44.55 188 | 48.13 190 | 40.37 186 | 32.85 210 | 46.82 198 | 46.11 187 | 29.28 201 | 40.48 179 | 29.99 153 | 39.98 177 | 34.39 206 | 41.80 140 | 56.08 191 | 53.88 196 | 62.19 186 | 65.31 158 |
|
TAMVS | | | 44.02 189 | 49.18 186 | 37.99 193 | 47.03 183 | 45.97 200 | 45.04 192 | 28.47 203 | 39.11 188 | 20.23 188 | 43.22 164 | 48.52 133 | 28.49 188 | 58.15 178 | 57.95 175 | 58.71 191 | 51.36 197 |
|
MIMVSNet | | | 43.79 190 | 48.53 188 | 38.27 191 | 41.46 199 | 48.97 189 | 50.81 167 | 32.88 196 | 44.55 146 | 22.07 182 | 32.05 193 | 47.15 146 | 24.76 193 | 58.73 173 | 56.09 179 | 57.63 196 | 52.14 195 |
|
test0.0.03 1 | | | 43.15 191 | 46.95 193 | 38.72 190 | 55.26 131 | 50.56 183 | 42.48 200 | 43.48 120 | 38.16 195 | 15.11 196 | 35.07 188 | 44.69 174 | 16.47 204 | 55.95 192 | 54.34 191 | 59.54 190 | 49.87 204 |
|
Anonymous20231206 | | | 42.28 192 | 45.89 195 | 38.07 192 | 51.96 156 | 48.98 188 | 43.66 198 | 38.81 162 | 38.74 190 | 14.32 199 | 26.74 205 | 40.90 187 | 20.94 199 | 56.64 187 | 54.67 189 | 58.71 191 | 54.59 193 |
|
MVS-HIRNet | | | 42.24 193 | 41.15 206 | 43.51 172 | 44.06 194 | 40.74 206 | 35.77 210 | 35.35 178 | 35.38 199 | 38.34 120 | 25.63 207 | 38.55 198 | 43.48 130 | 50.77 204 | 47.03 207 | 64.07 177 | 49.98 202 |
|
MDA-MVSNet-bldmvs | | | 41.36 194 | 43.15 204 | 39.27 189 | 28.74 213 | 52.68 177 | 44.95 194 | 40.84 145 | 32.89 203 | 18.13 193 | 31.61 195 | 22.09 218 | 38.97 151 | 50.45 206 | 56.11 178 | 64.01 178 | 56.23 192 |
|
FMVSNet5 | | | 40.96 195 | 45.81 196 | 35.29 200 | 34.30 205 | 44.55 204 | 47.28 182 | 28.84 202 | 40.76 177 | 21.62 183 | 29.85 199 | 42.44 181 | 24.77 192 | 57.53 181 | 55.00 186 | 54.93 199 | 50.56 200 |
|
CHOSEN 280x420 | | | 40.80 196 | 45.05 199 | 35.84 199 | 32.95 209 | 29.57 214 | 44.98 193 | 23.71 211 | 37.54 196 | 18.42 192 | 31.36 196 | 47.07 147 | 46.41 117 | 56.71 186 | 54.65 190 | 48.55 210 | 58.47 188 |
|
ADS-MVSNet | | | 40.67 197 | 43.38 203 | 37.50 194 | 44.36 192 | 39.79 210 | 42.09 202 | 32.67 197 | 44.34 150 | 28.87 160 | 40.76 176 | 40.37 191 | 30.22 182 | 48.34 211 | 45.87 210 | 46.81 211 | 44.21 210 |
|
EU-MVSNet | | | 40.63 198 | 45.65 197 | 34.78 201 | 39.11 202 | 46.94 197 | 40.02 205 | 34.03 186 | 33.50 202 | 10.37 206 | 35.57 187 | 37.80 200 | 23.65 195 | 51.90 201 | 50.21 202 | 61.49 187 | 63.62 169 |
|
pmnet_mix02 | | | 40.48 199 | 43.80 201 | 36.61 196 | 45.79 188 | 40.45 208 | 42.12 201 | 33.18 193 | 40.30 181 | 24.11 181 | 38.76 180 | 37.11 203 | 24.30 194 | 52.97 200 | 46.66 209 | 50.17 208 | 50.33 201 |
|
test20.03 | | | 40.38 200 | 44.20 200 | 35.92 198 | 53.73 144 | 49.05 187 | 38.54 206 | 43.49 119 | 32.55 204 | 9.54 209 | 27.88 204 | 39.12 195 | 12.24 209 | 56.28 189 | 54.69 188 | 57.96 195 | 49.83 205 |
|
FC-MVSNet-test | | | 39.65 201 | 48.35 189 | 29.49 205 | 44.43 191 | 39.28 211 | 30.23 214 | 40.44 151 | 43.59 155 | 3.12 221 | 53.00 90 | 42.03 182 | 10.02 217 | 55.09 195 | 54.77 187 | 48.66 209 | 50.71 199 |
