This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 476.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 1998.21 3
DVP-MVS++87.98 389.76 585.89 292.57 594.57 388.34 576.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 2995.42 20
MSP-MVS87.87 490.57 384.73 589.38 2691.60 1688.24 774.15 1293.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3098.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS85.75 986.99 1384.31 694.07 292.80 788.15 879.10 285.66 2170.72 2876.50 3280.45 2182.17 488.35 287.49 391.63 297.65 4
CNVR-MVS85.96 887.58 1184.06 892.58 492.40 1087.62 1077.77 488.44 1475.93 1679.49 2581.97 1781.65 587.04 686.58 488.79 1697.18 7
DPE-MVScopyleft87.60 590.44 484.29 792.09 893.44 588.69 375.11 993.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4797.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS86.37 788.41 884.00 991.43 1491.83 1488.34 574.67 1091.19 781.76 591.13 481.94 1880.07 783.38 2782.58 3487.69 4596.78 10
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1895.37 23
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20788.06 4877.29 6460.95 10463.61 8348.36 10766.60 4660.67 8479.55 973.56 12780.58 6287.30 5889.80 84
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1687.81 5183.42 2674.04 1383.77 2571.09 2666.88 4572.44 3779.48 1085.08 1584.97 1488.12 3793.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVScopyleft88.07 290.73 284.97 491.98 995.01 287.86 976.88 593.90 285.15 290.11 786.90 279.46 1186.26 1084.67 1888.50 2698.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS85.41 1186.72 1683.89 1091.66 1291.92 1390.49 278.09 386.90 1773.95 1974.52 3482.01 1679.29 1290.24 190.65 189.86 690.78 72
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2489.21 3486.51 1473.64 1690.98 877.99 1289.89 880.04 2379.18 1382.00 4881.37 4986.88 6995.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC84.16 1685.46 2182.64 1192.34 790.57 2286.57 1376.51 886.85 1872.91 2277.20 3178.69 2579.09 1484.64 2084.88 1688.44 2795.41 21
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 390.24 2585.83 1674.21 1190.68 975.63 1786.77 1384.15 878.68 1586.33 885.26 987.32 5695.60 17
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2685.00 8079.99 5073.04 2076.60 5071.17 2555.18 7957.99 10077.87 1676.82 9376.82 9484.67 12886.45 114
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3786.47 6685.63 1873.62 1790.13 1179.24 989.67 982.99 1277.72 1781.22 5380.92 5886.68 7394.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1490.27 2481.84 3570.79 2672.10 5871.95 2350.02 9967.86 5677.47 1882.89 3284.24 2088.61 2289.99 82
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1190.71 1986.71 1273.16 1990.56 1074.33 1883.07 1885.88 477.16 1986.28 985.58 687.23 6095.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet80.90 2782.93 2878.53 2986.83 4392.26 1181.19 4166.95 4781.60 3469.90 3166.93 4474.80 3176.79 2084.68 1984.77 1789.50 995.50 18
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 6988.25 4481.12 4267.71 4387.10 1673.31 2085.23 1583.68 976.64 2180.43 6181.47 4888.15 3695.66 16
MVS_030479.43 3282.20 3076.20 4084.22 5191.79 1581.82 3663.81 6976.83 4961.71 5666.37 4775.52 3076.38 2285.54 1485.03 1389.28 1194.32 32
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2888.32 4380.09 4867.95 4274.89 5671.83 2452.05 9270.68 4776.27 2382.27 4282.04 3685.92 8990.77 73
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2590.10 2785.27 2071.66 2387.38 1573.08 2184.23 1780.16 2275.31 2484.85 1783.64 2486.57 7494.21 35
MVS_Test75.22 5876.69 5873.51 5679.30 7688.82 3780.06 4958.74 11469.77 6557.50 7559.78 6961.35 7975.31 2482.07 4583.60 2690.13 591.41 64
HFP-MVS82.48 2284.12 2480.56 1990.15 1887.55 5284.28 2369.67 3285.22 2277.95 1384.69 1675.94 2975.04 2681.85 4981.17 5386.30 8192.40 55
MAR-MVS77.19 4778.37 4875.81 4489.87 2190.58 2179.33 5365.56 5877.62 4758.33 7059.24 7067.98 5474.83 2782.37 4083.12 2986.95 6787.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 1990.96 1878.48 5472.63 2293.10 465.84 4080.67 2381.55 1974.80 2885.94 1385.39 883.75 14396.77 11
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 3988.50 4083.23 2773.27 1882.78 2871.01 2762.86 5769.93 5074.80 2884.30 2184.20 2186.79 7294.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs77.65 4279.59 4175.39 4581.52 6289.83 3181.32 4060.74 10580.05 3966.72 3868.43 4065.09 6274.72 3078.87 7482.73 3187.32 5692.16 56
QAPM77.50 4477.43 5177.59 3491.52 1392.00 1281.41 3970.63 2766.22 7458.05 7154.70 8071.79 4374.49 3182.46 3782.04 3689.46 1092.79 53
DROMVSNet76.05 5378.87 4372.77 6278.87 8286.63 6277.50 6257.04 13575.34 5261.68 5764.20 5269.56 5173.96 3282.12 4480.65 6187.57 4993.57 43
SD-MVS84.31 1586.96 1481.22 1688.98 3088.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 673.71 3382.66 3581.60 4685.48 10694.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7889.07 3578.47 5563.59 7267.05 7163.79 4655.72 7760.32 8673.58 3482.16 4381.78 4189.08 1393.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CLD-MVS77.36 4677.29 5377.45 3582.21 5888.11 4681.92 3468.96 3777.97 4569.62 3362.08 5859.44 9173.57 3581.75 5081.27 5188.41 2890.39 78
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3384.79 8184.62 2266.17 5475.96 5178.40 1061.59 6071.47 4473.54 3678.43 7878.88 7688.97 1490.18 81
ETV-MVS76.25 5180.22 3871.63 7178.23 8687.95 5072.75 9260.27 11077.50 4857.73 7271.53 3566.60 5873.16 3780.99 5781.23 5287.63 4895.73 14
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1789.39 3284.79 2170.95 2582.86 2768.32 3686.44 1477.19 2673.07 3883.63 2583.64 2487.82 4194.34 31
Skip Steuart: Steuart Systems R&D Blog.
