This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12597.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34398.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22597.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22499.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
ZNCC-MVS98.49 3498.20 5199.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
CS-MVS-test98.49 3498.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
PGM-MVS98.49 3498.23 4799.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
MVS_030498.47 3798.22 4999.21 3999.00 11397.80 6798.88 10895.32 36898.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
EI-MVSNet-Vis-set98.47 3798.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
MVS_111021_HR98.47 3798.34 3598.88 6699.22 8997.32 8197.91 25899.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
test_fmvsmvis_n_192098.44 4098.51 1898.23 11398.33 17796.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 204
CS-MVS98.44 4098.49 2198.31 10599.08 10696.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
GST-MVS98.43 4298.12 5499.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
fmvsm_s_conf0.5_n98.42 4398.51 1898.13 12299.30 6895.25 18798.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
EI-MVSNet-UG-set98.41 4498.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
DELS-MVS98.40 4598.20 5198.99 5799.00 11397.66 6897.75 27698.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 4698.42 2598.27 10799.09 10595.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
TSAR-MVS + GP.98.38 4698.24 4698.81 6899.22 8997.25 8898.11 24098.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
HPM-MVS_fast98.38 4698.13 5399.12 5099.75 397.86 6299.44 1198.82 8194.46 18498.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
patch_mono-298.36 4998.87 696.82 21299.53 3690.68 31798.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
HPM-MVScopyleft98.36 4998.10 5699.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5198.00 6199.42 1699.51 3998.72 2198.80 13598.82 8194.52 18199.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5298.23 4798.67 7499.27 7896.90 10197.95 25499.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
PHI-MVS98.34 5298.06 5799.18 4299.15 10098.12 5599.04 6899.09 3193.32 23898.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
MP-MVScopyleft98.33 5498.01 6099.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5597.92 6399.49 1299.72 1298.88 1898.43 20198.78 10094.10 19297.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft98.23 5697.95 6299.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 5798.11 5598.49 8998.34 17597.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
fmvsm_s_conf0.1_n98.18 5898.21 5098.11 12698.54 15795.24 18898.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.1_n_a98.08 5998.04 5998.21 11497.66 23195.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
dcpmvs_298.08 5998.59 1496.56 23699.57 3390.34 32499.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
CANet98.05 6197.76 6698.90 6598.73 13797.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
train_agg97.97 6297.52 7899.33 2699.31 6498.50 2997.92 25698.73 11192.98 25497.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
ETV-MVS97.96 6397.81 6498.40 10098.42 16497.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 203
UA-Net97.96 6397.62 7098.98 5998.86 12897.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
CDPH-MVS97.94 6597.49 7999.28 3299.47 4798.44 3197.91 25898.67 12892.57 26998.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
DeepPCF-MVS96.37 297.93 6698.48 2396.30 26299.00 11389.54 33697.43 29798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS95.98 397.88 6797.58 7298.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 6897.54 7798.83 6795.48 34896.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
DP-MVS Recon97.86 6897.46 8299.06 5499.53 3698.35 4198.33 20898.89 5992.62 26698.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
CSCG97.85 7097.74 6798.20 11699.67 2595.16 19199.22 3599.32 1193.04 25297.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
MG-MVS97.81 7197.60 7198.44 9599.12 10295.97 15197.75 27698.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
VNet97.79 7297.40 8698.96 6198.88 12597.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20699.50 91
EIA-MVS97.75 7397.58 7298.27 10798.38 16796.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
PS-MVSNAJ97.73 7497.77 6597.62 16398.68 14595.58 17097.34 30698.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 242
casdiffmvs_mvgpermissive97.72 7597.48 8198.44 9598.42 16496.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 7597.32 9098.92 6399.64 2897.10 9499.12 5398.81 8692.34 27798.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
PVSNet_Blended_VisFu97.70 7797.46 8298.44 9599.27 7895.91 15998.63 17299.16 2794.48 18397.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
mvsany_test197.69 7897.70 6897.66 16198.24 18394.18 24097.53 29297.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
canonicalmvs97.67 7997.23 9398.98 5998.70 14298.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22299.08 161
xiu_mvs_v2_base97.66 8097.70 6897.56 16798.61 15295.46 17697.44 29598.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 240
baseline97.64 8197.44 8498.25 11198.35 17096.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
casdiffmvspermissive97.63 8297.41 8598.28 10698.33 17796.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
diffmvspermissive97.58 8697.40 8698.13 12298.32 18095.81 16498.06 24498.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 8797.49 7997.84 14098.07 20195.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 28996.91 11999.59 7699.34 116
alignmvs97.56 8897.07 10099.01 5698.66 14798.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21099.19 143
DPM-MVS97.55 8996.99 10399.23 3899.04 10898.55 2797.17 32198.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
OMC-MVS97.55 8997.34 8998.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
PAPM_NR97.46 9197.11 9798.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
