This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 892.40 683.40 389.26 1185.57 586.04 286.24 1184.89 1588.39 3195.42 21
MSP-MVS87.87 490.57 384.73 689.38 2891.60 1888.24 874.15 1393.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS85.75 986.99 1384.31 794.07 392.80 888.15 979.10 385.66 2470.72 3176.50 3380.45 2182.17 488.35 287.49 391.63 297.65 4
CNVR-MVS85.96 887.58 1184.06 992.58 592.40 1187.62 1177.77 588.44 1575.93 1879.49 2681.97 1781.65 587.04 686.58 488.79 1797.18 7
DPE-MVScopyleft87.60 590.44 484.29 892.09 993.44 688.69 475.11 1093.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS86.37 788.41 884.00 1091.43 1591.83 1688.34 674.67 1191.19 781.76 591.13 581.94 1880.07 783.38 2882.58 3587.69 4696.78 10
xxxxxxxxxxxxxcwj84.33 1583.20 2785.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 344.71 14879.75 883.52 2682.72 3288.75 1995.37 24
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1995.37 24
ET-MVSNet_ETH3D71.38 7974.70 7067.51 10051.61 20988.06 4977.29 6860.95 10663.61 8548.36 10966.60 4860.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
DeepC-MVS_fast75.41 281.69 2582.10 3481.20 1891.04 1787.81 5283.42 2874.04 1483.77 2871.09 2966.88 4772.44 3979.48 1185.08 1584.97 1488.12 3993.78 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVScopyleft88.07 290.73 284.97 591.98 1095.01 287.86 1076.88 693.90 285.15 290.11 886.90 279.46 1286.26 1084.67 1888.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS85.41 1186.72 1683.89 1191.66 1391.92 1590.49 378.09 486.90 1973.95 2174.52 3582.01 1679.29 1390.24 190.65 189.86 690.78 74
APD-MVScopyleft84.83 1387.00 1282.30 1489.61 2689.21 3586.51 1573.64 1790.98 877.99 1389.89 980.04 2479.18 1482.00 4881.37 4886.88 6995.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC84.16 1785.46 2182.64 1292.34 890.57 2486.57 1476.51 986.85 2172.91 2477.20 3278.69 2779.09 1584.64 2084.88 1688.44 2995.41 22
HPM-MVS++copyleft85.64 1088.43 782.39 1392.65 490.24 2785.83 1774.21 1290.68 975.63 1986.77 1484.15 878.68 1686.33 885.26 987.32 5795.60 18
AdaColmapbinary76.23 5473.55 7479.35 2689.38 2885.00 8079.99 5173.04 2176.60 5371.17 2855.18 8157.99 10177.87 1776.82 9376.82 9484.67 12986.45 116
TSAR-MVS + MP.84.39 1486.58 1781.83 1588.09 4086.47 6685.63 1973.62 1890.13 1179.24 1089.67 1082.99 1277.72 1881.22 5480.92 5886.68 7394.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator70.49 578.42 4076.77 5980.35 2191.43 1590.27 2681.84 3770.79 2772.10 6071.95 2550.02 10167.86 5877.47 1982.89 3284.24 2088.61 2489.99 83
SMA-MVScopyleft85.24 1288.27 981.72 1691.74 1290.71 2186.71 1373.16 2090.56 1074.33 2083.07 1985.88 477.16 2086.28 985.58 687.23 6195.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet80.90 2982.93 3078.53 3286.83 4692.26 1281.19 4366.95 5081.60 3769.90 3466.93 4674.80 3376.79 2184.68 1984.77 1789.50 995.50 19
TSAR-MVS + GP.82.27 2485.98 1977.94 3480.72 7288.25 4581.12 4467.71 4687.10 1773.31 2285.23 1683.68 976.64 2280.43 6281.47 4788.15 3895.66 17
abl_679.06 3089.68 2592.14 1377.70 6369.68 3486.87 2071.88 2674.29 3680.06 2376.56 2388.84 1695.82 13
MVS_030479.43 3482.20 3276.20 4384.22 5491.79 1781.82 3863.81 7176.83 5261.71 5766.37 4975.52 3276.38 2485.54 1485.03 1389.28 1194.32 36
3Dnovator+70.16 677.87 4377.29 5478.55 3189.25 3088.32 4480.09 4967.95 4574.89 5871.83 2752.05 9470.68 4976.27 2582.27 4282.04 3785.92 9090.77 75
ACMMP_NAP83.54 1886.37 1880.25 2289.57 2790.10 2985.27 2171.66 2487.38 1673.08 2384.23 1880.16 2275.31 2684.85 1783.64 2486.57 7494.21 39
MVS_Test75.22 5876.69 6073.51 5879.30 7888.82 3880.06 5058.74 11469.77 6857.50 7659.78 7261.35 8175.31 2682.07 4683.60 2690.13 591.41 66
HFP-MVS82.48 2384.12 2480.56 2090.15 1987.55 5484.28 2469.67 3585.22 2577.95 1484.69 1775.94 3175.04 2881.85 4981.17 5286.30 7992.40 57
CS-MVS73.80 6677.47 5169.53 8374.86 11885.07 7869.93 12256.91 13872.12 5954.28 8764.82 5366.85 6074.88 2979.25 7379.64 6986.30 7994.52 31
MAR-MVS77.19 4978.37 4975.81 4789.87 2290.58 2379.33 5465.56 6177.62 5058.33 7159.24 7367.98 5674.83 3082.37 4083.12 2986.95 6787.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepPCF-MVS76.94 183.08 2087.77 1077.60 3690.11 2090.96 2078.48 5572.63 2393.10 465.84 4380.67 2481.55 1974.80 3185.94 1385.39 883.75 14496.77 11