train_agg83.35 1886.93 1579.17 2689.70 2388.41 4185.60 1972.89 2186.31 1966.58 3990.48 682.24 1573.06 3983.10 3182.64 3387.21 6495.30 24
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7189.31 3380.79 4664.04 6766.95 7263.87 4557.52 7261.33 8172.90 4082.01 4781.99 3988.03 3893.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS75.84 5478.61 4472.61 6579.03 7986.74 6074.43 8860.27 11074.15 5762.78 5066.26 4864.25 6772.81 4183.36 2881.69 4586.32 7993.85 39
DELS-MVS79.49 3079.84 4079.08 2788.26 3692.49 884.12 2570.63 2765.27 8169.60 3461.29 6266.50 5972.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA71.37 7970.27 9572.66 6480.79 6881.33 10971.07 11365.75 5682.36 2964.80 4342.46 13556.49 10572.70 4373.00 13470.52 16880.84 17685.76 124
CANet_DTU72.84 6976.63 5968.43 9276.81 10186.62 6475.54 7354.71 16072.06 5943.54 12767.11 4358.46 9572.40 4481.13 5680.82 6087.57 4990.21 80
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10486.80 5980.41 4761.47 9662.35 8759.44 6847.91 10668.12 5372.24 4582.84 3481.50 4787.15 6694.42 30
ACMMPR80.62 2882.98 2777.87 3288.41 3287.05 5783.02 2869.18 3583.91 2468.35 3582.89 1973.64 3472.16 4680.78 5981.13 5486.10 8691.43 62
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4190.68 2077.41 6370.56 3066.21 7562.48 5366.17 4963.98 6872.08 4782.87 3383.15 2888.24 3395.71 15
diffmvspermissive74.32 6275.42 6673.04 6075.60 11287.27 5478.20 5662.96 7868.66 7061.89 5459.79 6859.84 8971.80 4878.30 8179.87 6687.80 4394.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2090.38 2378.01 5866.35 5266.09 7662.80 4946.33 12364.55 6671.77 4979.92 6580.88 5987.52 5189.20 91
CP-MVS79.44 3181.51 3477.02 3686.95 4185.96 7582.00 3368.44 4081.82 3267.39 3777.43 2973.68 3371.62 5079.56 7079.58 7085.73 9692.51 54
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3188.16 4582.82 3169.34 3480.79 3769.67 3282.35 2077.13 2771.60 5180.97 5880.96 5785.87 9294.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test75.09 6077.84 4971.87 7079.27 7786.92 5870.53 11860.36 10875.13 5363.13 4867.92 4165.08 6371.43 5278.15 8278.51 8086.53 7693.16 48
PGM-MVS79.42 3481.84 3376.60 3888.38 3486.69 6182.97 3065.75 5680.39 3864.94 4281.95 2272.11 4271.41 5380.45 6080.55 6386.18 8390.76 74
MVSTER76.92 4879.92 3973.42 5874.98 11582.97 9578.15 5763.41 7378.02 4464.41 4467.54 4272.80 3671.05 5483.29 3083.73 2388.53 2591.12 67
HQP-MVS78.26 3980.91 3675.17 4885.67 4884.33 8783.01 2969.38 3379.88 4055.83 7779.85 2464.90 6570.81 5582.46 3781.78 4186.30 8193.18 47
baseline72.89 6874.46 7071.07 7275.99 10887.50 5374.57 8060.49 10770.72 6257.60 7360.63 6560.97 8270.79 5675.27 10776.33 10086.94 6889.79 85
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5288.04 4981.47 3770.62 2969.24 6957.52 7460.59 6669.18 5270.65 5777.11 9077.65 8884.75 12694.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7274.88 16472.64 9463.70 7169.26 6855.71 7947.24 11455.31 11470.42 5872.05 14570.67 16681.66 17077.19 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PHI-MVS79.43 3284.06 2574.04 5586.15 4691.57 1780.85 4568.90 3882.22 3051.81 9278.10 2774.28 3270.39 5984.01 2484.00 2286.14 8594.24 33
EPNet79.28 3682.25 2975.83 4388.31 3590.14 2679.43 5268.07 4181.76 3361.26 5977.26 3070.08 4970.06 6082.43 3982.00 3887.82 4192.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS72.74 7070.93 9074.85 5285.30 4984.34 8682.82 3169.79 3149.96 13855.39 8354.09 8760.14 8870.04 6180.38 6279.43 7185.74 9588.20 103
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CSCG82.90 2084.52 2381.02 1891.85 1093.43 687.14 1174.01 1481.96 3176.14 1470.84 3682.49 1369.71 6282.32 4185.18 1187.26 5995.40 22
Effi-MVS+70.42 8171.23 8769.47 8178.04 8885.24 7875.57 7258.88 11359.56 9748.47 10652.73 9154.94 11569.69 6378.34 8077.06 9286.18 8390.73 75
Anonymous20240521166.35 12278.00 8984.41 8574.85 7863.18 7551.00 13431.37 18953.73 12369.67 6476.28 9676.84 9383.21 15290.85 70
EIA-MVS73.48 6676.05 6170.47 7778.12 8787.21 5571.78 10060.63 10669.66 6655.56 8164.86 5160.69 8369.53 6577.35 8978.59 7787.22 6294.01 37