|
testgi | | | 38.71 202 | 43.64 202 | 32.95 202 | 52.30 155 | 48.63 190 | 35.59 211 | 35.05 180 | 31.58 208 | 9.03 212 | 30.29 197 | 40.75 189 | 11.19 215 | 55.30 194 | 53.47 197 | 54.53 202 | 45.48 208 |
|
FPMVS | | | 38.36 203 | 40.41 207 | 35.97 197 | 38.92 203 | 39.85 209 | 45.50 190 | 25.79 209 | 41.13 175 | 18.70 191 | 30.10 198 | 24.56 215 | 31.86 180 | 49.42 209 | 46.80 208 | 55.04 198 | 51.03 198 |
|
GG-mvs-BLEND | | | 36.62 204 | 53.39 160 | 17.06 212 | 0.01 224 | 58.61 151 | 48.63 174 | 0.01 221 | 47.13 131 | 0.02 225 | 43.98 153 | 60.64 85 | 0.03 220 | 54.92 197 | 51.47 200 | 53.64 203 | 56.99 190 |
|
MIMVSNet1 | | | 35.51 205 | 41.41 205 | 28.63 206 | 27.53 215 | 43.36 205 | 38.09 207 | 33.82 188 | 32.01 205 | 6.77 216 | 21.63 211 | 35.43 204 | 11.97 211 | 55.05 196 | 53.99 194 | 53.59 204 | 48.36 207 |
|
pmmvs3 | | | 35.10 206 | 38.47 208 | 31.17 204 | 26.37 217 | 40.47 207 | 34.51 212 | 18.09 215 | 24.75 212 | 16.88 195 | 23.05 209 | 26.69 213 | 32.69 179 | 50.73 205 | 51.60 199 | 58.46 194 | 51.98 196 |
|
PMVS |  | 27.84 18 | 33.81 207 | 35.28 211 | 32.09 203 | 34.13 206 | 24.81 216 | 32.51 213 | 26.48 207 | 26.41 211 | 19.37 190 | 23.76 208 | 24.02 216 | 25.18 191 | 50.78 203 | 47.24 206 | 54.89 201 | 49.95 203 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new-patchmatchnet | | | 33.24 208 | 37.20 209 | 28.62 207 | 44.32 193 | 38.26 212 | 29.68 215 | 36.05 176 | 31.97 206 | 6.33 217 | 26.59 206 | 27.33 212 | 11.12 216 | 50.08 208 | 41.05 212 | 44.23 212 | 45.15 209 |
|
N_pmnet | | | 32.67 209 | 36.85 210 | 27.79 208 | 40.55 200 | 32.13 213 | 35.80 209 | 26.79 206 | 37.24 197 | 9.10 210 | 32.02 194 | 30.94 210 | 16.30 205 | 47.22 212 | 41.21 211 | 38.21 214 | 37.21 211 |
|
Gipuma |  | | 25.87 210 | 26.91 213 | 24.66 209 | 28.98 212 | 20.17 217 | 20.46 216 | 34.62 184 | 29.55 209 | 9.10 210 | 4.91 220 | 5.31 224 | 15.76 206 | 49.37 210 | 49.10 204 | 39.03 213 | 29.95 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 23.19 211 | 28.17 212 | 17.37 210 | 17.03 219 | 24.92 215 | 19.66 217 | 16.16 217 | 27.05 210 | 4.42 218 | 20.77 212 | 19.20 219 | 12.19 210 | 37.71 213 | 36.38 213 | 34.77 215 | 31.17 212 |
|
PMMVS2 | | | 15.84 212 | 19.68 214 | 11.35 214 | 15.74 220 | 16.95 218 | 13.31 218 | 17.64 216 | 16.08 217 | 0.36 224 | 13.12 214 | 11.47 221 | 1.69 219 | 28.82 214 | 27.24 215 | 19.38 219 | 24.09 215 |
|
E-PMN | | | 15.09 213 | 13.19 217 | 17.30 211 | 27.80 214 | 12.62 220 | 7.81 221 | 27.54 204 | 14.62 219 | 3.19 219 | 6.89 217 | 2.52 227 | 15.09 207 | 15.93 217 | 20.22 216 | 22.38 216 | 19.53 216 |
|
EMVS | | | 14.49 214 | 12.45 218 | 16.87 213 | 27.02 216 | 12.56 221 | 8.13 220 | 27.19 205 | 15.05 218 | 3.14 220 | 6.69 218 | 2.67 226 | 15.08 208 | 14.60 219 | 18.05 217 | 20.67 217 | 17.56 218 |