EPP-MVSNet97.46 9197.28 9197.99 13398.64 14995.38 18099.33 2198.31 20393.61 22897.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
3Dnovator94.51 597.46 9196.93 10599.07 5397.78 21997.64 6999.35 1799.06 3497.02 6493.75 27299.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
CNLPA97.45 9497.03 10198.73 7099.05 10797.44 8098.07 24398.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
lupinMVS97.44 9597.22 9498.12 12598.07 20195.76 16597.68 28197.76 27894.50 18298.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
3Dnovator+94.38 697.43 9696.78 11399.38 1897.83 21798.52 2899.37 1498.71 11697.09 6292.99 29999.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
Vis-MVSNetpermissive97.42 9797.11 9798.34 10398.66 14796.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22199.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9897.25 9297.91 13798.70 14296.80 10598.82 12698.69 12094.53 17998.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 244
sss97.39 9996.98 10498.61 7798.60 15396.61 11498.22 22398.93 5093.97 20098.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
test_cas_vis1_n_192097.38 10097.36 8897.45 17098.95 12093.25 27399.00 7898.53 15997.70 2099.77 799.35 4484.71 28899.85 6398.57 2799.66 6199.26 131
PVSNet_Blended97.38 10097.12 9698.14 11999.25 8195.35 18397.28 31199.26 1593.13 24897.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
WTY-MVS97.37 10296.92 10698.72 7198.86 12896.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20199.48 98
jason97.32 10397.08 9998.06 13097.45 25095.59 16997.87 26697.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
MVS_Test97.28 10497.00 10298.13 12298.33 17795.97 15198.74 14698.07 25294.27 18898.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
EPNet97.28 10496.87 10898.51 8694.98 35696.14 14298.90 9997.02 33398.28 1095.99 20099.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
DCV-MVSNet97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
IS-MVSNet97.22 10696.88 10798.25 11198.85 13096.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
PLCcopyleft95.07 497.20 10996.78 11398.44 9599.29 7396.31 13698.14 23598.76 10492.41 27596.39 19098.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 11097.18 9597.20 18498.81 13393.27 27195.78 36699.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
LS3D97.16 11196.66 12198.68 7398.53 15897.19 9198.93 9598.90 5792.83 26195.99 20099.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
AdaColmapbinary97.15 11296.70 11798.48 9099.16 9896.69 11198.01 24998.89 5994.44 18596.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
Effi-MVS+97.12 11396.69 11898.39 10198.19 19196.72 11097.37 30298.43 18493.71 21797.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
CHOSEN 1792x268897.12 11396.80 11098.08 12899.30 6894.56 22498.05 24599.71 193.57 22997.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
F-COLMAP97.09 11596.80 11097.97 13499.45 5294.95 20498.55 18598.62 14093.02 25396.17 19598.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
TAMVS97.02 11696.79 11297.70 15598.06 20495.31 18598.52 18798.31 20393.95 20197.05 15998.61 14893.49 10098.52 26995.33 17997.81 17899.29 127
CDS-MVSNet96.99 11796.69 11897.90 13898.05 20595.98 14698.20 22698.33 20093.67 22496.95 16198.49 16193.54 9998.42 28195.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11896.55 12498.21 11498.17 19596.07 14497.98 25298.21 22097.24 5097.13 15398.93 11486.88 24599.91 3995.00 18999.37 11298.66 195
114514_t96.93 11996.27 13598.92 6399.50 4197.63 7098.85 11898.90 5784.80 37397.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
MAR-MVS96.91 12096.40 13098.45 9398.69 14496.90 10198.66 16798.68 12392.40 27697.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 12196.49 12798.14 11999.33 5995.56 17197.38 30099.65 292.34 27797.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
Vis-MVSNet (Re-imp)96.87 12296.55 12497.83 14198.73 13795.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26193.67 23398.60 14699.46 104
SDMVSNet96.85 12396.42 12898.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20298.76 13685.88 26299.44 16797.93 6495.59 23298.60 199
PAPR96.84 12496.24 13798.65 7598.72 14196.92 10097.36 30498.57 15193.33 23796.67 17597.57 25294.30 8999.56 14591.05 29898.59 14799.47 100
HY-MVS93.96 896.82 12596.23 13898.57 7998.46 16297.00 9698.14 23598.21 22093.95 20196.72 17497.99 21291.58 13699.76 10794.51 20596.54 21198.95 173
UGNet96.78 12696.30 13498.19 11898.24 18395.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31599.90 4596.53 14099.49 9698.79 183
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12796.60 12297.12 19199.25 8195.35 18398.26 22199.26 1594.28 18797.94 11997.46 25892.74 10899.81 8196.88 12593.32 27296.20 337
test_vis1_n_192096.71 12896.84 10996.31 26199.11 10389.74 33199.05 6598.58 14998.08 1299.87 199.37 3878.48 34199.93 2599.29 1499.69 5699.27 129
mvs_anonymous96.70 12996.53 12697.18 18698.19 19193.78 24998.31 21398.19 22494.01 19794.47 23198.27 19092.08 12598.46 27697.39 10397.91 17499.31 122
1112_ss96.63 13096.00 14698.50 8798.56 15496.37 13198.18 23398.10 24592.92 25794.84 21998.43 16892.14 12299.58 14194.35 20996.51 21299.56 85
PMMVS96.60 13196.33 13297.41 17497.90 21493.93 24597.35 30598.41 18692.84 26097.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
DP-MVS96.59 13295.93 14998.57 7999.34 5796.19 14098.70 15998.39 19089.45 34594.52 22999.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
PatchMatch-RL96.59 13296.03 14598.27 10799.31 6496.51 12297.91 25899.06 3493.72 21696.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 195
GeoE96.58 13496.07 14298.10 12798.35 17095.89 16199.34 1898.12 23993.12 24996.09 19698.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
mvsmamba96.57 13596.32 13397.32 18096.60 30396.43 12699.54 797.98 26396.49 8695.20 21298.64 14690.82 15698.55 26597.97 6193.65 26296.98 255
XVG-OURS96.55 13696.41 12996.99 19898.75 13693.76 25097.50 29498.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22397.69 233
FIs96.51 13796.12 14097.67 15897.13 27497.54 7499.36 1599.22 2395.89 11394.03 25898.35 17891.98 12798.44 27996.40 14592.76 28197.01 253