DeepC-MVS74.46 380.30 3181.05 3779.42 2587.42 4288.50 4183.23 2973.27 1982.78 3171.01 3062.86 6069.93 5274.80 3184.30 2184.20 2186.79 7294.77 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs77.65 4479.59 4375.39 4881.52 6589.83 3381.32 4260.74 10780.05 4266.72 4168.43 4365.09 6574.72 3378.87 7682.73 3187.32 5792.16 58
QAPM77.50 4677.43 5277.59 3791.52 1492.00 1481.41 4170.63 2866.22 7658.05 7254.70 8271.79 4574.49 3482.46 3782.04 3789.46 1092.79 55
zzz-MVS81.65 2683.10 2879.97 2488.14 3987.62 5383.96 2769.90 3286.92 1877.67 1572.47 3778.74 2674.13 3581.59 5281.15 5386.01 8993.19 50
CS-MVS-test73.97 6476.86 5770.60 7775.53 11383.16 9477.50 6557.04 13571.34 6253.25 8963.44 5764.85 6873.96 3682.12 4478.80 7786.30 7994.34 34
DROMVSNet76.05 5578.87 4572.77 6478.87 8286.63 6277.50 6557.04 13575.34 5561.68 5864.20 5469.56 5373.96 3682.12 4480.65 6187.57 5093.57 46
SD-MVS84.31 1686.96 1481.22 1788.98 3288.68 3985.65 1873.85 1689.09 1479.63 987.34 1384.84 673.71 3882.66 3581.60 4585.48 10794.51 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs75.20 5975.69 6674.63 5679.26 7989.07 3678.47 5663.59 7467.05 7463.79 4855.72 7960.32 8773.58 3982.16 4381.78 4189.08 1393.72 45
CLD-MVS77.36 4877.29 5477.45 3882.21 6188.11 4781.92 3668.96 4077.97 4869.62 3662.08 6159.44 9273.57 4081.75 5081.27 5088.41 3090.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++78.57 3977.33 5380.02 2388.39 3584.79 8184.62 2366.17 5775.96 5478.40 1161.59 6371.47 4673.54 4178.43 8078.88 7688.97 1490.18 82
ETV-MVS76.25 5380.22 4071.63 7178.23 8687.95 5172.75 9460.27 11177.50 5157.73 7371.53 3866.60 6173.16 4280.99 5881.23 5187.63 4995.73 15
SteuartSystems-ACMMP82.51 2285.35 2279.20 2790.25 1889.39 3484.79 2270.95 2682.86 3068.32 3986.44 1577.19 2873.07 4383.63 2583.64 2487.82 4294.34 34
Skip Steuart: Steuart Systems R&D Blog.
train_agg83.35 1986.93 1579.17 2889.70 2488.41 4285.60 2072.89 2286.31 2266.58 4290.48 782.24 1573.06 4483.10 3182.64 3487.21 6595.30 26
DELS-MVS79.49 3279.84 4279.08 2988.26 3892.49 984.12 2670.63 2865.27 8369.60 3761.29 6566.50 6272.75 4588.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA71.37 8070.27 9572.66 6680.79 7181.33 11071.07 11565.75 5982.36 3264.80 4642.46 13656.49 10672.70 4673.00 13470.52 16980.84 17885.76 126
CANet_DTU72.84 7076.63 6168.43 9476.81 10186.62 6475.54 7754.71 16372.06 6143.54 12967.11 4558.46 9672.40 4781.13 5780.82 6087.57 5090.21 81
DI_MVS_plusplus_trai73.94 6574.85 6972.88 6376.57 10486.80 6080.41 4861.47 9862.35 8859.44 6947.91 10768.12 5572.24 4882.84 3481.50 4687.15 6694.42 33
ACMMPR80.62 3082.98 2977.87 3588.41 3487.05 5983.02 3069.18 3883.91 2768.35 3882.89 2073.64 3672.16 4980.78 6081.13 5486.10 8691.43 64
MVS_111021_HR77.42 4778.40 4876.28 4286.95 4490.68 2277.41 6770.56 3166.21 7762.48 5366.17 5063.98 7072.08 5082.87 3383.15 2888.24 3595.71 16
diffmvs74.32 6175.42 6773.04 6275.60 11287.27 5678.20 5762.96 8068.66 7361.89 5559.79 7159.84 9071.80 5178.30 8379.87 6687.80 4494.23 38
OpenMVScopyleft67.62 874.92 6073.91 7276.09 4590.10 2190.38 2578.01 5966.35 5566.09 7862.80 5046.33 12464.55 6971.77 5279.92 6680.88 5987.52 5289.20 92
CP-MVS79.44 3381.51 3677.02 3986.95 4485.96 7482.00 3568.44 4381.82 3567.39 4077.43 3073.68 3571.62 5379.56 7179.58 7085.73 9792.51 56
MP-MVScopyleft80.94 2883.49 2677.96 3388.48 3388.16 4682.82 3369.34 3780.79 4069.67 3582.35 2177.13 2971.60 5480.97 5980.96 5785.87 9394.06 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3681.84 3576.60 4188.38 3686.69 6182.97 3265.75 5980.39 4164.94 4581.95 2372.11 4471.41 5580.45 6180.55 6386.18 8390.76 76
MVSTER76.92 5079.92 4173.42 6074.98 11682.97 9678.15 5863.41 7578.02 4764.41 4767.54 4472.80 3871.05 5683.29 3083.73 2388.53 2791.12 69
HQP-MVS78.26 4180.91 3875.17 5185.67 5184.33 8783.01 3169.38 3679.88 4355.83 7879.85 2564.90 6770.81 5782.46 3781.78 4186.30 7993.18 51
baseline72.89 6974.46 7171.07 7275.99 10887.50 5574.57 8460.49 10970.72 6557.60 7460.63 6860.97 8370.79 5875.27 10776.33 10086.94 6889.79 86
PCF-MVS70.85 475.73 5676.55 6274.78 5583.67 5588.04 5081.47 3970.62 3069.24 7257.52 7560.59 6969.18 5470.65 5977.11 9077.65 8884.75 12794.01 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7474.88 16672.64 9663.70 7369.26 7155.71 7947.24 11555.31 11470.42 6072.05 14670.67 16781.66 17277.19 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PHI-MVS79.43 3484.06 2574.04 5786.15 4991.57 1980.85 4768.90 4182.22 3351.81 9478.10 2874.28 3470.39 6184.01 2484.00 2286.14 8594.24 37