PMMVS70.37 8475.06 6764.90 11371.46 13181.88 10164.10 15255.64 14771.31 6046.69 11170.69 3758.56 9269.53 6579.03 7375.63 10881.96 16788.32 102
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7585.04 7972.71 9365.27 6170.92 6163.58 4769.32 3860.31 8769.43 6777.01 9177.15 9183.22 15091.93 60
OMC-MVS74.03 6475.82 6471.95 6879.56 7380.98 11375.35 7663.21 7484.48 2361.83 5561.54 6166.89 5769.41 6876.60 9474.07 12782.34 16386.15 118
CPTT-MVS75.43 5777.13 5573.44 5781.43 6382.55 9980.96 4464.35 6477.95 4661.39 5869.20 3970.94 4669.38 6973.89 12373.32 13783.14 15392.06 58
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 7761.89 9152.54 13158.50 6928.89 19456.78 10469.29 7074.96 11176.61 9582.73 15691.36 65
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12081.14 11271.12 11154.79 15958.88 9950.61 9946.70 12147.05 14169.12 7176.06 10076.44 9886.43 7886.65 112
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11682.49 10074.51 8561.83 9283.16 2649.31 10482.22 2151.62 12968.94 7278.76 7675.52 11282.67 15884.23 135
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4785.58 7681.42 3867.38 4679.38 4262.61 5178.53 2665.79 6168.80 7378.56 7778.50 8185.75 9390.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS79.39 3582.13 3176.19 4189.22 2988.34 4284.20 2471.00 2479.67 4156.97 7677.77 2872.24 4168.50 7481.33 5282.74 3087.23 6092.84 51
CostFormer72.18 7273.90 7270.18 7979.47 7486.19 7376.94 6648.62 18066.07 7760.40 6654.14 8665.82 6067.98 7575.84 10276.41 9987.67 4692.83 52
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 9980.78 11673.81 8962.10 8880.80 3651.28 9360.91 6363.80 7067.98 7574.59 11372.42 14982.37 16280.97 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9586.03 7473.33 9149.12 17963.55 8455.77 7848.91 10356.26 10667.78 7777.60 8479.62 6987.19 6590.40 77
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2286.53 6586.32 1566.72 5085.96 2065.43 4188.98 1182.29 1467.57 8082.06 4681.33 5083.93 14193.75 41
X-MVS78.16 4080.55 3775.38 4687.99 3886.27 7081.05 4368.98 3678.33 4361.07 6175.25 3372.27 3867.52 8180.03 6380.52 6485.66 10391.20 66
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8579.94 12264.72 14966.38 5154.96 12254.51 8656.75 7447.91 13966.91 8275.57 10675.75 10685.92 8987.12 109
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9277.52 14574.68 7957.85 12454.92 12355.34 8455.74 7655.56 11366.35 8375.05 10876.56 9783.35 14788.13 104
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4492.41 975.63 7066.77 4962.08 8852.32 8930.27 19250.74 13266.14 8486.22 1285.41 791.90 196.75 12
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5377.76 14377.70 6164.76 6364.61 8260.74 6549.29 10053.97 12265.86 8574.97 10975.57 11084.13 14083.29 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst67.15 10868.12 11066.03 10676.21 10680.98 11371.27 10745.05 19160.69 9350.63 9846.95 11954.15 12165.30 8671.80 14771.77 15387.72 4490.48 76
LS3D64.54 12562.14 14967.34 10180.85 6675.79 15869.99 11965.87 5560.77 9244.35 12342.43 13645.95 14465.01 8769.88 16568.69 17577.97 19171.43 189
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6688.11 4671.08 11258.09 11954.87 12547.80 11027.55 19855.80 11064.97 8879.11 7279.14 7488.31 3193.35 44
FMVSNet370.41 8371.89 8268.68 8870.89 13779.42 12875.63 7060.97 10165.32 7851.06 9447.37 11162.05 7364.90 8982.49 3682.27 3588.64 2184.34 134
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14775.75 15959.27 17660.35 10956.09 11453.80 8747.06 11736.45 17764.80 9068.22 17267.22 17977.10 19374.02 177
tpm cat167.47 10567.05 11667.98 9476.63 10281.51 10774.49 8647.65 18561.18 9061.12 6042.51 13453.02 12764.74 9170.11 16471.50 15583.22 15089.49 87
GeoE68.96 9269.32 9868.54 8976.61 10383.12 9471.78 10056.87 13760.21 9554.86 8545.95 12454.79 11864.27 9274.59 11375.54 11186.84 7191.01 69
dps64.08 12763.22 13765.08 11175.27 11479.65 12566.68 14346.63 18956.94 10755.67 8043.96 12643.63 14964.00 9369.50 16969.82 17082.25 16479.02 164
ACMP68.86 772.15 7372.25 7872.03 6780.96 6580.87 11577.93 5964.13 6669.29 6760.79 6464.04 5353.54 12463.91 9473.74 12675.27 11384.45 13388.98 93
