This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVScopyleft88.07 290.73 284.97 591.98 1095.01 287.86 1076.88 693.90 285.15 290.11 886.90 279.46 1286.26 1084.67 1888.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 490.57 384.73 689.38 2891.60 1888.24 874.15 1393.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS76.94 183.08 2087.77 1077.60 3690.11 2090.96 2078.48 5572.63 2393.10 465.84 4380.67 2481.55 1974.80 3185.94 1385.39 883.75 14496.77 11
DPE-MVScopyleft87.60 590.44 484.29 892.09 993.44 688.69 475.11 1093.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 892.40 683.40 389.26 1185.57 586.04 286.24 1184.89 1588.39 3195.42 21
APDe-MVS86.37 788.41 884.00 1091.43 1591.83 1688.34 674.67 1191.19 781.76 591.13 581.94 1880.07 783.38 2882.58 3587.69 4696.78 10
APD-MVScopyleft84.83 1387.00 1282.30 1489.61 2689.21 3586.51 1573.64 1790.98 877.99 1389.89 980.04 2479.18 1482.00 4881.37 4886.88 6995.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft85.64 1088.43 782.39 1392.65 490.24 2785.83 1774.21 1290.68 975.63 1986.77 1484.15 878.68 1686.33 885.26 987.32 5795.60 18
SMA-MVScopyleft85.24 1288.27 981.72 1691.74 1290.71 2186.71 1373.16 2090.56 1074.33 2083.07 1985.88 477.16 2086.28 985.58 687.23 6195.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.84.39 1486.58 1781.83 1588.09 4086.47 6685.63 1973.62 1890.13 1179.24 1089.67 1082.99 1277.72 1881.22 5480.92 5886.68 7394.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj84.33 1583.20 2785.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 344.71 14879.75 883.52 2682.72 3288.75 1995.37 24
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1995.37 24
SD-MVS84.31 1686.96 1481.22 1788.98 3288.68 3985.65 1873.85 1689.09 1479.63 987.34 1384.84 673.71 3882.66 3581.60 4585.48 10794.51 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS85.96 887.58 1184.06 992.58 592.40 1187.62 1177.77 588.44 1575.93 1879.49 2681.97 1781.65 587.04 686.58 488.79 1797.18 7
ACMMP_NAP83.54 1886.37 1880.25 2289.57 2790.10 2985.27 2171.66 2487.38 1673.08 2384.23 1880.16 2275.31 2684.85 1783.64 2486.57 7494.21 39
TSAR-MVS + GP.82.27 2485.98 1977.94 3480.72 7288.25 4581.12 4467.71 4687.10 1773.31 2285.23 1683.68 976.64 2280.43 6281.47 4788.15 3895.66 17
zzz-MVS81.65 2683.10 2879.97 2488.14 3987.62 5383.96 2769.90 3286.92 1877.67 1572.47 3778.74 2674.13 3581.59 5281.15 5386.01 8993.19 50
DPM-MVS85.41 1186.72 1683.89 1191.66 1391.92 1590.49 378.09 486.90 1973.95 2174.52 3582.01 1679.29 1390.24 190.65 189.86 690.78 74
abl_679.06 3089.68 2592.14 1377.70 6369.68 3486.87 2071.88 2674.29 3680.06 2376.56 2388.84 1695.82 13
NCCC84.16 1785.46 2182.64 1292.34 890.57 2486.57 1476.51 986.85 2172.91 2477.20 3278.69 2779.09 1584.64 2084.88 1688.44 2995.41 22
train_agg83.35 1986.93 1579.17 2889.70 2488.41 4285.60 2072.89 2286.31 2266.58 4290.48 782.24 1573.06 4483.10 3182.64 3487.21 6595.30 26