XVG-OURS-SEG-HR96.51 13796.34 13197.02 19798.77 13593.76 25097.79 27498.50 16995.45 13496.94 16299.09 9287.87 22699.55 15296.76 13595.83 23197.74 230
PS-MVSNAJss96.43 13996.26 13696.92 20795.84 33895.08 19699.16 4698.50 16995.87 11693.84 26898.34 18294.51 8198.61 25896.88 12593.45 26997.06 250
test_fmvs196.42 14096.67 12095.66 28798.82 13288.53 35398.80 13598.20 22296.39 9399.64 1799.20 6780.35 33199.67 12699.04 1799.57 8098.78 186
iter_conf_final96.42 14096.12 14097.34 17998.46 16296.55 12199.08 6198.06 25796.03 10695.63 20698.46 16687.72 22898.59 26197.84 7393.80 25796.87 271
FC-MVSNet-test96.42 14096.05 14397.53 16896.95 28397.27 8399.36 1599.23 2095.83 11793.93 26298.37 17692.00 12698.32 29896.02 15792.72 28297.00 254
ab-mvs96.42 14095.71 16198.55 8198.63 15096.75 10897.88 26598.74 10893.84 20796.54 18498.18 19885.34 27499.75 10995.93 15996.35 21699.15 150
FA-MVS(test-final)96.41 14495.94 14897.82 14398.21 18795.20 19097.80 27297.58 28893.21 24397.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 190
PVSNet91.96 1896.35 14596.15 13996.96 20299.17 9492.05 29196.08 35998.68 12393.69 22097.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
Test_1112_low_res96.34 14695.66 16698.36 10298.56 15495.94 15497.71 27998.07 25292.10 28694.79 22397.29 26991.75 13299.56 14594.17 21696.50 21399.58 83
Effi-MVS+-dtu96.29 14796.56 12395.51 29197.89 21590.22 32598.80 13598.10 24596.57 8596.45 18996.66 31990.81 15798.91 22995.72 16797.99 17197.40 241
QAPM96.29 14795.40 17098.96 6197.85 21697.60 7299.23 3198.93 5089.76 33993.11 29699.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
Fast-Effi-MVS+96.28 14995.70 16398.03 13198.29 18295.97 15198.58 17898.25 21791.74 29495.29 21197.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
nrg03096.28 14995.72 15897.96 13696.90 28898.15 5299.39 1298.31 20395.47 13394.42 23798.35 17892.09 12498.69 25197.50 9989.05 32797.04 251
131496.25 15195.73 15797.79 14597.13 27495.55 17398.19 22998.59 14493.47 23292.03 32497.82 23091.33 14599.49 15894.62 20098.44 15598.32 214
sd_testset96.17 15295.76 15697.42 17399.30 6894.34 23398.82 12699.08 3295.92 11095.96 20298.76 13682.83 31499.32 17495.56 17395.59 23298.60 199
h-mvs3396.17 15295.62 16797.81 14499.03 10994.45 22698.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37099.11 155
HQP_MVS96.14 15495.90 15096.85 21097.42 25294.60 22298.80 13598.56 15397.28 4595.34 20998.28 18787.09 24099.03 21096.07 15294.27 24096.92 260
iter_conf0596.13 15595.79 15397.15 18898.16 19695.99 14598.88 10897.98 26395.91 11295.58 20798.46 16685.53 26998.59 26197.88 6993.75 25896.86 274
tttt051796.07 15695.51 16997.78 14698.41 16694.84 20899.28 2494.33 37994.26 18997.64 14098.64 14684.05 30399.47 16495.34 17897.60 18799.03 164
MVSTER96.06 15795.72 15897.08 19498.23 18595.93 15798.73 15098.27 21294.86 16795.07 21498.09 20388.21 21598.54 26796.59 13793.46 26796.79 280
thisisatest053096.01 15895.36 17597.97 13498.38 16795.52 17498.88 10894.19 38194.04 19497.64 14098.31 18583.82 31099.46 16595.29 18297.70 18498.93 175
test_djsdf96.00 15995.69 16496.93 20495.72 34095.49 17599.47 998.40 18894.98 16194.58 22797.86 22389.16 19098.41 28996.91 11994.12 24896.88 269
RRT_MVS95.98 16095.78 15496.56 23696.48 31194.22 23999.57 697.92 27095.89 11393.95 26198.70 14089.27 18698.42 28197.23 10893.02 27697.04 251
EI-MVSNet95.96 16195.83 15296.36 25797.93 21293.70 25698.12 23898.27 21293.70 21995.07 21499.02 9892.23 11998.54 26794.68 19693.46 26796.84 276
ECVR-MVScopyleft95.95 16295.71 16196.65 22299.02 11090.86 31299.03 7191.80 39096.96 6798.10 10399.26 5781.31 32199.51 15796.90 12299.04 12399.59 79
BH-untuned95.95 16295.72 15896.65 22298.55 15692.26 28798.23 22297.79 27793.73 21594.62 22698.01 21088.97 19999.00 21693.04 25098.51 15198.68 192
test111195.94 16495.78 15496.41 25498.99 11790.12 32699.04 6892.45 38996.99 6698.03 10999.27 5681.40 32099.48 16296.87 12899.04 12399.63 73
MSDG95.93 16595.30 18297.83 14198.90 12395.36 18196.83 34698.37 19491.32 30994.43 23698.73 13890.27 16899.60 13990.05 31298.82 13798.52 205
BH-RMVSNet95.92 16695.32 17997.69 15698.32 18094.64 21698.19 22997.45 30794.56 17796.03 19898.61 14885.02 27999.12 19690.68 30399.06 12299.30 125
test_fmvs1_n95.90 16795.99 14795.63 28898.67 14688.32 35799.26 2798.22 21996.40 9299.67 1499.26 5773.91 36899.70 11999.02 1899.50 9498.87 178
Fast-Effi-MVS+-dtu95.87 16895.85 15195.91 27797.74 22491.74 29798.69 16198.15 23595.56 12994.92 21797.68 24388.98 19898.79 24593.19 24597.78 18097.20 248
LFMVS95.86 16994.98 19798.47 9198.87 12796.32 13498.84 12296.02 35993.40 23598.62 7999.20 6774.99 36399.63 13497.72 8097.20 19399.46 104
baseline195.84 17095.12 19098.01 13298.49 16195.98 14698.73 15097.03 33195.37 14096.22 19398.19 19789.96 17299.16 18894.60 20187.48 34398.90 177
OpenMVScopyleft93.04 1395.83 17195.00 19598.32 10497.18 27197.32 8199.21 3898.97 4289.96 33591.14 33299.05 9786.64 24899.92 3193.38 23999.47 9997.73 231
VDD-MVS95.82 17295.23 18497.61 16498.84 13193.98 24498.68 16297.40 31195.02 16097.95 11799.34 4874.37 36799.78 10198.64 2596.80 20299.08 161
UniMVSNet (Re)95.78 17395.19 18697.58 16596.99 28197.47 7898.79 14099.18 2595.60 12793.92 26397.04 29391.68 13398.48 27295.80 16587.66 34296.79 280
VPA-MVSNet95.75 17495.11 19197.69 15697.24 26397.27 8398.94 9399.23 2095.13 15295.51 20897.32 26785.73 26598.91 22997.33 10689.55 31996.89 268
bld_raw_dy_0_6495.74 17595.31 18197.03 19696.35 31795.76 16599.12 5397.37 31495.97 10894.70 22598.48 16285.80 26498.49 27196.55 13993.48 26696.84 276
HQP-MVS95.72 17695.40 17096.69 22097.20 26794.25 23798.05 24598.46 17696.43 8994.45 23297.73 23586.75 24698.96 22195.30 18094.18 24496.86 274
hse-mvs295.71 17795.30 18296.93 20498.50 15993.53 26198.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37498.22 217
UniMVSNet_NR-MVSNet95.71 17795.15 18797.40 17696.84 29196.97 9798.74 14699.24 1795.16 15193.88 26597.72 23791.68 13398.31 30095.81 16387.25 34896.92 260