EPNet79.28 3882.25 3175.83 4688.31 3790.14 2879.43 5368.07 4481.76 3661.26 6077.26 3170.08 5170.06 6282.43 3982.00 3987.82 4292.09 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS72.74 7170.93 9074.85 5485.30 5284.34 8682.82 3369.79 3349.96 13955.39 8354.09 8960.14 8970.04 6380.38 6379.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG82.90 2184.52 2381.02 1991.85 1193.43 787.14 1274.01 1581.96 3476.14 1670.84 3982.49 1369.71 6482.32 4185.18 1187.26 6095.40 23
Effi-MVS+70.42 8271.23 8769.47 8478.04 8885.24 7775.57 7658.88 11359.56 9848.47 10852.73 9354.94 11569.69 6578.34 8277.06 9286.18 8390.73 77
Anonymous20240521166.35 12278.00 8984.41 8574.85 8263.18 7751.00 13531.37 19153.73 12469.67 6676.28 9676.84 9383.21 15390.85 72
EIA-MVS73.48 6776.05 6370.47 7878.12 8787.21 5771.78 10260.63 10869.66 6955.56 8164.86 5260.69 8469.53 6777.35 8978.59 7887.22 6394.01 41
PMMVS70.37 8575.06 6864.90 11571.46 13381.88 10264.10 15455.64 15071.31 6346.69 11370.69 4058.56 9369.53 6779.03 7575.63 10881.96 16988.32 103
MVS_111021_LR74.26 6275.95 6472.27 6779.43 7785.04 7972.71 9565.27 6470.92 6463.58 4969.32 4160.31 8869.43 6977.01 9177.15 9183.22 15191.93 62
OMC-MVS74.03 6375.82 6571.95 6979.56 7580.98 11475.35 8063.21 7684.48 2661.83 5661.54 6466.89 5969.41 7076.60 9474.07 12882.34 16586.15 120
CPTT-MVS75.43 5777.13 5673.44 5981.43 6682.55 10080.96 4664.35 6777.95 4961.39 5969.20 4270.94 4869.38 7173.89 12373.32 13883.14 15492.06 60
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 8161.89 9352.54 13258.50 7028.89 19656.78 10569.29 7274.96 11176.61 9582.73 15791.36 67
Fast-Effi-MVS+67.59 10267.56 11367.62 9973.67 12281.14 11371.12 11354.79 16258.88 10050.61 10146.70 12247.05 14269.12 7376.06 10076.44 9886.43 7786.65 114
TSAR-MVS + COLMAP73.09 6876.86 5768.71 9074.97 11782.49 10174.51 8961.83 9483.16 2949.31 10682.22 2251.62 13068.94 7478.76 7875.52 11282.67 15984.23 137
ACMMPcopyleft77.61 4579.59 4375.30 5085.87 5085.58 7581.42 4067.38 4979.38 4562.61 5178.53 2765.79 6468.80 7578.56 7978.50 8185.75 9490.80 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS79.39 3782.13 3376.19 4489.22 3188.34 4384.20 2571.00 2579.67 4456.97 7777.77 2972.24 4368.50 7681.33 5382.74 3087.23 6192.84 53
CostFormer72.18 7373.90 7370.18 8079.47 7686.19 7376.94 7048.62 18266.07 7960.40 6754.14 8865.82 6367.98 7775.84 10276.41 9987.67 4792.83 54
TAPA-MVS67.10 971.45 7873.47 7669.10 8877.04 9980.78 11773.81 9262.10 9080.80 3951.28 9560.91 6663.80 7267.98 7774.59 11372.42 15082.37 16480.97 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_BlendedMVS76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
PVSNet_Blended76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
TSAR-MVS + ACMM81.59 2785.84 2076.63 4089.82 2386.53 6586.32 1666.72 5385.96 2365.43 4488.98 1282.29 1467.57 8182.06 4781.33 4983.93 14293.75 44
X-MVS78.16 4280.55 3975.38 4987.99 4186.27 7081.05 4568.98 3978.33 4661.07 6275.25 3472.27 4067.52 8280.03 6480.52 6485.66 10491.20 68
FC-MVSNet-train68.83 9368.29 10769.47 8478.35 8579.94 12364.72 15166.38 5454.96 12354.51 8656.75 7647.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
DCV-MVSNet69.13 9069.07 10069.21 8677.65 9277.52 14774.68 8357.85 12454.92 12455.34 8455.74 7855.56 11366.35 8475.05 10876.56 9783.35 14888.13 105
CHOSEN 1792x268872.55 7271.98 8173.22 6186.57 4792.41 1075.63 7466.77 5262.08 8952.32 9130.27 19450.74 13366.14 8586.22 1285.41 791.90 196.75 12
ACMM66.70 1070.42 8268.49 10572.67 6582.85 5677.76 14577.70 6364.76 6664.61 8460.74 6649.29 10253.97 12265.86 8674.97 10975.57 11084.13 14183.29 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst67.15 10868.12 11066.03 10876.21 10680.98 11471.27 10945.05 19360.69 9450.63 10046.95 12054.15 12165.30 8771.80 14871.77 15487.72 4590.48 78
LS3D64.54 12662.14 15067.34 10380.85 6975.79 16069.99 12065.87 5860.77 9344.35 12542.43 13745.95 14565.01 8869.88 16668.69 17677.97 19371.43 191
HyFIR lowres test68.39 9668.28 10868.52 9380.85 6988.11 4771.08 11458.09 11954.87 12647.80 11227.55 20055.80 11064.97 8979.11 7479.14 7488.31 3393.35 47