|
MVE |  | 12.28 19 | 13.53 215 | 15.72 215 | 10.96 215 | 7.39 221 | 15.71 219 | 6.05 222 | 23.73 210 | 10.29 221 | 3.01 222 | 5.77 219 | 3.41 225 | 11.91 212 | 20.11 215 | 29.79 214 | 13.67 220 | 24.98 214 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 12.44 216 | 14.66 216 | 9.85 216 | 1.30 223 | 3.32 223 | 13.00 219 | 3.21 218 | 22.42 214 | 10.22 207 | 14.13 213 | 25.64 214 | 11.43 214 | 19.75 216 | 11.61 219 | 19.96 218 | 5.79 219 |
|
testmvs | | | 0.01 217 | 0.02 219 | 0.00 218 | 0.00 225 | 0.00 225 | 0.01 226 | 0.00 222 | 0.01 222 | 0.00 226 | 0.03 222 | 0.00 228 | 0.01 221 | 0.01 221 | 0.01 220 | 0.00 223 | 0.06 221 |
|
test123 | | | 0.01 217 | 0.02 219 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 227 | 0.00 222 | 0.01 222 | 0.00 226 | 0.04 221 | 0.00 228 | 0.01 221 | 0.00 222 | 0.01 220 | 0.00 223 | 0.07 220 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 227 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 223 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 227 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 223 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 227 | 0.00 222 | 0.00 224 | 0.00 226 | 0.00 223 | 0.00 228 | 0.00 223 | 0.00 222 | 0.00 222 | 0.00 223 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 33.01 137 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 13 | | | | | |
|
SR-MVS | | | | | | 71.46 33 | | | 54.67 28 | | | | 81.54 14 | | | | | |
|
Anonymous202405211 | | | | 60.60 97 | | 63.44 73 | 66.71 89 | 61.00 110 | 47.23 69 | 50.62 99 | | 36.85 184 | 60.63 86 | 43.03 135 | 69.17 83 | 67.72 90 | 75.41 103 | 72.54 107 |
|
our_test_3 | | | | | | 51.15 163 | 57.31 164 | 55.12 151 | | | | | | | | | | |
|
ambc | | | | 45.54 198 | | 50.66 170 | 52.63 178 | 40.99 203 | | 38.36 192 | 24.67 177 | 22.62 210 | 13.94 220 | 29.14 186 | 65.71 141 | 58.06 174 | 58.60 193 | 67.43 139 |
|
MTAPA | | | | | | | | | | | 65.14 4 | | 80.20 20 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 16 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 225 | | | | | | | | | | |
|
tmp_tt | | | | | 5.40 217 | 3.97 222 | 2.35 224 | 3.26 224 | 0.44 220 | 17.56 216 | 12.09 201 | 11.48 216 | 7.14 222 | 1.98 218 | 15.68 218 | 15.49 218 | 10.69 221 | |
|
XVS | | | | | | 70.49 37 | 76.96 25 | 74.36 44 | | | 54.48 47 | | 74.47 37 | | | | 82.24 24 | |
|
X-MVStestdata | | | | | | 70.49 37 | 76.96 25 | 74.36 44 | | | 54.48 47 | | 74.47 37 | | | | 82.24 24 | |
|
mPP-MVS | | | | | | 71.67 32 | | | | | | | 74.36 40 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 39 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 192 | 48.27 175 | 38.86 160 | | 39.59 115 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 6.95 222 | 5.98 223 | 2.25 219 | 11.73 220 | 2.07 223 | 11.85 215 | 5.43 223 | 11.75 213 | 11.40 220 | | 8.10 222 | 18.38 217 |
|