PatchmatchNetpermissive95.71 17795.52 16896.29 26397.58 23690.72 31696.84 34597.52 29894.06 19397.08 15596.96 30389.24 18898.90 23292.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 18095.33 17896.76 21596.16 32694.63 21798.43 20198.39 19096.64 8195.02 21698.78 13085.15 27899.05 20695.21 18694.20 24396.60 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 18095.38 17496.61 22997.61 23493.84 24898.91 9898.44 18095.25 14794.28 24498.47 16486.04 26199.12 19695.50 17693.95 25396.87 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 18295.69 16495.44 29597.54 24188.54 35296.97 33197.56 29093.50 23197.52 14596.93 30789.49 17899.16 18895.25 18496.42 21598.64 197
FE-MVS95.62 18394.90 20197.78 14698.37 16994.92 20597.17 32197.38 31390.95 32097.73 13297.70 23885.32 27699.63 13491.18 29398.33 16298.79 183
LPG-MVS_test95.62 18395.34 17696.47 24897.46 24793.54 25998.99 8198.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
CLD-MVS95.62 18395.34 17696.46 25197.52 24493.75 25297.27 31298.46 17695.53 13094.42 23798.00 21186.21 25698.97 21796.25 15094.37 23896.66 298
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 18694.89 20297.76 14998.15 19795.15 19396.77 34794.41 37792.95 25697.18 15297.43 26284.78 28599.45 16694.63 19897.73 18398.68 192
thres600view795.49 18794.77 20597.67 15898.98 11895.02 19798.85 11896.90 34095.38 13896.63 17796.90 30884.29 29599.59 14088.65 33496.33 21798.40 209
test_vis1_n95.47 18895.13 18896.49 24597.77 22090.41 32299.27 2698.11 24296.58 8399.66 1599.18 7367.00 38099.62 13799.21 1599.40 10999.44 107
SCA95.46 18995.13 18896.46 25197.67 22991.29 30597.33 30797.60 28794.68 17396.92 16597.10 28083.97 30598.89 23392.59 26398.32 16499.20 139
IterMVS-LS95.46 18995.21 18596.22 26598.12 19893.72 25598.32 21298.13 23893.71 21794.26 24597.31 26892.24 11898.10 31694.63 19890.12 31096.84 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 19195.03 19496.73 21695.42 35294.63 21799.14 4998.52 16295.74 12093.22 29098.36 17783.87 30898.65 25696.95 11894.04 24996.91 265
CVMVSNet95.43 19296.04 14493.57 33697.93 21283.62 37498.12 23898.59 14495.68 12496.56 18099.02 9887.51 23397.51 34893.56 23797.44 18999.60 77
anonymousdsp95.42 19394.91 20096.94 20395.10 35595.90 16099.14 4998.41 18693.75 21293.16 29297.46 25887.50 23598.41 28995.63 17294.03 25096.50 322
DU-MVS95.42 19394.76 20697.40 17696.53 30796.97 9798.66 16798.99 4195.43 13593.88 26597.69 24088.57 20698.31 30095.81 16387.25 34896.92 260
mvs_tets95.41 19595.00 19596.65 22295.58 34494.42 22899.00 7898.55 15595.73 12293.21 29198.38 17583.45 31298.63 25797.09 11294.00 25196.91 265
thres100view90095.38 19694.70 20997.41 17498.98 11894.92 20598.87 11396.90 34095.38 13896.61 17896.88 30984.29 29599.56 14588.11 33796.29 21997.76 228
thres40095.38 19694.62 21297.65 16298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21998.40 209
BH-w/o95.38 19695.08 19296.26 26498.34 17591.79 29497.70 28097.43 30992.87 25994.24 24797.22 27588.66 20498.84 23991.55 28997.70 18498.16 220
VDDNet95.36 19994.53 21697.86 13998.10 20095.13 19498.85 11897.75 27990.46 32698.36 9499.39 3273.27 37099.64 13197.98 6096.58 20998.81 182
TAPA-MVS93.98 795.35 20094.56 21597.74 15199.13 10194.83 21098.33 20898.64 13686.62 36196.29 19298.61 14894.00 9699.29 17680.00 37599.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 20194.98 19796.43 25397.67 22993.48 26398.73 15098.44 18094.94 16692.53 31298.53 15784.50 29499.14 19395.48 17794.00 25196.66 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 20294.87 20396.71 21799.29 7393.24 27498.58 17898.11 24289.92 33693.57 27699.10 8686.37 25499.79 9890.78 30198.10 16997.09 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 20394.62 21297.43 17298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21997.76 228
Anonymous20240521195.28 20494.49 21897.67 15899.00 11393.75 25298.70 15997.04 33090.66 32296.49 18698.80 12878.13 34599.83 6996.21 15195.36 23699.44 107
thres20095.25 20594.57 21497.28 18198.81 13394.92 20598.20 22697.11 32595.24 14996.54 18496.22 33684.58 29299.53 15387.93 34196.50 21397.39 242
AllTest95.24 20694.65 21196.99 19899.25 8193.21 27598.59 17698.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
LCM-MVSNet-Re95.22 20795.32 17994.91 31098.18 19387.85 36398.75 14395.66 36595.11 15488.96 35096.85 31290.26 16997.65 34195.65 17198.44 15599.22 137
EPNet_dtu95.21 20894.95 19995.99 27296.17 32490.45 32198.16 23497.27 31996.77 7593.14 29598.33 18390.34 16698.42 28185.57 35498.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 20994.45 22397.46 16996.75 29696.56 11998.86 11698.65 13593.30 24093.27 28998.27 19084.85 28398.87 23694.82 19391.26 29896.96 257
D2MVS95.18 21095.08 19295.48 29297.10 27692.07 29098.30 21599.13 3094.02 19692.90 30096.73 31689.48 17998.73 24994.48 20693.60 26595.65 350
WR-MVS95.15 21194.46 22197.22 18396.67 30196.45 12498.21 22498.81 8694.15 19093.16 29297.69 24087.51 23398.30 30295.29 18288.62 33396.90 267
TranMVSNet+NR-MVSNet95.14 21294.48 21997.11 19296.45 31396.36 13299.03 7199.03 3795.04 15993.58 27597.93 21788.27 21498.03 32294.13 21786.90 35396.95 259
baseline295.11 21394.52 21796.87 20996.65 30293.56 25898.27 22094.10 38393.45 23392.02 32597.43 26287.45 23799.19 18693.88 22697.41 19197.87 226
miper_enhance_ethall95.10 21494.75 20796.12 26997.53 24393.73 25496.61 35398.08 25092.20 28593.89 26496.65 32192.44 11298.30 30294.21 21591.16 29996.34 331
Anonymous2024052995.10 21494.22 23197.75 15099.01 11294.26 23698.87 11398.83 8085.79 36996.64 17698.97 10578.73 33999.85 6396.27 14794.89 23799.12 154
test-LLR95.10 21494.87 20395.80 28296.77 29389.70 33296.91 33695.21 36995.11 15494.83 22195.72 34887.71 22998.97 21793.06 24898.50 15298.72 188
WR-MVS_H95.05 21794.46 22196.81 21396.86 29095.82 16399.24 3099.24 1793.87 20692.53 31296.84 31390.37 16598.24 30893.24 24387.93 33996.38 330
miper_ehance_all_eth95.01 21894.69 21095.97 27497.70 22793.31 27097.02 32998.07 25292.23 28293.51 28096.96 30391.85 13098.15 31293.68 23191.16 29996.44 328
ADS-MVSNet95.00 21994.45 22396.63 22698.00 20691.91 29396.04 36097.74 28090.15 33296.47 18796.64 32287.89 22498.96 22190.08 31097.06 19599.02 165
VPNet94.99 22094.19 23397.40 17697.16 27296.57 11898.71 15598.97 4295.67 12594.84 21998.24 19480.36 33098.67 25596.46 14287.32 34796.96 257
EPMVS94.99 22094.48 21996.52 24397.22 26591.75 29697.23 31391.66 39194.11 19197.28 14896.81 31485.70 26698.84 23993.04 25097.28 19298.97 170
NR-MVSNet94.98 22294.16 23697.44 17196.53 30797.22 9098.74 14698.95 4694.96 16389.25 34997.69 24089.32 18498.18 31094.59 20387.40 34596.92 260