TSAR-MVS + ACMM81.59 2785.84 2076.63 4089.82 2386.53 6586.32 1666.72 5385.96 2365.43 4488.98 1282.29 1467.57 8182.06 4781.33 4983.93 14293.75 44
MCST-MVS85.75 986.99 1384.31 794.07 392.80 888.15 979.10 385.66 2470.72 3176.50 3380.45 2182.17 488.35 287.49 391.63 297.65 4
HFP-MVS82.48 2384.12 2480.56 2090.15 1987.55 5484.28 2469.67 3585.22 2577.95 1484.69 1775.94 3175.04 2881.85 4981.17 5286.30 7992.40 57
OMC-MVS74.03 6375.82 6571.95 6979.56 7580.98 11475.35 8063.21 7684.48 2661.83 5661.54 6466.89 5969.41 7076.60 9474.07 12882.34 16586.15 120
ACMMPR80.62 3082.98 2977.87 3588.41 3487.05 5983.02 3069.18 3883.91 2768.35 3882.89 2073.64 3672.16 4980.78 6081.13 5486.10 8691.43 64
DeepC-MVS_fast75.41 281.69 2582.10 3481.20 1891.04 1787.81 5283.42 2874.04 1483.77 2871.09 2966.88 4772.44 3979.48 1185.08 1584.97 1488.12 3993.78 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + COLMAP73.09 6876.86 5768.71 9074.97 11782.49 10174.51 8961.83 9483.16 2949.31 10682.22 2251.62 13068.94 7478.76 7875.52 11282.67 15984.23 137
SteuartSystems-ACMMP82.51 2285.35 2279.20 2790.25 1889.39 3484.79 2270.95 2682.86 3068.32 3986.44 1577.19 2873.07 4383.63 2583.64 2487.82 4294.34 34
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS74.46 380.30 3181.05 3779.42 2587.42 4288.50 4183.23 2973.27 1982.78 3171.01 3062.86 6069.93 5274.80 3184.30 2184.20 2186.79 7294.77 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA71.37 8070.27 9572.66 6680.79 7181.33 11071.07 11565.75 5982.36 3264.80 4642.46 13656.49 10672.70 4673.00 13470.52 16980.84 17885.76 126
PHI-MVS79.43 3484.06 2574.04 5786.15 4991.57 1980.85 4768.90 4182.22 3351.81 9478.10 2874.28 3470.39 6184.01 2484.00 2286.14 8594.24 37
CSCG82.90 2184.52 2381.02 1991.85 1193.43 787.14 1274.01 1581.96 3476.14 1670.84 3982.49 1369.71 6482.32 4185.18 1187.26 6095.40 23
CP-MVS79.44 3381.51 3677.02 3986.95 4485.96 7482.00 3568.44 4381.82 3567.39 4077.43 3073.68 3571.62 5379.56 7179.58 7085.73 9792.51 56
EPNet79.28 3882.25 3175.83 4688.31 3790.14 2879.43 5368.07 4481.76 3661.26 6077.26 3170.08 5170.06 6282.43 3982.00 3987.82 4292.09 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 2982.93 3078.53 3286.83 4692.26 1281.19 4366.95 5081.60 3769.90 3466.93 4674.80 3376.79 2184.68 1984.77 1789.50 995.50 19
NP-MVS81.60 37
TAPA-MVS67.10 971.45 7873.47 7669.10 8877.04 9980.78 11773.81 9262.10 9080.80 3951.28 9560.91 6663.80 7267.98 7774.59 11372.42 15082.37 16480.97 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVScopyleft80.94 2883.49 2677.96 3388.48 3388.16 4682.82 3369.34 3780.79 4069.67 3582.35 2177.13 2971.60 5480.97 5980.96 5785.87 9394.06 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3681.84 3576.60 4188.38 3686.69 6182.97 3265.75 5980.39 4164.94 4581.95 2372.11 4471.41 5580.45 6180.55 6386.18 8390.76 76
canonicalmvs77.65 4479.59 4375.39 4881.52 6589.83 3381.32 4260.74 10780.05 4266.72 4168.43 4365.09 6574.72 3378.87 7682.73 3187.32 5792.16 58