FMVSNet370.41 8471.89 8368.68 9170.89 13979.42 12975.63 7460.97 10365.32 8051.06 9647.37 11262.05 7564.90 9082.49 3682.27 3688.64 2384.34 136
PatchMatch-RL62.22 14660.69 16064.01 12368.74 14975.75 16159.27 17860.35 11056.09 11553.80 8847.06 11836.45 17964.80 9168.22 17367.22 18077.10 19574.02 179
tpm cat167.47 10567.05 11667.98 9676.63 10281.51 10874.49 9047.65 18761.18 9161.12 6142.51 13553.02 12864.74 9270.11 16571.50 15683.22 15189.49 88
GeoE68.96 9269.32 9868.54 9276.61 10383.12 9571.78 10256.87 13960.21 9654.86 8545.95 12554.79 11864.27 9374.59 11375.54 11186.84 7191.01 71
dps64.08 12863.22 13865.08 11375.27 11579.65 12666.68 14546.63 19156.94 10855.67 8043.96 12743.63 15164.00 9469.50 17069.82 17182.25 16679.02 166
ACMP68.86 772.15 7472.25 7972.03 6880.96 6880.87 11677.93 6064.13 6969.29 7060.79 6564.04 5553.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu64.58 12464.08 13365.16 11273.04 12675.17 16570.68 11956.23 14454.12 12944.71 12447.42 11151.10 13163.82 9668.08 17466.32 18582.47 16386.38 117
GBi-Net69.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
test169.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
FMVSNet268.06 9968.57 10467.45 10269.49 14478.65 13474.54 8560.23 11256.29 11349.64 10542.13 13957.08 10463.43 9781.15 5680.99 5587.37 5483.73 139
baseline271.22 8173.01 7869.13 8775.76 11086.34 6971.23 11062.78 8662.62 8652.85 9057.32 7554.31 11963.27 10079.74 6979.31 7288.89 1591.43 64
EPMVS66.21 11267.49 11464.73 11675.81 10984.20 8968.94 12944.37 19761.55 9048.07 11149.21 10454.87 11762.88 10171.82 14771.40 16088.28 3479.37 165
CHOSEN 280x42062.23 14566.57 11957.17 17159.88 19368.92 19061.20 17342.28 20454.17 12839.57 14847.78 10964.97 6662.68 10273.85 12469.52 17477.43 19486.75 113
thres100view90067.14 10966.09 12468.38 9577.70 9083.84 9174.52 8866.33 5649.16 14343.40 13143.24 12841.34 15462.59 10379.31 7275.92 10585.73 9789.81 84
baseline171.47 7772.02 8070.82 7480.56 7384.51 8376.61 7166.93 5156.22 11448.66 10755.40 8060.43 8662.55 10483.35 2980.99 5589.60 783.28 145
LGP-MVS_train72.02 7573.18 7770.67 7682.13 6280.26 12279.58 5263.04 7870.09 6651.98 9265.06 5155.62 11262.49 10575.97 10176.32 10184.80 12688.93 95
MSDG65.57 11761.57 15470.24 7982.02 6376.47 15474.46 9168.73 4256.52 11150.33 10238.47 15841.10 15862.42 10672.12 14472.94 14583.47 14773.37 184
test_part166.32 11163.35 13769.77 8177.40 9778.35 13877.85 6156.25 14344.52 16262.15 5433.05 18553.91 12362.38 10772.19 14374.65 11882.59 16086.81 112
IterMVS-LS66.08 11466.56 12065.51 10973.67 12274.88 16670.89 11753.55 16950.42 13748.32 11050.59 9955.66 11161.83 10873.93 12274.42 12484.82 12586.01 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch70.34 8669.00 10171.91 7085.20 5385.35 7677.84 6261.77 9658.01 10655.40 8241.26 14358.34 9861.69 10981.70 5178.29 8289.56 880.02 162
v2v48263.68 13262.85 14464.65 11768.01 15380.46 12071.90 10057.60 12744.26 16342.82 13639.80 15438.62 17061.56 11073.06 13274.86 11686.03 8888.90 97
tfpn200view965.90 11564.96 12867.00 10577.70 9081.58 10671.71 10562.94 8349.16 14343.40 13143.24 12841.34 15461.42 11176.24 9774.63 12084.84 12288.52 101
Fast-Effi-MVS+-dtu63.05 13664.72 13161.11 14571.21 13776.81 15370.72 11843.13 20252.51 13335.34 17346.55 12346.36 14361.40 11271.57 15171.44 15884.84 12287.79 107
ACMH59.42 1461.59 15159.22 17064.36 12178.92 8178.26 13967.65 13667.48 4839.81 18130.98 18738.25 16034.59 19061.37 11370.55 16073.47 13479.74 18579.59 163
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1063.00 13762.22 14963.90 12667.88 15577.78 14471.59 10654.34 16445.37 15942.76 13738.53 15738.93 16861.05 11474.39 11774.52 12385.75 9486.04 121
tpm64.85 12266.02 12563.48 12874.52 11978.38 13770.98 11644.99 19551.61 13443.28 13347.66 11053.18 12660.57 11570.58 15971.30 16386.54 7589.45 90
v863.44 13462.58 14664.43 11968.28 15278.07 14071.82 10154.85 16046.70 15345.20 12039.40 15540.91 15960.54 11672.85 13674.39 12585.92 9085.76 126
v119262.25 14361.64 15362.96 13166.88 16179.72 12569.96 12155.77 14841.58 17339.42 15037.05 16735.96 18460.50 11774.30 12074.09 12785.24 11188.76 98
v114463.00 13762.39 14863.70 12767.72 15680.27 12171.23 11056.40 14042.51 16840.81 14538.12 16237.73 17160.42 11874.46 11574.55 12285.64 10589.12 93