FMVSNet394.97 22394.26 23097.11 19298.18 19396.62 11298.56 18498.26 21693.67 22494.09 25497.10 28084.25 29798.01 32392.08 27592.14 28596.70 292
CostFormer94.95 22494.73 20895.60 29097.28 26189.06 34397.53 29296.89 34289.66 34196.82 17096.72 31786.05 25998.95 22695.53 17596.13 22898.79 183
PAPM94.95 22494.00 24697.78 14697.04 27895.65 16896.03 36298.25 21791.23 31494.19 25097.80 23291.27 14898.86 23882.61 36997.61 18698.84 181
CP-MVSNet94.94 22694.30 22996.83 21196.72 29895.56 17199.11 5598.95 4693.89 20492.42 31797.90 21987.19 23998.12 31594.32 21188.21 33696.82 279
TR-MVS94.94 22694.20 23297.17 18797.75 22194.14 24197.59 28997.02 33392.28 28195.75 20597.64 24683.88 30798.96 22189.77 31696.15 22798.40 209
RPSCF94.87 22895.40 17093.26 34298.89 12482.06 38098.33 20898.06 25790.30 33196.56 18099.26 5787.09 24099.49 15893.82 22896.32 21898.24 215
GA-MVS94.81 22994.03 24297.14 18997.15 27393.86 24796.76 34897.58 28894.00 19894.76 22497.04 29380.91 32598.48 27291.79 28496.25 22499.09 157
c3_l94.79 23094.43 22595.89 27997.75 22193.12 27897.16 32398.03 26092.23 28293.46 28397.05 29291.39 14298.01 32393.58 23689.21 32596.53 314
V4294.78 23194.14 23896.70 21996.33 31995.22 18998.97 8498.09 24992.32 27994.31 24397.06 29088.39 21298.55 26592.90 25588.87 33196.34 331
CR-MVSNet94.76 23294.15 23796.59 23297.00 27993.43 26494.96 37297.56 29092.46 27096.93 16396.24 33288.15 21797.88 33587.38 34396.65 20798.46 207
v2v48294.69 23394.03 24296.65 22296.17 32494.79 21398.67 16598.08 25092.72 26394.00 25997.16 27887.69 23298.45 27792.91 25488.87 33196.72 288
pmmvs494.69 23393.99 24896.81 21395.74 33995.94 15497.40 29897.67 28290.42 32893.37 28697.59 25089.08 19398.20 30992.97 25291.67 29296.30 334
cl2294.68 23594.19 23396.13 26898.11 19993.60 25796.94 33398.31 20392.43 27493.32 28896.87 31186.51 24998.28 30694.10 22091.16 29996.51 320
eth_miper_zixun_eth94.68 23594.41 22695.47 29397.64 23291.71 29896.73 35098.07 25292.71 26493.64 27397.21 27690.54 16398.17 31193.38 23989.76 31496.54 312
PCF-MVS93.45 1194.68 23593.43 28298.42 9998.62 15196.77 10795.48 37098.20 22284.63 37493.34 28798.32 18488.55 20999.81 8184.80 36198.96 12898.68 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 23893.54 27898.08 12896.88 28996.56 11998.19 22998.50 16978.05 38392.69 30798.02 20891.07 15499.63 13490.09 30998.36 16198.04 222
PS-CasMVS94.67 23893.99 24896.71 21796.68 30095.26 18699.13 5299.03 3793.68 22292.33 31897.95 21685.35 27398.10 31693.59 23588.16 33896.79 280
cascas94.63 24093.86 25796.93 20496.91 28794.27 23596.00 36398.51 16485.55 37094.54 22896.23 33484.20 30198.87 23695.80 16596.98 20097.66 234
tpmvs94.60 24194.36 22895.33 29997.46 24788.60 35196.88 34297.68 28191.29 31193.80 27096.42 32988.58 20599.24 18091.06 29696.04 22998.17 219
LTVRE_ROB92.95 1594.60 24193.90 25496.68 22197.41 25594.42 22898.52 18798.59 14491.69 29791.21 33198.35 17884.87 28299.04 20991.06 29693.44 27096.60 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 24393.92 25196.60 23196.21 32194.78 21498.59 17698.14 23791.86 29394.21 24997.02 29687.97 22298.41 28991.72 28689.57 31796.61 302
ADS-MVSNet294.58 24494.40 22795.11 30598.00 20688.74 34996.04 36097.30 31690.15 33296.47 18796.64 32287.89 22497.56 34690.08 31097.06 19599.02 165
ACMH92.88 1694.55 24593.95 25096.34 25997.63 23393.26 27298.81 13498.49 17493.43 23489.74 34498.53 15781.91 31799.08 20493.69 23093.30 27396.70 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 24693.85 25896.63 22697.98 21093.06 28098.77 14297.84 27593.67 22493.80 27098.04 20776.88 35698.96 22194.79 19592.86 27997.86 227
XVG-ACMP-BASELINE94.54 24694.14 23895.75 28596.55 30691.65 29998.11 24098.44 18094.96 16394.22 24897.90 21979.18 33899.11 19894.05 22293.85 25596.48 325
AUN-MVS94.53 24893.73 26896.92 20798.50 15993.52 26298.34 20798.10 24593.83 20995.94 20497.98 21485.59 26899.03 21094.35 20980.94 37398.22 217
DIV-MVS_self_test94.52 24994.03 24295.99 27297.57 24093.38 26897.05 32797.94 26891.74 29492.81 30297.10 28089.12 19198.07 32092.60 26190.30 30796.53 314
cl____94.51 25094.01 24596.02 27197.58 23693.40 26797.05 32797.96 26791.73 29692.76 30497.08 28689.06 19498.13 31492.61 26090.29 30896.52 317
GBi-Net94.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
test194.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
dmvs_re94.48 25394.18 23595.37 29797.68 22890.11 32798.54 18697.08 32694.56 17794.42 23797.24 27384.25 29797.76 33991.02 29992.83 28098.24 215
v894.47 25493.77 26496.57 23596.36 31694.83 21099.05 6598.19 22491.92 29093.16 29296.97 30188.82 20398.48 27291.69 28787.79 34096.39 329
FMVSNet294.47 25493.61 27497.04 19598.21 18796.43 12698.79 14098.27 21292.46 27093.50 28197.09 28481.16 32298.00 32591.09 29491.93 28896.70 292
test250694.44 25693.91 25396.04 27099.02 11088.99 34699.06 6379.47 40396.96 6798.36 9499.26 5777.21 35399.52 15696.78 13499.04 12399.59 79
Patchmatch-test94.42 25793.68 27296.63 22697.60 23591.76 29594.83 37697.49 30289.45 34594.14 25297.10 28088.99 19598.83 24185.37 35798.13 16899.29 127
PEN-MVS94.42 25793.73 26896.49 24596.28 32094.84 20899.17 4599.00 3993.51 23092.23 32097.83 22986.10 25897.90 33192.55 26686.92 35296.74 285
v14419294.39 25993.70 27096.48 24796.06 32994.35 23298.58 17898.16 23491.45 30294.33 24297.02 29687.50 23598.45 27791.08 29589.11 32696.63 300
Baseline_NR-MVSNet94.35 26093.81 26095.96 27596.20 32294.05 24398.61 17596.67 35191.44 30393.85 26797.60 24988.57 20698.14 31394.39 20786.93 35195.68 349
miper_lstm_enhance94.33 26194.07 24195.11 30597.75 22190.97 30997.22 31498.03 26091.67 29892.76 30496.97 30190.03 17197.78 33892.51 26889.64 31696.56 309
v119294.32 26293.58 27596.53 24296.10 32794.45 22698.50 19298.17 23291.54 30094.19 25097.06 29086.95 24498.43 28090.14 30889.57 31796.70 292
ACMH+92.99 1494.30 26393.77 26495.88 28097.81 21892.04 29298.71 15598.37 19493.99 19990.60 33898.47 16480.86 32799.05 20692.75 25992.40 28496.55 311
v14894.29 26493.76 26695.91 27796.10 32792.93 28198.58 17897.97 26592.59 26893.47 28296.95 30588.53 21098.32 29892.56 26587.06 35096.49 323
v1094.29 26493.55 27796.51 24496.39 31594.80 21298.99 8198.19 22491.35 30793.02 29896.99 29988.09 21998.41 28990.50 30588.41 33596.33 333