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12475.17 16370.68 11756.23 14154.12 12844.71 12247.42 11051.10 13063.82 9568.08 17366.32 18482.47 16186.38 115
GBi-Net69.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
test169.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
FMVSNet268.06 9968.57 10467.45 10069.49 14278.65 13374.54 8160.23 11256.29 11249.64 10342.13 13857.08 10363.43 9681.15 5580.99 5587.37 5383.73 137
baseline271.22 8073.01 7769.13 8475.76 11086.34 6971.23 10862.78 8462.62 8552.85 8857.32 7354.31 11963.27 9979.74 6879.31 7288.89 1591.43 62
EPMVS66.21 11167.49 11464.73 11475.81 10984.20 8968.94 12744.37 19561.55 8948.07 10949.21 10254.87 11762.88 10071.82 14671.40 15988.28 3279.37 163
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19168.92 18861.20 17142.28 20254.17 12739.57 14647.78 10864.97 6462.68 10173.85 12469.52 17377.43 19286.75 111
thres100view90067.14 10966.09 12468.38 9377.70 9083.84 9174.52 8466.33 5349.16 14243.40 12943.24 12741.34 15262.59 10279.31 7175.92 10585.73 9689.81 83
baseline171.47 7672.02 7970.82 7480.56 7084.51 8376.61 6766.93 4856.22 11348.66 10555.40 7860.43 8562.55 10383.35 2980.99 5589.60 783.28 143
LGP-MVS_train72.02 7473.18 7670.67 7682.13 5980.26 12179.58 5163.04 7670.09 6351.98 9065.06 5055.62 11262.49 10475.97 10176.32 10184.80 12588.93 94
MSDG65.57 11661.57 15370.24 7882.02 6076.47 15274.46 8768.73 3956.52 11050.33 10038.47 15741.10 15662.42 10572.12 14372.94 14483.47 14673.37 182
IterMVS-LS66.08 11366.56 12065.51 10773.67 12074.88 16470.89 11553.55 16650.42 13648.32 10850.59 9755.66 11161.83 10673.93 12274.42 12384.82 12486.01 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5085.35 7777.84 6061.77 9458.01 10555.40 8241.26 14258.34 9761.69 10781.70 5178.29 8289.56 880.02 160
v2v48263.68 13162.85 14364.65 11568.01 15180.46 11971.90 9857.60 12744.26 16142.82 13439.80 15338.62 16861.56 10873.06 13274.86 11686.03 8888.90 96
tfpn200view965.90 11464.96 12867.00 10377.70 9081.58 10571.71 10362.94 8149.16 14243.40 12943.24 12741.34 15261.42 10976.24 9774.63 11984.84 12188.52 100
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13576.81 15170.72 11643.13 20052.51 13235.34 17146.55 12246.36 14261.40 11071.57 15071.44 15784.84 12187.79 106
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8178.26 13767.65 13467.48 4539.81 17930.98 18538.25 15934.59 18861.37 11170.55 15973.47 13379.74 18379.59 161
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1063.00 13662.22 14863.90 12467.88 15377.78 14271.59 10454.34 16145.37 15842.76 13538.53 15638.93 16661.05 11274.39 11774.52 12285.75 9386.04 119
tpm64.85 12166.02 12563.48 12674.52 11778.38 13670.98 11444.99 19351.61 13343.28 13147.66 10953.18 12560.57 11370.58 15871.30 16286.54 7589.45 89
v863.44 13362.58 14564.43 11768.28 15078.07 13871.82 9954.85 15746.70 15245.20 11839.40 15440.91 15760.54 11472.85 13674.39 12485.92 8985.76 124
v119262.25 14261.64 15262.96 12966.88 15979.72 12469.96 12055.77 14541.58 17139.42 14837.05 16635.96 18260.50 11574.30 12074.09 12685.24 11088.76 97
v114463.00 13662.39 14763.70 12567.72 15480.27 12071.23 10856.40 13842.51 16640.81 14338.12 16137.73 16960.42 11674.46 11574.55 12185.64 10489.12 92
gm-plane-assit54.99 17957.99 17551.49 18769.27 14654.42 21132.32 21442.59 20121.18 21513.71 21123.61 20243.84 14860.21 11787.09 586.55 590.81 489.28 90
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12282.83 9666.42 14645.40 19060.40 9445.27 11649.22 10157.60 10260.01 11870.61 15671.38 16086.08 8781.91 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9874.35 16968.45 12962.81 8345.86 15638.48 15435.71 17537.35 17259.81 11967.24 17569.80 17279.58 18478.32 166
v14419262.05 14661.46 15462.73 13566.59 16379.87 12369.30 12555.88 14341.50 17339.41 14937.23 16436.45 17759.62 12072.69 13973.51 13285.61 10588.93 94
v192192061.66 14961.10 15762.31 13766.32 16479.57 12668.41 13055.49 15041.03 17438.69 15336.64 17235.27 18559.60 12173.23 13073.41 13485.37 10788.51 101