gm-plane-assit54.99 18057.99 17651.49 18969.27 14854.42 21332.32 21642.59 20321.18 21713.71 21323.61 20443.84 15060.21 11987.09 586.55 590.81 489.28 91
PatchmatchNetpermissive65.43 11967.71 11262.78 13473.49 12482.83 9766.42 14845.40 19260.40 9545.27 11849.22 10357.60 10360.01 12070.61 15771.38 16186.08 8781.91 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+60.36 1361.16 15258.38 17264.42 12077.37 9874.35 17168.45 13162.81 8545.86 15738.48 15635.71 17637.35 17459.81 12167.24 17669.80 17379.58 18678.32 168
v14419262.05 14761.46 15562.73 13766.59 16579.87 12469.30 12755.88 14641.50 17539.41 15137.23 16536.45 17959.62 12272.69 13973.51 13385.61 10688.93 95
v192192061.66 15061.10 15862.31 13966.32 16679.57 12768.41 13255.49 15341.03 17638.69 15536.64 17335.27 18759.60 12373.23 13073.41 13585.37 10888.51 102
GA-MVS64.55 12565.76 12763.12 13069.68 14381.56 10769.59 12558.16 11845.23 16035.58 17247.01 11941.82 15359.41 12479.62 7078.54 7986.32 7886.56 115
ADS-MVSNet58.40 17059.16 17157.52 16865.80 17174.57 17060.26 17440.17 21150.51 13638.01 15940.11 15344.72 14759.36 12564.91 18366.55 18381.53 17372.72 187
pmmvs463.14 13562.46 14763.94 12566.03 16876.40 15566.82 14457.60 12756.74 10950.26 10340.81 14837.51 17359.26 12671.75 14971.48 15783.68 14682.53 150
v124061.09 15360.55 16261.72 14365.92 17079.28 13067.16 14254.91 15939.79 18238.10 15836.08 17534.64 18959.15 12772.86 13573.36 13785.10 11387.84 106
PVSNet_Blended_VisFu71.76 7673.54 7569.69 8279.01 8087.16 5872.05 9961.80 9556.46 11259.66 6853.88 9062.48 7359.08 12881.17 5578.90 7586.53 7694.74 29
MDTV_nov1_ep1365.21 12067.28 11562.79 13370.91 13881.72 10369.28 12849.50 18158.08 10343.94 12850.50 10056.02 10858.86 12970.72 15673.37 13684.24 13780.52 161
FMVSNet163.48 13363.07 14063.97 12465.31 17276.37 15671.77 10457.90 12343.32 16745.66 11635.06 18149.43 13558.57 13077.49 8578.22 8384.59 13181.60 158
USDC59.69 16160.03 16659.28 15864.04 17771.84 17963.15 16655.36 15554.90 12535.02 17448.34 10529.79 20658.16 13170.60 15871.33 16279.99 18373.42 183
thres40065.18 12164.44 13266.04 10776.40 10582.63 9871.52 10764.27 6844.93 16140.69 14641.86 14040.79 16058.12 13277.67 8474.64 11985.26 11088.56 100
thres20065.58 11664.74 13066.56 10677.52 9581.61 10473.44 9362.95 8146.23 15542.45 13842.76 13041.18 15658.12 13276.24 9775.59 10984.89 12089.58 87
test250669.26 8770.79 9167.48 10178.64 8386.40 6772.22 9762.75 8758.05 10445.24 11950.76 9754.93 11658.05 13479.82 6779.70 6787.96 4085.90 124
ECVR-MVScopyleft67.93 10168.49 10567.28 10478.64 8386.40 6772.22 9762.75 8758.05 10444.06 12740.92 14748.20 13858.05 13479.82 6779.70 6787.96 4086.32 119
thisisatest053068.38 9770.98 8965.35 11172.61 12784.42 8468.21 13357.98 12059.77 9750.80 9954.63 8358.48 9557.92 13676.99 9277.47 8984.60 13085.07 130
tttt051767.99 10070.61 9264.94 11471.94 13283.96 9067.62 13757.98 12059.30 9949.90 10454.50 8657.98 10257.92 13676.48 9577.47 8984.24 13784.58 133
SCA63.90 13066.67 11760.66 14773.75 12071.78 18159.87 17743.66 19861.13 9245.03 12151.64 9559.45 9157.92 13670.96 15470.80 16583.71 14580.92 160
test-LLR68.23 9871.61 8564.28 12271.37 13481.32 11163.98 15761.03 10158.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
TESTMET0.1,167.38 10671.61 8562.45 13866.05 16781.32 11163.98 15755.36 15558.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
V4262.86 13962.97 14162.74 13660.84 19078.99 13271.46 10857.13 13446.85 15144.28 12638.87 15640.73 16257.63 14172.60 14074.14 12685.09 11588.63 99
CR-MVSNet62.31 14164.75 12959.47 15568.63 15071.29 18467.53 13843.18 20055.83 11641.40 14041.04 14555.85 10957.29 14272.76 13773.27 14078.77 19083.23 146
PatchT60.46 15763.85 13456.51 17465.95 16975.68 16247.34 19941.39 20753.89 13041.40 14037.84 16350.30 13457.29 14272.76 13773.27 14085.67 10183.23 146
TinyColmap52.66 18950.09 20055.65 17659.72 19464.02 20457.15 18452.96 17340.28 17932.51 18232.42 18720.97 21756.65 14463.95 18965.15 19074.91 20163.87 205
EPP-MVSNet67.58 10371.10 8863.48 12875.71 11183.35 9366.85 14357.83 12553.02 13141.15 14355.82 7767.89 5756.01 14574.40 11672.92 14683.33 14990.30 80
test111166.72 11067.80 11165.45 11077.42 9686.63 6269.69 12462.98 7955.29 12039.47 14940.12 15247.11 14155.70 14679.96 6580.00 6587.47 5385.49 129
MVS-HIRNet53.86 18753.02 18954.85 17960.30 19272.36 17744.63 20742.20 20539.45 18343.47 13021.66 21034.00 19355.47 14765.42 18167.16 18183.02 15671.08 193