HQP-MVS78.26 4180.91 3875.17 5185.67 5184.33 8783.01 3169.38 3679.88 4355.83 7879.85 2564.90 6770.81 5782.46 3781.78 4186.30 7993.18 51
CDPH-MVS79.39 3782.13 3376.19 4489.22 3188.34 4384.20 2571.00 2579.67 4456.97 7777.77 2972.24 4368.50 7681.33 5382.74 3087.23 6192.84 53
ACMMPcopyleft77.61 4579.59 4375.30 5085.87 5085.58 7581.42 4067.38 4979.38 4562.61 5178.53 2765.79 6468.80 7578.56 7978.50 8185.75 9490.80 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS78.16 4280.55 3975.38 4987.99 4186.27 7081.05 4568.98 3978.33 4661.07 6275.25 3472.27 4067.52 8280.03 6480.52 6485.66 10491.20 68
MVSTER76.92 5079.92 4173.42 6074.98 11682.97 9678.15 5863.41 7578.02 4764.41 4767.54 4472.80 3871.05 5683.29 3083.73 2388.53 2791.12 69
CLD-MVS77.36 4877.29 5477.45 3882.21 6188.11 4781.92 3668.96 4077.97 4869.62 3662.08 6159.44 9273.57 4081.75 5081.27 5088.41 3090.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5777.13 5673.44 5981.43 6682.55 10080.96 4664.35 6777.95 4961.39 5969.20 4270.94 4869.38 7173.89 12373.32 13883.14 15492.06 60
MAR-MVS77.19 4978.37 4975.81 4789.87 2290.58 2379.33 5465.56 6177.62 5058.33 7159.24 7367.98 5674.83 3082.37 4083.12 2986.95 6787.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS76.25 5380.22 4071.63 7178.23 8687.95 5172.75 9460.27 11177.50 5157.73 7371.53 3866.60 6173.16 4280.99 5881.23 5187.63 4995.73 15
MVS_030479.43 3482.20 3276.20 4384.22 5491.79 1781.82 3863.81 7176.83 5261.71 5766.37 4975.52 3276.38 2485.54 1485.03 1389.28 1194.32 36
AdaColmapbinary76.23 5473.55 7479.35 2689.38 2885.00 8079.99 5173.04 2176.60 5371.17 2855.18 8157.99 10177.87 1776.82 9376.82 9484.67 12986.45 116
MSLP-MVS++78.57 3977.33 5380.02 2388.39 3584.79 8184.62 2366.17 5775.96 5478.40 1161.59 6371.47 4673.54 4178.43 8078.88 7688.97 1490.18 82
DROMVSNet76.05 5578.87 4572.77 6478.87 8286.63 6277.50 6557.04 13575.34 5561.68 5864.20 5469.56 5373.96 3682.12 4480.65 6187.57 5093.57 46
PVSNet_BlendedMVS76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
PVSNet_Blended76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
3Dnovator+70.16 677.87 4377.29 5478.55 3189.25 3088.32 4480.09 4967.95 4574.89 5871.83 2752.05 9470.68 4976.27 2582.27 4282.04 3785.92 9090.77 75
CS-MVS73.80 6677.47 5169.53 8374.86 11885.07 7869.93 12256.91 13872.12 5954.28 8764.82 5366.85 6074.88 2979.25 7379.64 6986.30 7994.52 31
3Dnovator70.49 578.42 4076.77 5980.35 2191.43 1590.27 2681.84 3770.79 2772.10 6071.95 2550.02 10167.86 5877.47 1982.89 3284.24 2088.61 2489.99 83
CANet_DTU72.84 7076.63 6168.43 9476.81 10186.62 6475.54 7754.71 16372.06 6143.54 12967.11 4558.46 9672.40 4781.13 5780.82 6087.57 5090.21 81
CS-MVS-test73.97 6476.86 5770.60 7775.53 11383.16 9477.50 6557.04 13571.34 6253.25 8963.44 5764.85 6873.96 3682.12 4478.80 7786.30 7994.34 34
PMMVS70.37 8575.06 6864.90 11571.46 13381.88 10264.10 15455.64 15071.31 6346.69 11370.69 4058.56 9369.53 6779.03 7575.63 10881.96 16988.32 103