GA-MVS64.55 12465.76 12763.12 12869.68 14181.56 10669.59 12358.16 11845.23 15935.58 17047.01 11841.82 15159.41 12279.62 6978.54 7886.32 7986.56 113
ADS-MVSNet58.40 16959.16 17057.52 16665.80 16974.57 16860.26 17240.17 20950.51 13538.01 15740.11 15244.72 14659.36 12364.91 18266.55 18281.53 17172.72 185
pmmvs463.14 13462.46 14663.94 12366.03 16676.40 15366.82 14257.60 12756.74 10850.26 10140.81 14737.51 17159.26 12471.75 14871.48 15683.68 14582.53 148
v124061.09 15260.55 16161.72 14165.92 16879.28 12967.16 14054.91 15639.79 18038.10 15636.08 17434.64 18759.15 12572.86 13573.36 13685.10 11287.84 105
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8087.16 5672.05 9761.80 9356.46 11159.66 6753.88 8862.48 7159.08 12681.17 5478.90 7586.53 7694.74 27
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13681.72 10269.28 12649.50 17858.08 10243.94 12650.50 9856.02 10858.86 12770.72 15573.37 13584.24 13680.52 159
FMVSNet163.48 13263.07 13963.97 12265.31 17076.37 15471.77 10257.90 12343.32 16545.66 11435.06 18049.43 13458.57 12877.49 8578.22 8384.59 13081.60 156
USDC59.69 16060.03 16559.28 15664.04 17571.84 17763.15 16455.36 15254.90 12435.02 17248.34 10429.79 20458.16 12970.60 15771.33 16179.99 18173.42 181
thres40065.18 12064.44 13266.04 10576.40 10582.63 9771.52 10564.27 6544.93 16040.69 14441.86 13940.79 15858.12 13077.67 8374.64 11885.26 10988.56 99
thres20065.58 11564.74 13066.56 10477.52 9581.61 10373.44 9062.95 7946.23 15442.45 13642.76 12941.18 15458.12 13076.24 9775.59 10984.89 11989.58 86
test250669.26 8770.79 9167.48 9978.64 8386.40 6772.22 9562.75 8558.05 10345.24 11750.76 9554.93 11658.05 13279.82 6679.70 6787.96 3985.90 122
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8386.40 6772.22 9562.75 8558.05 10344.06 12540.92 14648.20 13758.05 13279.82 6679.70 6787.96 3986.32 117
thisisatest053068.38 9770.98 8965.35 10972.61 12584.42 8468.21 13157.98 12059.77 9650.80 9754.63 8158.48 9457.92 13476.99 9277.47 8984.60 12985.07 128
tttt051767.99 10070.61 9264.94 11271.94 13083.96 9067.62 13557.98 12059.30 9849.90 10254.50 8457.98 10157.92 13476.48 9577.47 8984.24 13684.58 131
SCA63.90 12966.67 11760.66 14573.75 11871.78 17959.87 17543.66 19661.13 9145.03 11951.64 9359.45 9057.92 13470.96 15370.80 16483.71 14480.92 158
test-LLR68.23 9871.61 8564.28 12071.37 13281.32 11063.98 15561.03 9958.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16581.32 11063.98 15555.36 15258.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
V4262.86 13862.97 14062.74 13460.84 18878.99 13171.46 10657.13 13446.85 15044.28 12438.87 15540.73 16057.63 13972.60 14074.14 12585.09 11488.63 98
CR-MVSNet62.31 14064.75 12959.47 15368.63 14871.29 18267.53 13643.18 19855.83 11541.40 13841.04 14455.85 10957.29 14072.76 13773.27 13978.77 18883.23 144
PatchT60.46 15663.85 13456.51 17265.95 16775.68 16047.34 19741.39 20553.89 12941.40 13837.84 16250.30 13357.29 14072.76 13773.27 13985.67 10083.23 144
TinyColmap52.66 18850.09 19955.65 17459.72 19264.02 20257.15 18252.96 17040.28 17732.51 18032.42 18520.97 21556.65 14263.95 18865.15 18974.91 19963.87 203
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11183.35 9366.85 14157.83 12553.02 13041.15 14155.82 7567.89 5556.01 14374.40 11672.92 14583.33 14890.30 79
test111166.72 11067.80 11165.45 10877.42 9786.63 6269.69 12262.98 7755.29 11939.47 14740.12 15147.11 14055.70 14479.96 6480.00 6587.47 5285.49 127
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19072.36 17544.63 20542.20 20339.45 18143.47 12821.66 20834.00 19155.47 14565.42 18067.16 18083.02 15571.08 191
test-mter64.06 12869.24 9958.01 16159.07 19477.40 14659.13 17748.11 18355.64 11839.18 15151.56 9458.54 9355.38 14673.52 12876.00 10487.22 6292.05 59
thres600view763.77 13063.14 13864.51 11675.49 11381.61 10369.59 12362.95 7943.96 16338.90 15241.09 14340.24 16355.25 14776.24 9771.54 15484.89 11987.30 108
v14862.00 14761.19 15662.96 12967.46 15779.49 12767.87 13257.66 12642.30 16745.02 12038.20 16038.89 16754.77 14869.83 16672.60 14884.96 11587.01 110