MVP-Stereo94.28 26693.92 25195.35 29894.95 35792.60 28497.97 25397.65 28391.61 29990.68 33797.09 28486.32 25598.42 28189.70 31999.34 11395.02 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 26793.33 28496.97 20197.19 27093.38 26898.74 14698.57 15191.21 31693.81 26998.58 15372.85 37198.77 24795.05 18893.93 25498.77 187
OurMVSNet-221017-094.21 26894.00 24694.85 31495.60 34389.22 34198.89 10397.43 30995.29 14492.18 32198.52 16082.86 31398.59 26193.46 23891.76 29096.74 285
v192192094.20 26993.47 28196.40 25695.98 33294.08 24298.52 18798.15 23591.33 30894.25 24697.20 27786.41 25398.42 28190.04 31389.39 32396.69 297
v7n94.19 27093.43 28296.47 24895.90 33594.38 23199.26 2798.34 19991.99 28892.76 30497.13 27988.31 21398.52 26989.48 32487.70 34196.52 317
tpm294.19 27093.76 26695.46 29497.23 26489.04 34497.31 30996.85 34687.08 36096.21 19496.79 31583.75 31198.74 24892.43 27196.23 22598.59 201
TESTMET0.1,194.18 27293.69 27195.63 28896.92 28589.12 34296.91 33694.78 37493.17 24594.88 21896.45 32878.52 34098.92 22893.09 24798.50 15298.85 179
dp94.15 27393.90 25494.90 31197.31 26086.82 36896.97 33197.19 32391.22 31596.02 19996.61 32485.51 27099.02 21390.00 31494.30 23998.85 179
ET-MVSNet_ETH3D94.13 27492.98 29097.58 16598.22 18696.20 13897.31 30995.37 36794.53 17979.56 38297.63 24886.51 24997.53 34796.91 11990.74 30399.02 165
tpm94.13 27493.80 26195.12 30496.50 30987.91 36297.44 29595.89 36492.62 26696.37 19196.30 33184.13 30298.30 30293.24 24391.66 29399.14 152
IterMVS-SCA-FT94.11 27693.87 25694.85 31497.98 21090.56 32097.18 31998.11 24293.75 21292.58 31097.48 25783.97 30597.41 35092.48 27091.30 29696.58 305
Anonymous2023121194.10 27793.26 28796.61 22999.11 10394.28 23499.01 7698.88 6286.43 36392.81 30297.57 25281.66 31998.68 25494.83 19289.02 32996.88 269
IterMVS94.09 27893.85 25894.80 31797.99 20890.35 32397.18 31998.12 23993.68 22292.46 31697.34 26584.05 30397.41 35092.51 26891.33 29596.62 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 27993.51 27995.80 28296.77 29389.70 33296.91 33695.21 36992.89 25894.83 22195.72 34877.69 34898.97 21793.06 24898.50 15298.72 188
test0.0.03 194.08 27993.51 27995.80 28295.53 34692.89 28297.38 30095.97 36195.11 15492.51 31496.66 31987.71 22996.94 35787.03 34593.67 26097.57 238
v124094.06 28193.29 28696.34 25996.03 33193.90 24698.44 19998.17 23291.18 31794.13 25397.01 29886.05 25998.42 28189.13 32989.50 32196.70 292
X-MVStestdata94.06 28192.30 30499.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39695.90 4199.89 4797.85 7199.74 4599.78 21
DTE-MVSNet93.98 28393.26 28796.14 26796.06 32994.39 23099.20 4098.86 7593.06 25191.78 32697.81 23185.87 26397.58 34590.53 30486.17 35796.46 327
pm-mvs193.94 28493.06 28996.59 23296.49 31095.16 19198.95 9098.03 26092.32 27991.08 33397.84 22684.54 29398.41 28992.16 27386.13 35996.19 338
MS-PatchMatch93.84 28593.63 27394.46 32896.18 32389.45 33797.76 27598.27 21292.23 28292.13 32297.49 25679.50 33598.69 25189.75 31799.38 11195.25 354
tfpnnormal93.66 28692.70 29696.55 24196.94 28495.94 15498.97 8499.19 2491.04 31891.38 33097.34 26584.94 28198.61 25885.45 35689.02 32995.11 358
EU-MVSNet93.66 28694.14 23892.25 35295.96 33483.38 37698.52 18798.12 23994.69 17292.61 30998.13 20187.36 23896.39 36891.82 28390.00 31296.98 255
our_test_393.65 28893.30 28594.69 31995.45 35089.68 33496.91 33697.65 28391.97 28991.66 32896.88 30989.67 17797.93 33088.02 34091.49 29496.48 325
pmmvs593.65 28892.97 29195.68 28695.49 34792.37 28598.20 22697.28 31889.66 34192.58 31097.26 27082.14 31698.09 31893.18 24690.95 30296.58 305
test_fmvs293.43 29093.58 27592.95 34696.97 28283.91 37399.19 4297.24 32195.74 12095.20 21298.27 19069.65 37398.72 25096.26 14893.73 25996.24 335
tpm cat193.36 29192.80 29395.07 30797.58 23687.97 36196.76 34897.86 27482.17 37993.53 27796.04 34086.13 25799.13 19489.24 32795.87 23098.10 221
JIA-IIPM93.35 29292.49 30095.92 27696.48 31190.65 31895.01 37196.96 33685.93 36796.08 19787.33 38687.70 23198.78 24691.35 29195.58 23498.34 212
SixPastTwentyTwo93.34 29392.86 29294.75 31895.67 34189.41 33998.75 14396.67 35193.89 20490.15 34298.25 19380.87 32698.27 30790.90 30090.64 30496.57 307
USDC93.33 29492.71 29595.21 30196.83 29290.83 31496.91 33697.50 30093.84 20790.72 33698.14 20077.69 34898.82 24289.51 32393.21 27595.97 343
IB-MVS91.98 1793.27 29591.97 30897.19 18597.47 24693.41 26697.09 32695.99 36093.32 23892.47 31595.73 34678.06 34699.53 15394.59 20382.98 36598.62 198
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 29692.21 30596.41 25497.73 22593.13 27795.65 36797.03 33191.27 31394.04 25796.06 33975.33 36197.19 35386.56 34796.23 22598.92 176
ppachtmachnet_test93.22 29792.63 29794.97 30995.45 35090.84 31396.88 34297.88 27390.60 32392.08 32397.26 27088.08 22097.86 33685.12 35890.33 30696.22 336
Patchmtry93.22 29792.35 30395.84 28196.77 29393.09 27994.66 37997.56 29087.37 35992.90 30096.24 33288.15 21797.90 33187.37 34490.10 31196.53 314
testing393.19 29992.48 30195.30 30098.07 20192.27 28698.64 16997.17 32493.94 20393.98 26097.04 29367.97 37796.01 37288.40 33597.14 19497.63 235
FMVSNet193.19 29992.07 30696.56 23697.54 24195.00 19898.82 12698.18 22790.38 32992.27 31997.07 28773.68 36997.95 32789.36 32691.30 29696.72 288
LF4IMVS93.14 30192.79 29494.20 33195.88 33688.67 35097.66 28397.07 32893.81 21091.71 32797.65 24477.96 34798.81 24391.47 29091.92 28995.12 357
testgi93.06 30292.45 30294.88 31396.43 31489.90 32898.75 14397.54 29695.60 12791.63 32997.91 21874.46 36697.02 35586.10 35093.67 26097.72 232
PatchT93.06 30291.97 30896.35 25896.69 29992.67 28394.48 38097.08 32686.62 36197.08 15592.23 38087.94 22397.90 33178.89 37996.69 20598.49 206
RPMNet92.81 30491.34 31397.24 18297.00 27993.43 26494.96 37298.80 9382.27 37896.93 16392.12 38186.98 24399.82 7676.32 38496.65 20798.46 207
myMVS_eth3d92.73 30592.01 30794.89 31297.39 25690.94 31097.91 25897.46 30393.16 24693.42 28495.37 35368.09 37696.12 37088.34 33696.99 19797.60 236
TransMVSNet (Re)92.67 30691.51 31296.15 26696.58 30594.65 21598.90 9996.73 34790.86 32189.46 34897.86 22385.62 26798.09 31886.45 34881.12 37195.71 348
Syy-MVS92.55 30792.61 29892.38 34997.39 25683.41 37597.91 25897.46 30393.16 24693.42 28495.37 35384.75 28696.12 37077.00 38396.99 19797.60 236