test-mter64.06 12969.24 9958.01 16359.07 19677.40 14859.13 17948.11 18555.64 11939.18 15351.56 9658.54 9455.38 14873.52 12876.00 10487.22 6392.05 61
thres600view763.77 13163.14 13964.51 11875.49 11481.61 10469.59 12562.95 8143.96 16538.90 15441.09 14440.24 16555.25 14976.24 9771.54 15584.89 12087.30 109
v14862.00 14861.19 15762.96 13167.46 15979.49 12867.87 13457.66 12642.30 16945.02 12238.20 16138.89 16954.77 15069.83 16772.60 14984.96 11687.01 111
gg-mvs-nofinetune62.34 14066.19 12357.86 16576.15 10788.61 4071.18 11241.24 21025.74 21313.16 21522.91 20763.97 7154.52 15185.06 1685.25 1090.92 391.78 63
IterMVS61.87 14963.55 13559.90 15167.29 16072.20 17867.34 14148.56 18347.48 14937.86 16147.07 11748.27 13654.08 15272.12 14473.71 13184.30 13683.99 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF55.07 17958.06 17451.57 18748.87 21258.95 20953.68 19041.26 20962.42 8745.88 11554.38 8754.26 12053.75 15357.15 20053.53 21066.01 21065.75 202
CMPMVSbinary43.63 1757.67 17455.43 18260.28 15072.01 13079.00 13162.77 16753.23 17141.77 17245.42 11730.74 19339.03 16753.01 15464.81 18564.65 19175.26 20068.03 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IterMVS-SCA-FT60.21 15962.97 14157.00 17266.64 16471.84 17967.53 13846.93 19047.56 14836.77 16646.85 12148.21 13752.51 15570.36 16272.40 15171.63 20883.53 142
IB-MVS64.48 1169.02 9168.97 10269.09 8981.75 6489.01 3764.50 15264.91 6556.65 11062.59 5247.89 10845.23 14651.99 15669.18 17181.88 4088.77 1892.93 52
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs559.72 16060.24 16459.11 15962.77 18477.33 15063.17 16554.00 16640.21 18037.23 16240.41 14935.99 18351.75 15772.55 14172.74 14885.72 9982.45 152
UniMVSNet_ETH3D57.83 17156.46 18159.43 15663.24 18173.22 17567.70 13555.58 15136.17 19336.84 16432.64 18635.14 18851.50 15865.81 17969.81 17281.73 17182.44 153
UniMVSNet_NR-MVSNet62.30 14263.51 13660.89 14669.48 14777.83 14364.07 15563.94 7050.03 13831.17 18544.82 12641.12 15751.37 15971.02 15374.81 11785.30 10984.95 131
DU-MVS60.87 15561.82 15259.76 15366.69 16275.87 15864.07 15561.96 9149.31 14131.17 18542.76 13036.95 17651.37 15969.67 16873.20 14383.30 15084.95 131
FMVSNet558.86 16660.24 16457.25 17052.66 20866.25 19663.77 16052.86 17457.85 10737.92 16036.12 17452.22 12951.37 15970.88 15571.43 15984.92 11766.91 200
LTVRE_ROB47.26 1649.41 19849.91 20148.82 19364.76 17469.79 18749.05 19547.12 18920.36 21916.52 20736.65 17226.96 21050.76 16260.47 19463.16 19664.73 21172.00 188
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal58.97 16556.48 18061.89 14171.27 13676.21 15766.65 14661.76 9732.90 20136.41 16727.83 19929.14 20750.64 16373.06 13273.05 14484.58 13283.15 148
v7n57.04 17656.64 17957.52 16862.85 18374.75 16861.76 16951.80 17735.58 19736.02 17032.33 18833.61 19550.16 16467.73 17570.34 17082.51 16182.12 154
pmmvs-eth3d55.20 17753.95 18656.65 17357.34 20267.77 19257.54 18353.74 16840.93 17741.09 14431.19 19229.10 20849.07 16565.54 18067.28 17981.14 17575.81 172
NR-MVSNet61.08 15462.09 15159.90 15171.96 13175.87 15863.60 16161.96 9149.31 14127.95 19042.76 13033.85 19448.82 16674.35 11874.05 12985.13 11284.45 134
Baseline_NR-MVSNet59.47 16260.28 16358.54 16266.69 16273.90 17261.63 17162.90 8449.15 14526.87 19235.18 18037.62 17248.20 16769.67 16873.61 13284.92 11782.82 149
RPMNet58.63 16962.80 14553.76 18567.59 15871.29 18454.60 18838.13 21255.83 11635.70 17141.58 14253.04 12747.89 16866.10 17867.38 17878.65 19284.40 135
TranMVSNet+NR-MVSNet60.38 15861.30 15659.30 15768.34 15175.57 16463.38 16463.78 7246.74 15227.73 19142.56 13436.84 17747.66 16970.36 16274.59 12184.91 11982.46 151
anonymousdsp54.99 18057.24 17752.36 18653.82 20671.75 18251.49 19248.14 18433.74 19933.66 17938.34 15936.13 18247.54 17064.53 18770.60 16879.53 18785.59 128
MDTV_nov1_ep13_2view54.47 18454.61 18354.30 18460.50 19173.82 17357.92 18243.38 19939.43 18432.51 18233.23 18434.05 19247.26 17162.36 19166.21 18684.24 13773.19 185
thisisatest051559.37 16360.68 16157.84 16664.39 17675.65 16358.56 18153.86 16741.55 17442.12 13940.40 15039.59 16647.09 17271.69 15073.79 13081.02 17782.08 155
PM-MVS50.11 19550.38 19949.80 19147.23 21462.08 20750.91 19444.84 19641.90 17136.10 16935.22 17926.05 21346.83 17357.64 19855.42 20972.90 20574.32 178