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10788.61 3971.18 11041.24 20825.74 21113.16 21322.91 20563.97 6954.52 14985.06 1685.25 1090.92 391.78 61
IterMVS61.87 14863.55 13559.90 14967.29 15872.20 17667.34 13948.56 18147.48 14837.86 15947.07 11648.27 13554.08 15072.12 14373.71 13084.30 13583.99 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF55.07 17858.06 17351.57 18548.87 21058.95 20753.68 18841.26 20762.42 8645.88 11354.38 8554.26 12053.75 15157.15 19953.53 20966.01 20865.75 200
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12879.00 13062.77 16553.23 16841.77 17045.42 11530.74 19139.03 16553.01 15264.81 18464.65 19075.26 19868.03 196
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16271.84 17767.53 13646.93 18847.56 14736.77 16446.85 12048.21 13652.51 15370.36 16172.40 15071.63 20683.53 140
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6189.01 3664.50 15064.91 6256.65 10962.59 5247.89 10745.23 14551.99 15469.18 17081.88 4088.77 1792.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs559.72 15960.24 16359.11 15762.77 18277.33 14863.17 16354.00 16340.21 17837.23 16040.41 14835.99 18151.75 15572.55 14172.74 14785.72 9882.45 150
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 17973.22 17367.70 13355.58 14836.17 19136.84 16232.64 18435.14 18651.50 15665.81 17869.81 17181.73 16982.44 151
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14577.83 14164.07 15363.94 6850.03 13731.17 18344.82 12541.12 15551.37 15771.02 15274.81 11785.30 10884.95 129
DU-MVS60.87 15461.82 15159.76 15166.69 16075.87 15664.07 15361.96 8949.31 14031.17 18342.76 12936.95 17451.37 15769.67 16773.20 14283.30 14984.95 129
FMVSNet558.86 16560.24 16357.25 16852.66 20666.25 19463.77 15852.86 17157.85 10637.92 15836.12 17352.22 12851.37 15770.88 15471.43 15884.92 11666.91 198
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17269.79 18549.05 19347.12 18720.36 21716.52 20536.65 17126.96 20850.76 16060.47 19363.16 19564.73 20972.00 186
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal58.97 16456.48 17961.89 13971.27 13476.21 15566.65 14461.76 9532.90 19936.41 16527.83 19729.14 20550.64 16173.06 13273.05 14384.58 13183.15 146
v7n57.04 17556.64 17857.52 16662.85 18174.75 16661.76 16751.80 17435.58 19536.02 16832.33 18633.61 19350.16 16267.73 17470.34 16982.51 15982.12 152
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20067.77 19057.54 18153.74 16540.93 17541.09 14231.19 19029.10 20649.07 16365.54 17967.28 17881.14 17375.81 170
NR-MVSNet61.08 15362.09 15059.90 14971.96 12975.87 15663.60 15961.96 8949.31 14027.95 18842.76 12933.85 19248.82 16474.35 11874.05 12885.13 11184.45 132
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16073.90 17061.63 16962.90 8249.15 14426.87 19035.18 17937.62 17048.20 16569.67 16773.61 13184.92 11682.82 147
RPMNet58.63 16862.80 14453.76 18367.59 15671.29 18254.60 18638.13 21055.83 11535.70 16941.58 14153.04 12647.89 16666.10 17767.38 17778.65 19084.40 133
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 14975.57 16263.38 16263.78 7046.74 15127.73 18942.56 13336.84 17547.66 16770.36 16174.59 12084.91 11882.46 149
anonymousdsp54.99 17957.24 17652.36 18453.82 20471.75 18051.49 19048.14 18233.74 19733.66 17738.34 15836.13 18047.54 16864.53 18670.60 16779.53 18585.59 126
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 18973.82 17157.92 18043.38 19739.43 18232.51 18033.23 18334.05 19047.26 16962.36 19066.21 18584.24 13673.19 183
thisisatest051559.37 16260.68 16057.84 16464.39 17475.65 16158.56 17953.86 16441.55 17242.12 13740.40 14939.59 16447.09 17071.69 14973.79 12981.02 17582.08 153
PM-MVS50.11 19450.38 19849.80 18947.23 21262.08 20550.91 19244.84 19441.90 16936.10 16735.22 17826.05 21146.83 17157.64 19755.42 20872.90 20374.32 176
CDS-MVSNet64.22 12665.89 12662.28 13870.05 13980.59 11769.91 12157.98 12043.53 16446.58 11248.22 10550.76 13146.45 17275.68 10376.08 10382.70 15786.34 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS58.86 16560.91 15856.47 17362.38 18477.57 14458.97 17852.98 16938.76 18336.17 16642.26 13747.94 13846.45 17270.23 16370.79 16581.86 16878.82 165