K. test v392.55 30791.91 31094.48 32695.64 34289.24 34099.07 6294.88 37394.04 19486.78 36397.59 25077.64 35197.64 34292.08 27589.43 32296.57 307
DSMNet-mixed92.52 30992.58 29992.33 35094.15 36582.65 37898.30 21594.26 38089.08 35092.65 30895.73 34685.01 28095.76 37486.24 34997.76 18198.59 201
TinyColmap92.31 31091.53 31194.65 32196.92 28589.75 33096.92 33496.68 35090.45 32789.62 34597.85 22576.06 35998.81 24386.74 34692.51 28395.41 352
gg-mvs-nofinetune92.21 31190.58 31997.13 19096.75 29695.09 19595.85 36489.40 39685.43 37194.50 23081.98 38980.80 32898.40 29592.16 27398.33 16297.88 225
FMVSNet591.81 31290.92 31594.49 32597.21 26692.09 28998.00 25197.55 29589.31 34890.86 33595.61 35174.48 36595.32 37885.57 35489.70 31596.07 341
pmmvs691.77 31390.63 31895.17 30394.69 36391.24 30698.67 16597.92 27086.14 36589.62 34597.56 25475.79 36098.34 29690.75 30284.56 36195.94 344
Anonymous2023120691.66 31491.10 31493.33 34094.02 36987.35 36598.58 17897.26 32090.48 32590.16 34196.31 33083.83 30996.53 36679.36 37789.90 31396.12 339
Patchmatch-RL test91.49 31590.85 31693.41 33891.37 37884.40 37192.81 38495.93 36391.87 29287.25 36094.87 35988.99 19596.53 36692.54 26782.00 36799.30 125
test_040291.32 31690.27 32294.48 32696.60 30391.12 30798.50 19297.22 32286.10 36688.30 35696.98 30077.65 35097.99 32678.13 38192.94 27894.34 365
test_vis1_rt91.29 31790.65 31793.19 34497.45 25086.25 36998.57 18390.90 39493.30 24086.94 36293.59 37162.07 38499.11 19897.48 10095.58 23494.22 368
PVSNet_088.72 1991.28 31890.03 32495.00 30897.99 20887.29 36694.84 37598.50 16992.06 28789.86 34395.19 35579.81 33499.39 16992.27 27269.79 38998.33 213
Anonymous2024052191.18 31990.44 32093.42 33793.70 37088.47 35498.94 9397.56 29088.46 35489.56 34795.08 35877.15 35596.97 35683.92 36489.55 31994.82 363
EG-PatchMatch MVS91.13 32090.12 32394.17 33394.73 36289.00 34598.13 23797.81 27689.22 34985.32 37396.46 32767.71 37898.42 28187.89 34293.82 25695.08 359
TDRefinement91.06 32189.68 32695.21 30185.35 39391.49 30298.51 19197.07 32891.47 30188.83 35497.84 22677.31 35299.09 20392.79 25877.98 38295.04 360
UnsupCasMVSNet_eth90.99 32289.92 32594.19 33294.08 36689.83 32997.13 32598.67 12893.69 22085.83 36996.19 33775.15 36296.74 36089.14 32879.41 37896.00 342
test20.0390.89 32390.38 32192.43 34893.48 37188.14 36098.33 20897.56 29093.40 23587.96 35796.71 31880.69 32994.13 38379.15 37886.17 35795.01 362
MDA-MVSNet_test_wron90.71 32489.38 32994.68 32094.83 35990.78 31597.19 31897.46 30387.60 35772.41 38995.72 34886.51 24996.71 36385.92 35286.80 35496.56 309
YYNet190.70 32589.39 32894.62 32294.79 36190.65 31897.20 31697.46 30387.54 35872.54 38895.74 34486.51 24996.66 36486.00 35186.76 35596.54 312
KD-MVS_self_test90.38 32689.38 32993.40 33992.85 37488.94 34797.95 25497.94 26890.35 33090.25 34093.96 36879.82 33395.94 37384.62 36376.69 38495.33 353
pmmvs-eth3d90.36 32789.05 33294.32 33091.10 38092.12 28897.63 28896.95 33788.86 35284.91 37493.13 37578.32 34296.74 36088.70 33281.81 36994.09 371
CL-MVSNet_self_test90.11 32889.14 33193.02 34591.86 37788.23 35996.51 35698.07 25290.49 32490.49 33994.41 36384.75 28695.34 37780.79 37374.95 38695.50 351
new_pmnet90.06 32989.00 33393.22 34394.18 36488.32 35796.42 35896.89 34286.19 36485.67 37093.62 37077.18 35497.10 35481.61 37189.29 32494.23 367
MDA-MVSNet-bldmvs89.97 33088.35 33694.83 31695.21 35491.34 30397.64 28597.51 29988.36 35571.17 39096.13 33879.22 33796.63 36583.65 36586.27 35696.52 317
CMPMVSbinary66.06 2189.70 33189.67 32789.78 35793.19 37276.56 38397.00 33098.35 19780.97 38081.57 37997.75 23474.75 36498.61 25889.85 31593.63 26394.17 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 33288.28 33793.82 33492.81 37591.08 30898.01 24997.45 30787.95 35687.90 35895.87 34367.63 37994.56 38278.73 38088.18 33795.83 346
KD-MVS_2432*160089.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
miper_refine_blended89.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
MVS-HIRNet89.46 33588.40 33592.64 34797.58 23682.15 37994.16 38393.05 38875.73 38590.90 33482.52 38879.42 33698.33 29783.53 36698.68 14097.43 239
OpenMVS_ROBcopyleft86.42 2089.00 33687.43 34493.69 33593.08 37389.42 33897.91 25896.89 34278.58 38285.86 36894.69 36069.48 37498.29 30577.13 38293.29 27493.36 377
mvsany_test388.80 33788.04 33891.09 35689.78 38381.57 38197.83 27195.49 36693.81 21087.53 35993.95 36956.14 38797.43 34994.68 19683.13 36494.26 366
new-patchmatchnet88.50 33887.45 34391.67 35490.31 38285.89 37097.16 32397.33 31589.47 34483.63 37692.77 37776.38 35795.06 38082.70 36877.29 38394.06 373
APD_test188.22 33988.01 33988.86 35995.98 33274.66 38997.21 31596.44 35583.96 37686.66 36597.90 21960.95 38597.84 33782.73 36790.23 30994.09 371
PM-MVS87.77 34086.55 34691.40 35591.03 38183.36 37796.92 33495.18 37191.28 31286.48 36793.42 37253.27 38896.74 36089.43 32581.97 36894.11 370
dmvs_testset87.64 34188.93 33483.79 36795.25 35363.36 39897.20 31691.17 39293.07 25085.64 37195.98 34285.30 27791.52 39069.42 38987.33 34696.49 323
test_fmvs387.17 34287.06 34587.50 36191.21 37975.66 38599.05 6596.61 35392.79 26288.85 35392.78 37643.72 39193.49 38493.95 22384.56 36193.34 378
UnsupCasMVSNet_bld87.17 34285.12 34993.31 34191.94 37688.77 34894.92 37498.30 20984.30 37582.30 37790.04 38363.96 38397.25 35285.85 35374.47 38893.93 375
N_pmnet87.12 34487.77 34285.17 36595.46 34961.92 39997.37 30270.66 40485.83 36888.73 35596.04 34085.33 27597.76 33980.02 37490.48 30595.84 345
pmmvs386.67 34584.86 35092.11 35388.16 38787.19 36796.63 35294.75 37579.88 38187.22 36192.75 37866.56 38195.20 37981.24 37276.56 38593.96 374
test_f86.07 34685.39 34788.10 36089.28 38575.57 38697.73 27896.33 35789.41 34785.35 37291.56 38243.31 39395.53 37591.32 29284.23 36393.21 379
WB-MVS84.86 34785.33 34883.46 36889.48 38469.56 39398.19 22996.42 35689.55 34381.79 37894.67 36184.80 28490.12 39152.44 39480.64 37590.69 382
SSC-MVS84.27 34884.71 35182.96 37289.19 38668.83 39498.08 24296.30 35889.04 35181.37 38094.47 36284.60 29189.89 39249.80 39679.52 37790.15 383
test_vis3_rt79.22 34977.40 35584.67 36686.44 39174.85 38897.66 28381.43 40184.98 37267.12 39281.91 39028.09 40197.60 34388.96 33080.04 37681.55 390