CDS-MVSNet64.22 12765.89 12662.28 14070.05 14180.59 11869.91 12357.98 12043.53 16646.58 11448.22 10650.76 13246.45 17475.68 10376.08 10382.70 15886.34 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS58.86 16660.91 15956.47 17562.38 18677.57 14658.97 18052.98 17238.76 18536.17 16842.26 13847.94 13946.45 17470.23 16470.79 16681.86 17078.82 167
TDRefinement52.70 18851.02 19754.66 18157.41 20165.06 20061.47 17254.94 15744.03 16433.93 17830.13 19527.57 20946.17 17661.86 19262.48 19974.01 20466.06 201
IS_MVSNet67.29 10771.98 8161.82 14276.92 10084.32 8865.90 15058.22 11755.75 11839.22 15254.51 8562.47 7445.99 17778.83 7778.52 8084.70 12889.47 89
MIMVSNet57.78 17359.71 16855.53 17754.79 20477.10 15163.89 15945.02 19446.59 15436.79 16528.36 19840.77 16145.84 17874.97 10976.58 9686.87 7073.60 182
UGNet67.57 10471.69 8462.76 13569.88 14282.58 9966.43 14758.64 11554.71 12751.87 9361.74 6262.01 7845.46 17974.78 11274.99 11484.24 13791.02 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive65.53 11869.83 9760.52 14870.80 14084.59 8266.37 14955.47 15448.40 14640.62 14757.67 7458.43 9745.37 18077.49 8576.24 10284.47 13385.99 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17852.90 19157.73 16773.47 12567.21 19462.13 16855.82 14747.83 14734.39 17631.60 19034.24 19144.90 18163.88 19062.52 19875.67 19863.02 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo49.11 19949.22 20248.99 19258.54 20064.14 20347.18 20047.75 18631.15 20524.42 19641.01 14626.55 21144.04 18254.76 20758.70 20471.99 20768.21 196
UniMVSNet (Re)60.62 15662.93 14357.92 16467.64 15777.90 14261.75 17061.24 10049.83 14029.80 18942.57 13340.62 16343.36 18370.49 16173.27 14083.76 14385.81 125
pm-mvs159.21 16459.58 16958.77 16167.97 15477.07 15264.12 15357.20 13234.73 19836.86 16335.34 17840.54 16443.34 18474.32 11973.30 13983.13 15581.77 157
EG-PatchMatch MVS58.73 16858.03 17559.55 15472.32 12880.49 11963.44 16355.55 15232.49 20238.31 15728.87 19737.22 17542.84 18574.30 12075.70 10784.84 12277.14 171
MDA-MVSNet-bldmvs44.15 20542.27 21046.34 20038.34 21662.31 20646.28 20255.74 14929.83 20620.98 20227.11 20116.45 22241.98 18641.11 21457.47 20574.72 20261.65 210
UA-Net64.62 12368.23 10960.42 14977.53 9481.38 10960.08 17657.47 13047.01 15044.75 12360.68 6771.32 4741.84 18773.27 12972.25 15280.83 17971.68 189
pmmvs341.86 20742.29 20941.36 20539.80 21552.66 21438.93 21335.85 21623.40 21620.22 20319.30 21120.84 21840.56 18855.98 20558.79 20372.80 20665.03 203
pmnet_mix0253.92 18653.30 18854.65 18261.89 18771.33 18354.54 18954.17 16540.38 17834.65 17534.76 18230.68 20540.44 18960.97 19363.71 19382.19 16771.24 192
pmmvs654.20 18553.54 18754.97 17863.22 18272.98 17660.17 17552.32 17626.77 21234.30 17723.29 20636.23 18140.33 19068.77 17268.76 17579.47 18878.00 169
TransMVSNet (Re)57.83 17156.90 17858.91 16072.26 12974.69 16963.57 16261.42 9932.30 20332.65 18133.97 18335.96 18439.17 19173.84 12572.84 14784.37 13574.69 177
CVMVSNet54.92 18258.16 17351.13 19062.61 18568.44 19155.45 18752.38 17542.28 17021.45 20147.10 11646.10 14437.96 19264.42 18863.81 19276.92 19675.01 176
EPNet_dtu66.17 11370.13 9661.54 14481.04 6777.39 14968.87 13062.50 8969.78 6733.51 18063.77 5656.22 10737.65 19372.20 14272.18 15385.69 10079.38 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet47.67 20147.00 20548.45 19554.72 20562.78 20546.95 20151.25 17836.01 19526.09 19526.59 20225.93 21435.50 19455.67 20659.01 20276.22 19763.04 206
Vis-MVSNet (Re-imp)62.25 14368.74 10354.68 18073.70 12178.74 13356.51 18557.49 12955.22 12126.86 19354.56 8461.35 8131.06 19573.10 13174.90 11582.49 16283.31 143
Anonymous2023120652.23 19052.80 19251.56 18864.70 17569.41 18851.01 19358.60 11636.63 19022.44 20021.80 20931.42 20130.52 19666.79 17767.83 17782.10 16875.73 173
test0.0.03 157.35 17559.89 16754.38 18371.37 13473.45 17452.71 19161.03 10146.11 15626.33 19441.73 14144.08 14929.72 19771.43 15270.90 16485.10 11371.56 190
CP-MVSNet50.57 19352.60 19448.21 19658.77 19865.82 19848.17 19756.29 14237.41 18716.59 20637.14 16631.95 19829.21 19856.60 20263.71 19380.22 18175.56 174
ambc42.30 20850.36 21049.51 21535.47 21432.04 20423.53 19717.36 2138.95 22429.06 19964.88 18456.26 20661.29 21367.12 199