TDRefinement52.70 18751.02 19654.66 17957.41 19965.06 19861.47 17054.94 15444.03 16233.93 17630.13 19327.57 20746.17 17461.86 19162.48 19874.01 20266.06 199
IS_MVSNet67.29 10771.98 8061.82 14076.92 10084.32 8865.90 14858.22 11755.75 11739.22 15054.51 8362.47 7245.99 17578.83 7578.52 7984.70 12789.47 88
MIMVSNet57.78 17259.71 16755.53 17554.79 20277.10 14963.89 15745.02 19246.59 15336.79 16328.36 19640.77 15945.84 17674.97 10976.58 9686.87 7073.60 180
UGNet67.57 10471.69 8462.76 13369.88 14082.58 9866.43 14558.64 11554.71 12651.87 9161.74 5962.01 7645.46 17774.78 11274.99 11484.24 13691.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13884.59 8266.37 14755.47 15148.40 14540.62 14557.67 7158.43 9645.37 17877.49 8576.24 10284.47 13285.99 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12367.21 19262.13 16655.82 14447.83 14634.39 17431.60 18834.24 18944.90 17963.88 18962.52 19775.67 19663.02 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19864.14 20147.18 19847.75 18431.15 20324.42 19441.01 14526.55 20944.04 18054.76 20658.70 20371.99 20568.21 194
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15577.90 14061.75 16861.24 9849.83 13929.80 18742.57 13240.62 16143.36 18170.49 16073.27 13983.76 14285.81 123
pm-mvs159.21 16359.58 16858.77 15967.97 15277.07 15064.12 15157.20 13234.73 19636.86 16135.34 17740.54 16243.34 18274.32 11973.30 13883.13 15481.77 155
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12680.49 11863.44 16155.55 14932.49 20038.31 15528.87 19537.22 17342.84 18374.30 12075.70 10784.84 12177.14 169
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21462.31 20446.28 20055.74 14629.83 20420.98 20027.11 19916.45 22041.98 18441.11 21357.47 20474.72 20061.65 208
UA-Net64.62 12268.23 10960.42 14777.53 9481.38 10860.08 17457.47 13047.01 14944.75 12160.68 6471.32 4541.84 18573.27 12972.25 15180.83 17771.68 187
pmmvs341.86 20642.29 20841.36 20339.80 21352.66 21238.93 21135.85 21423.40 21420.22 20119.30 20920.84 21640.56 18655.98 20458.79 20272.80 20465.03 201
pmnet_mix0253.92 18553.30 18754.65 18061.89 18571.33 18154.54 18754.17 16240.38 17634.65 17334.76 18130.68 20340.44 18760.97 19263.71 19282.19 16571.24 190
pmmvs654.20 18453.54 18654.97 17663.22 18072.98 17460.17 17352.32 17326.77 21034.30 17523.29 20436.23 17940.33 18868.77 17168.76 17479.47 18678.00 167
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12774.69 16763.57 16061.42 9732.30 20132.65 17933.97 18235.96 18239.17 18973.84 12572.84 14684.37 13474.69 175
CVMVSNet54.92 18158.16 17251.13 18862.61 18368.44 18955.45 18552.38 17242.28 16821.45 19947.10 11546.10 14337.96 19064.42 18763.81 19176.92 19475.01 174
EPNet_dtu66.17 11270.13 9661.54 14281.04 6477.39 14768.87 12862.50 8769.78 6433.51 17863.77 5456.22 10737.65 19172.20 14272.18 15285.69 9979.38 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet47.67 20047.00 20448.45 19354.72 20362.78 20346.95 19951.25 17536.01 19326.09 19326.59 20025.93 21235.50 19255.67 20559.01 20176.22 19563.04 204
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 11978.74 13256.51 18357.49 12955.22 12026.86 19154.56 8261.35 7931.06 19373.10 13174.90 11582.49 16083.31 141
Anonymous2023120652.23 18952.80 19151.56 18664.70 17369.41 18651.01 19158.60 11636.63 18822.44 19821.80 20731.42 19930.52 19466.79 17667.83 17682.10 16675.73 171
test0.0.03 157.35 17459.89 16654.38 18171.37 13273.45 17252.71 18961.03 9946.11 15526.33 19241.73 14044.08 14729.72 19571.43 15170.90 16385.10 11271.56 188
CP-MVSNet50.57 19252.60 19348.21 19458.77 19665.82 19648.17 19556.29 14037.41 18516.59 20437.14 16531.95 19629.21 19656.60 20163.71 19280.22 17975.56 172
ambc42.30 20750.36 20849.51 21335.47 21232.04 20223.53 19517.36 2118.95 22229.06 19764.88 18356.26 20561.29 21167.12 197
PS-CasMVS50.17 19352.02 19448.02 19558.60 19765.54 19748.04 19656.19 14236.42 19016.42 20635.68 17631.33 20028.85 19856.42 20363.54 19480.01 18075.18 173
PEN-MVS51.04 19052.94 18948.82 19161.45 18766.00 19548.68 19457.20 13236.87 18615.36 20736.98 16732.72 19428.77 19957.63 19866.37 18381.44 17274.00 178