MVS_111021_LR74.26 6275.95 6472.27 6779.43 7785.04 7972.71 9565.27 6470.92 6463.58 4969.32 4160.31 8869.43 6977.01 9177.15 9183.22 15191.93 62
baseline72.89 6974.46 7171.07 7275.99 10887.50 5574.57 8460.49 10970.72 6557.60 7460.63 6860.97 8370.79 5875.27 10776.33 10086.94 6889.79 86
LGP-MVS_train72.02 7573.18 7770.67 7682.13 6280.26 12279.58 5263.04 7870.09 6651.98 9265.06 5155.62 11262.49 10575.97 10176.32 10184.80 12688.93 95
EPNet_dtu66.17 11370.13 9661.54 14481.04 6777.39 14968.87 13062.50 8969.78 6733.51 18063.77 5656.22 10737.65 19372.20 14272.18 15385.69 10079.38 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.22 5876.69 6073.51 5879.30 7888.82 3880.06 5058.74 11469.77 6857.50 7659.78 7261.35 8175.31 2682.07 4683.60 2690.13 591.41 66
EIA-MVS73.48 6776.05 6370.47 7878.12 8787.21 5771.78 10260.63 10869.66 6955.56 8164.86 5260.69 8469.53 6777.35 8978.59 7887.22 6394.01 41
ACMP68.86 772.15 7472.25 7972.03 6880.96 6880.87 11677.93 6064.13 6969.29 7060.79 6564.04 5553.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7474.88 16672.64 9663.70 7369.26 7155.71 7947.24 11555.31 11470.42 6072.05 14670.67 16781.66 17277.19 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS70.85 475.73 5676.55 6274.78 5583.67 5588.04 5081.47 3970.62 3069.24 7257.52 7560.59 6969.18 5470.65 5977.11 9077.65 8884.75 12794.01 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
diffmvs74.32 6175.42 6773.04 6275.60 11287.27 5678.20 5762.96 8068.66 7361.89 5559.79 7159.84 9071.80 5178.30 8379.87 6687.80 4494.23 38
casdiffmvs75.20 5975.69 6674.63 5679.26 7989.07 3678.47 5663.59 7467.05 7463.79 4855.72 7960.32 8773.58 3982.16 4381.78 4189.08 1393.72 45
GG-mvs-BLEND54.54 18377.58 5027.67 2120.03 22690.09 3077.20 690.02 22366.83 750.05 22759.90 7073.33 370.04 22278.40 8179.30 7388.65 2295.20 27
QAPM77.50 4677.43 5277.59 3791.52 1492.00 1481.41 4170.63 2866.22 7658.05 7254.70 8271.79 4574.49 3482.46 3782.04 3789.46 1092.79 55
MVS_111021_HR77.42 4778.40 4876.28 4286.95 4490.68 2277.41 6770.56 3166.21 7762.48 5366.17 5063.98 7072.08 5082.87 3383.15 2888.24 3595.71 16
OpenMVScopyleft67.62 874.92 6073.91 7276.09 4590.10 2190.38 2578.01 5966.35 5566.09 7862.80 5046.33 12464.55 6971.77 5279.92 6680.88 5987.52 5289.20 92
CostFormer72.18 7373.90 7370.18 8079.47 7686.19 7376.94 7048.62 18266.07 7960.40 6754.14 8865.82 6367.98 7775.84 10276.41 9987.67 4792.83 54
GBi-Net69.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
test169.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
FMVSNet370.41 8471.89 8368.68 9170.89 13979.42 12975.63 7460.97 10365.32 8051.06 9647.37 11262.05 7564.90 9082.49 3682.27 3688.64 2384.34 136