PS-CasMVS50.17 19452.02 19548.02 19758.60 19965.54 19948.04 19856.19 14536.42 19216.42 20835.68 17731.33 20228.85 20056.42 20463.54 19580.01 18275.18 175
PEN-MVS51.04 19152.94 19048.82 19361.45 18966.00 19748.68 19657.20 13236.87 18815.36 20936.98 16832.72 19628.77 20157.63 19966.37 18481.44 17474.00 180
FPMVS39.11 20936.39 21142.28 20455.97 20345.94 21646.23 20341.57 20635.73 19622.61 19823.46 20519.82 21928.32 20243.57 21140.67 21358.96 21445.54 214
new_pmnet33.19 21035.52 21230.47 21127.55 22145.31 21729.29 21730.92 21729.00 2099.88 22018.77 21217.64 22126.77 20344.07 21045.98 21258.41 21547.87 213
DTE-MVSNet49.82 19651.92 19647.37 19861.75 18864.38 20245.89 20557.33 13136.11 19412.79 21636.87 16931.93 19925.73 20458.01 19765.22 18980.75 18070.93 194
EU-MVSNet44.84 20447.85 20441.32 20749.26 21156.59 21243.07 20847.64 18833.03 20013.82 21236.78 17030.99 20324.37 20553.80 20855.57 20869.78 20968.21 196
test_method28.15 21234.48 21320.76 2146.76 22521.18 22121.03 21918.41 22036.77 18917.52 20415.67 21731.63 20024.05 20641.03 21526.69 21736.82 21968.38 195
WR-MVS51.02 19254.56 18446.90 19963.84 17869.23 18944.78 20656.38 14138.19 18614.19 21137.38 16436.82 17822.39 20760.14 19566.20 18779.81 18473.95 181
WR-MVS_H49.62 19752.63 19346.11 20258.80 19767.58 19346.14 20454.94 15736.51 19113.63 21436.75 17135.67 18622.10 20856.43 20362.76 19781.06 17672.73 186
DeepMVS_CXcopyleft19.81 22317.01 22110.02 22123.61 2155.85 22217.21 2148.03 22521.13 20922.60 21821.42 22330.01 217
PMVScopyleft27.44 1832.08 21129.07 21435.60 21048.33 21324.79 21926.97 21841.34 20820.45 21822.50 19917.11 21518.64 22020.44 21041.99 21338.06 21454.02 21642.44 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testgi48.51 20050.53 19846.16 20164.78 17367.15 19541.54 20954.81 16129.12 20817.03 20532.07 18931.98 19720.15 21165.26 18267.00 18278.67 19161.10 211
new-patchmatchnet42.21 20642.97 20741.33 20653.05 20759.89 20839.38 21149.61 18028.26 21012.10 21722.17 20821.54 21619.22 21250.96 20956.04 20774.61 20361.92 209
MIMVSNet140.84 20843.46 20637.79 20932.14 21758.92 21039.24 21250.83 17927.00 21111.29 21816.76 21626.53 21217.75 21357.14 20161.12 20175.46 19956.78 212
test20.0347.23 20348.69 20345.53 20363.28 18064.39 20141.01 21056.93 13729.16 20715.21 21023.90 20330.76 20417.51 21464.63 18665.26 18879.21 18962.71 208
FC-MVSNet-test47.24 20254.37 18538.93 20859.49 19558.25 21134.48 21553.36 17045.66 1586.66 22150.62 9842.02 15216.62 21558.39 19661.21 20062.99 21264.40 204
Gipumacopyleft24.91 21324.61 21525.26 21331.47 21821.59 22018.06 22037.53 21325.43 21410.03 2194.18 2224.25 22614.85 21643.20 21247.03 21139.62 21826.55 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS14.40 21610.71 21918.70 21628.15 22012.09 2257.06 22436.89 21411.00 2213.56 2254.95 2202.27 22813.91 21710.13 22116.06 22022.63 22218.51 221
E-PMN15.08 21511.65 21819.08 21528.73 21912.31 2246.95 22536.87 21510.71 2223.63 2245.13 2192.22 22913.81 21811.34 22018.50 21924.49 22121.32 220
MVEpermissive15.98 1914.37 21716.36 21712.04 2197.72 22420.24 2225.90 22629.05 2188.28 2233.92 2234.72 2212.42 2279.57 21918.89 21931.46 21616.07 22428.53 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt16.09 21813.07 2238.12 22613.61 2232.08 22255.09 12230.10 18840.26 15122.83 2155.35 22029.91 21625.25 21832.33 220
PMMVS220.45 21422.31 21618.27 21720.52 22226.73 21814.85 22228.43 21913.69 2200.79 22610.35 2189.10 2233.83 22127.64 21732.87 21541.17 21735.81 216
GG-mvs-BLEND54.54 18377.58 5027.67 2120.03 22690.09 3077.20 690.02 22366.83 750.05 22759.90 7073.33 370.04 22278.40 8179.30 7388.65 2295.20 27
test1230.05 2180.08 2200.01 2200.00 2270.01 2270.01 2290.00 2250.05 2240.00 2280.16 2230.00 2310.04 2220.02 2230.05 2210.00 2260.26 222
testmvs0.05 2180.08 2200.01 2200.00 2270.01 2270.03 2280.01 2240.05 2240.00 2280.14 2240.01 2300.03 2240.05 2220.05 2210.01 2250.24 223
uanet_test0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
RE-MVS-def31.47 184
9.1484.47 7
SR-MVS86.33 4867.54 4780.78 20
our_test_363.32 17971.07 18655.90 186
MTAPA78.32 1279.42 25
MTMP76.04 1776.65 30
Patchmatch-RL test2.17 227
XVS82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
X-MVStestdata82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
mPP-MVS86.96 4370.61 50
NP-MVS81.60 37
Patchmtry78.06 14167.53 13843.18 20041.40 140