test_method79.03 35078.17 35281.63 37386.06 39254.40 40482.75 39296.89 34239.54 39680.98 38195.57 35258.37 38694.73 38184.74 36278.61 37995.75 347
testf179.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
APD_test279.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
LCM-MVSNet78.70 35376.24 35886.08 36377.26 39971.99 39194.34 38196.72 34861.62 39176.53 38389.33 38433.91 39992.78 38881.85 37074.60 38793.46 376
Gipumacopyleft78.40 35476.75 35783.38 36995.54 34580.43 38279.42 39397.40 31164.67 39073.46 38780.82 39145.65 39093.14 38766.32 39187.43 34476.56 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 35575.44 35985.46 36482.54 39474.95 38794.23 38293.08 38772.80 38674.68 38487.38 38536.36 39691.56 38973.95 38563.94 39289.87 384
FPMVS77.62 35677.14 35679.05 37579.25 39760.97 40095.79 36595.94 36265.96 38967.93 39194.40 36437.73 39588.88 39468.83 39088.46 33487.29 387
EGC-MVSNET75.22 35769.54 36092.28 35194.81 36089.58 33597.64 28596.50 3541.82 4015.57 40295.74 34468.21 37596.26 36973.80 38691.71 29190.99 381
ANet_high69.08 35865.37 36280.22 37465.99 40171.96 39290.91 38890.09 39582.62 37749.93 39778.39 39229.36 40081.75 39562.49 39238.52 39686.95 389
tmp_tt68.90 35966.97 36174.68 37750.78 40359.95 40187.13 38983.47 40038.80 39762.21 39396.23 33464.70 38276.91 39988.91 33130.49 39787.19 388
PMVScopyleft61.03 2365.95 36063.57 36473.09 37857.90 40251.22 40585.05 39193.93 38454.45 39244.32 39883.57 38713.22 40289.15 39358.68 39381.00 37278.91 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 36164.25 36367.02 37982.28 39559.36 40291.83 38785.63 39852.69 39360.22 39477.28 39341.06 39480.12 39746.15 39741.14 39461.57 395
EMVS64.07 36263.26 36566.53 38081.73 39658.81 40391.85 38684.75 39951.93 39559.09 39575.13 39443.32 39279.09 39842.03 39839.47 39561.69 394
MVEpermissive62.14 2263.28 36359.38 36674.99 37674.33 40065.47 39785.55 39080.50 40252.02 39451.10 39675.00 39510.91 40580.50 39651.60 39553.40 39378.99 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 36430.18 36830.16 38178.61 39843.29 40666.79 39414.21 40517.31 39814.82 40111.93 40111.55 40441.43 40037.08 39919.30 3985.76 398
cdsmvs_eth3d_5k23.98 36531.98 3670.00 3840.00 4060.00 4090.00 39598.59 1440.00 4020.00 40398.61 14890.60 1620.00 4030.00 4020.00 4010.00 399
testmvs21.48 36624.95 36911.09 38314.89 4046.47 40896.56 3549.87 4067.55 39917.93 39939.02 3979.43 4065.90 40216.56 40112.72 39920.91 397
test12320.95 36723.72 37012.64 38213.54 4058.19 40796.55 3556.13 4077.48 40016.74 40037.98 39812.97 4036.05 40116.69 4005.43 40023.68 396
ab-mvs-re8.20 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.43 1680.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.88 36910.50 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40294.51 810.00 4030.00 4020.00 4010.00 399
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM99.33 2698.14 5498.93 9597.02 33398.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
WAC-MVS90.94 31088.66 333
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27597.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.46 4998.70 2398.79 9893.21 24398.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
9.1498.06 5799.47 4798.71 15598.82 8194.36 18699.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
ambc89.49 35886.66 39075.78 38492.66 38596.72 34886.55 36692.50 37946.01 38997.90 33190.32 30682.09 36694.80 364
MTGPAbinary98.74 108
test_post196.68 35130.43 40087.85 22798.69 25192.59 263
test_post31.83 39988.83 20298.91 229
patchmatchnet-post95.10 35789.42 18298.89 233
GG-mvs-BLEND96.59 23296.34 31894.98 20196.51 35688.58 39793.10 29794.34 36780.34 33298.05 32189.53 32296.99 19796.74 285
MTMP98.89 10394.14 382
gm-plane-assit95.88 33687.47 36489.74 34096.94 30699.19 18693.32 242
test9_res96.39 14699.57 8099.69 56
TEST999.31 6498.50 2997.92 25698.73 11192.63 26597.74 13098.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 26498.72 11392.98 25497.70 13498.66 14596.20 2899.80 88
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
TestCases96.99 19899.25 8193.21 27598.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
test_prior498.01 5997.86 267
test_prior297.80 27296.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29191.30 31098.67 7399.80 8895.70 170
新几何297.64 285
新几何199.16 4599.34 5798.01 5998.69 12090.06 33498.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
无先验97.58 29098.72 11391.38 30499.87 5893.36 24199.60 77
原ACMM297.67 282
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24297.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
test22299.23 8897.17 9297.40 29898.66 13188.68 35398.05 10698.96 11094.14 9399.53 9199.61 75
testdata299.89 4791.65 288
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29198.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
testdata197.32 30896.34 95
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25294.63 217
plane_prior697.35 25994.61 22087.09 240
plane_prior598.56 15399.03 21096.07 15294.27 24096.92 260
plane_prior498.28 187
plane_prior394.61 22097.02 6495.34 209
plane_prior298.80 13597.28 45
plane_prior197.37 258
plane_prior94.60 22298.44 19996.74 7794.22 242
n20.00 408
nn0.00 408
door-mid94.37 378
lessismore_v094.45 32994.93 35888.44 35591.03 39386.77 36497.64 24676.23 35898.42 28190.31 30785.64 36096.51 320
LGP-MVS_train96.47 24897.46 24793.54 25998.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
test1198.66 131
door94.64 376
HQP5-MVS94.25 237
HQP-NCC97.20 26798.05 24596.43 8994.45 232
ACMP_Plane97.20 26798.05 24596.43 8994.45 232
BP-MVS95.30 180
HQP4-MVS94.45 23298.96 22196.87 271
HQP3-MVS98.46 17694.18 244
HQP2-MVS86.75 246
NP-MVS97.28 26194.51 22597.73 235
MDTV_nov1_ep13_2view84.26 37296.89 34190.97 31997.90 12389.89 17393.91 22599.18 148
MDTV_nov1_ep1395.40 17097.48 24588.34 35696.85 34497.29 31793.74 21497.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
ACMMP++_ref92.97 277
ACMMP++93.61 264
Test By Simon94.64 78
ITE_SJBPF95.44 29597.42 25291.32 30497.50 30095.09 15793.59 27498.35 17881.70 31898.88 23589.71 31893.39 27196.12 339
DeepMVS_CXcopyleft86.78 36297.09 27772.30 39095.17 37275.92 38484.34 37595.19 35570.58 37295.35 37679.98 37689.04 32892.68 380