DELS-MVS79.49 3279.84 4279.08 2988.26 3892.49 984.12 2670.63 2865.27 8369.60 3761.29 6566.50 6272.75 4588.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMM66.70 1070.42 8268.49 10572.67 6582.85 5677.76 14577.70 6364.76 6664.61 8460.74 6649.29 10253.97 12265.86 8674.97 10975.57 11084.13 14183.29 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D71.38 7974.70 7067.51 10051.61 20988.06 4977.29 6860.95 10663.61 8548.36 10966.60 4860.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
baseline271.22 8173.01 7869.13 8775.76 11086.34 6971.23 11062.78 8662.62 8652.85 9057.32 7554.31 11963.27 10079.74 6979.31 7288.89 1591.43 64
RPSCF55.07 17958.06 17451.57 18748.87 21258.95 20953.68 19041.26 20962.42 8745.88 11554.38 8754.26 12053.75 15357.15 20053.53 21066.01 21065.75 202
DI_MVS_plusplus_trai73.94 6574.85 6972.88 6376.57 10486.80 6080.41 4861.47 9862.35 8859.44 6947.91 10768.12 5572.24 4882.84 3481.50 4687.15 6694.42 33
CHOSEN 1792x268872.55 7271.98 8173.22 6186.57 4792.41 1075.63 7466.77 5262.08 8952.32 9130.27 19450.74 13366.14 8586.22 1285.41 791.90 196.75 12
EPMVS66.21 11267.49 11464.73 11675.81 10984.20 8968.94 12944.37 19761.55 9048.07 11149.21 10454.87 11762.88 10171.82 14771.40 16088.28 3479.37 165
tpm cat167.47 10567.05 11667.98 9676.63 10281.51 10874.49 9047.65 18761.18 9161.12 6142.51 13553.02 12864.74 9270.11 16571.50 15683.22 15189.49 88
SCA63.90 13066.67 11760.66 14773.75 12071.78 18159.87 17743.66 19861.13 9245.03 12151.64 9559.45 9157.92 13670.96 15470.80 16583.71 14580.92 160
LS3D64.54 12662.14 15067.34 10380.85 6975.79 16069.99 12065.87 5860.77 9344.35 12542.43 13745.95 14565.01 8869.88 16668.69 17677.97 19371.43 191
tpmrst67.15 10868.12 11066.03 10876.21 10680.98 11471.27 10945.05 19360.69 9450.63 10046.95 12054.15 12165.30 8771.80 14871.77 15487.72 4590.48 78
PatchmatchNetpermissive65.43 11967.71 11262.78 13473.49 12482.83 9766.42 14845.40 19260.40 9545.27 11849.22 10357.60 10360.01 12070.61 15771.38 16186.08 8781.91 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE68.96 9269.32 9868.54 9276.61 10383.12 9571.78 10256.87 13960.21 9654.86 8545.95 12554.79 11864.27 9374.59 11375.54 11186.84 7191.01 71
thisisatest053068.38 9770.98 8965.35 11172.61 12784.42 8468.21 13357.98 12059.77 9750.80 9954.63 8358.48 9557.92 13676.99 9277.47 8984.60 13085.07 130
Effi-MVS+70.42 8271.23 8769.47 8478.04 8885.24 7775.57 7658.88 11359.56 9848.47 10852.73 9354.94 11569.69 6578.34 8277.06 9286.18 8390.73 77
tttt051767.99 10070.61 9264.94 11471.94 13283.96 9067.62 13757.98 12059.30 9949.90 10454.50 8657.98 10257.92 13676.48 9577.47 8984.24 13784.58 133
Fast-Effi-MVS+67.59 10267.56 11367.62 9973.67 12281.14 11371.12 11354.79 16258.88 10050.61 10146.70 12247.05 14269.12 7376.06 10076.44 9886.43 7786.65 114
test-LLR68.23 9871.61 8564.28 12271.37 13481.32 11163.98 15761.03 10158.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
TESTMET0.1,167.38 10671.61 8562.45 13866.05 16781.32 11163.98 15755.36 15558.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
MDTV_nov1_ep1365.21 12067.28 11562.79 13370.91 13881.72 10369.28 12849.50 18158.08 10343.94 12850.50 10056.02 10858.86 12970.72 15673.37 13684.24 13780.52 161