FPMVS39.11 20836.39 21042.28 20255.97 20145.94 21446.23 20141.57 20435.73 19422.61 19623.46 20319.82 21728.32 20043.57 21040.67 21258.96 21245.54 212
new_pmnet33.19 20935.52 21130.47 20927.55 21945.31 21529.29 21530.92 21529.00 2079.88 21818.77 21017.64 21926.77 20144.07 20945.98 21158.41 21347.87 211
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18664.38 20045.89 20357.33 13136.11 19212.79 21436.87 16831.93 19725.73 20258.01 19665.22 18880.75 17870.93 192
EU-MVSNet44.84 20347.85 20341.32 20549.26 20956.59 21043.07 20647.64 18633.03 19813.82 21036.78 16930.99 20124.37 20353.80 20755.57 20769.78 20768.21 194
test_method28.15 21134.48 21220.76 2126.76 22321.18 21921.03 21718.41 21836.77 18717.52 20215.67 21531.63 19824.05 20441.03 21426.69 21636.82 21768.38 193
WR-MVS51.02 19154.56 18346.90 19763.84 17669.23 18744.78 20456.38 13938.19 18414.19 20937.38 16336.82 17622.39 20560.14 19466.20 18679.81 18273.95 179
WR-MVS_H49.62 19652.63 19246.11 20058.80 19567.58 19146.14 20254.94 15436.51 18913.63 21236.75 17035.67 18422.10 20656.43 20262.76 19681.06 17472.73 184
DeepMVS_CXcopyleft19.81 22117.01 21910.02 21923.61 2135.85 22017.21 2128.03 22321.13 20722.60 21721.42 22130.01 215
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21124.79 21726.97 21641.34 20620.45 21622.50 19717.11 21318.64 21820.44 20841.99 21238.06 21354.02 21442.44 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testgi48.51 19950.53 19746.16 19964.78 17167.15 19341.54 20754.81 15829.12 20617.03 20332.07 18731.98 19520.15 20965.26 18167.00 18178.67 18961.10 209
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20559.89 20639.38 20949.61 17728.26 20812.10 21522.17 20621.54 21419.22 21050.96 20856.04 20674.61 20161.92 207
MIMVSNet140.84 20743.46 20537.79 20732.14 21558.92 20839.24 21050.83 17627.00 20911.29 21616.76 21426.53 21017.75 21157.14 20061.12 20075.46 19756.78 210
test20.0347.23 20248.69 20245.53 20163.28 17864.39 19941.01 20856.93 13629.16 20515.21 20823.90 20130.76 20217.51 21264.63 18565.26 18779.21 18762.71 206
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19358.25 20934.48 21353.36 16745.66 1576.66 21950.62 9642.02 15016.62 21358.39 19561.21 19962.99 21064.40 202
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21621.59 21818.06 21837.53 21125.43 21210.03 2174.18 2204.25 22414.85 21443.20 21147.03 21039.62 21626.55 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS14.40 21510.71 21818.70 21428.15 21812.09 2237.06 22236.89 21211.00 2193.56 2234.95 2182.27 22613.91 21510.13 22016.06 21922.63 22018.51 219
E-PMN15.08 21411.65 21719.08 21328.73 21712.31 2226.95 22336.87 21310.71 2203.63 2225.13 2172.22 22713.81 21611.34 21918.50 21824.49 21921.32 218
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22220.24 2205.90 22429.05 2168.28 2213.92 2214.72 2192.42 2259.57 21718.89 21831.46 21516.07 22228.53 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt16.09 21613.07 2218.12 22413.61 2212.08 22055.09 12130.10 18640.26 15022.83 2135.35 21829.91 21525.25 21732.33 218
PMMVS220.45 21322.31 21518.27 21520.52 22026.73 21614.85 22028.43 21713.69 2180.79 22410.35 2169.10 2213.83 21927.64 21632.87 21441.17 21535.81 214
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22490.09 2877.20 650.02 22166.83 730.05 22559.90 6773.33 350.04 22078.40 7979.30 7388.65 2095.20 25
test1230.05 2170.08 2190.01 2180.00 2250.01 2250.01 2270.00 2230.05 2220.00 2260.16 2210.00 2290.04 2200.02 2220.05 2200.00 2240.26 220
testmvs0.05 2170.08 2190.01 2180.00 2250.01 2250.03 2260.01 2220.05 2220.00 2260.14 2220.01 2280.03 2220.05 2210.05 2200.01 2230.24 221
uanet_test0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
RE-MVS-def31.47 182
9.1484.47 7
SR-MVS86.33 4567.54 4480.78 20
our_test_363.32 17771.07 18455.90 184
MTAPA78.32 1179.42 24
MTMP76.04 1576.65 28
Patchmatch-RL test2.17 225
XVS82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
X-MVStestdata82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
mPP-MVS86.96 4070.61 48
NP-MVS81.60 34
Patchmtry78.06 13967.53 13643.18 19841.40 138