test250669.26 8770.79 9167.48 10178.64 8386.40 6772.22 9762.75 8758.05 10445.24 11950.76 9754.93 11658.05 13479.82 6779.70 6787.96 4085.90 124
ECVR-MVScopyleft67.93 10168.49 10567.28 10478.64 8386.40 6772.22 9762.75 8758.05 10444.06 12740.92 14748.20 13858.05 13479.82 6779.70 6787.96 4086.32 119
MS-PatchMatch70.34 8669.00 10171.91 7085.20 5385.35 7677.84 6261.77 9658.01 10655.40 8241.26 14358.34 9861.69 10981.70 5178.29 8289.56 880.02 162
FMVSNet558.86 16660.24 16457.25 17052.66 20866.25 19663.77 16052.86 17457.85 10737.92 16036.12 17452.22 12951.37 15970.88 15571.43 15984.92 11766.91 200
dps64.08 12863.22 13865.08 11375.27 11579.65 12666.68 14546.63 19156.94 10855.67 8043.96 12743.63 15164.00 9469.50 17069.82 17182.25 16679.02 166
pmmvs463.14 13562.46 14763.94 12566.03 16876.40 15566.82 14457.60 12756.74 10950.26 10340.81 14837.51 17359.26 12671.75 14971.48 15783.68 14682.53 150
IB-MVS64.48 1169.02 9168.97 10269.09 8981.75 6489.01 3764.50 15264.91 6556.65 11062.59 5247.89 10845.23 14651.99 15669.18 17181.88 4088.77 1892.93 52
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG65.57 11761.57 15470.24 7982.02 6376.47 15474.46 9168.73 4256.52 11150.33 10238.47 15841.10 15862.42 10672.12 14472.94 14583.47 14773.37 184
PVSNet_Blended_VisFu71.76 7673.54 7569.69 8279.01 8087.16 5872.05 9961.80 9556.46 11259.66 6853.88 9062.48 7359.08 12881.17 5578.90 7586.53 7694.74 29
FMVSNet268.06 9968.57 10467.45 10269.49 14478.65 13474.54 8560.23 11256.29 11349.64 10542.13 13957.08 10463.43 9781.15 5680.99 5587.37 5483.73 139
baseline171.47 7772.02 8070.82 7480.56 7384.51 8376.61 7166.93 5156.22 11448.66 10755.40 8060.43 8662.55 10483.35 2980.99 5589.60 783.28 145
PatchMatch-RL62.22 14660.69 16064.01 12368.74 14975.75 16159.27 17860.35 11056.09 11553.80 8847.06 11836.45 17964.80 9168.22 17367.22 18077.10 19574.02 179
CR-MVSNet62.31 14164.75 12959.47 15568.63 15071.29 18467.53 13843.18 20055.83 11641.40 14041.04 14555.85 10957.29 14272.76 13773.27 14078.77 19083.23 146
RPMNet58.63 16962.80 14553.76 18567.59 15871.29 18454.60 18838.13 21255.83 11635.70 17141.58 14253.04 12747.89 16866.10 17867.38 17878.65 19284.40 135
IS_MVSNet67.29 10771.98 8161.82 14276.92 10084.32 8865.90 15058.22 11755.75 11839.22 15254.51 8562.47 7445.99 17778.83 7778.52 8084.70 12889.47 89
test-mter64.06 12969.24 9958.01 16359.07 19677.40 14859.13 17948.11 18555.64 11939.18 15351.56 9658.54 9455.38 14873.52 12876.00 10487.22 6392.05 61
test111166.72 11067.80 11165.45 11077.42 9686.63 6269.69 12462.98 7955.29 12039.47 14940.12 15247.11 14155.70 14679.96 6580.00 6587.47 5385.49 129
Vis-MVSNet (Re-imp)62.25 14368.74 10354.68 18073.70 12178.74 13356.51 18557.49 12955.22 12126.86 19354.56 8461.35 8131.06 19573.10 13174.90 11582.49 16283.31 143
tmp_tt16.09 21813.07 2238.12 22613.61 2232.08 22255.09 12230.10 18840.26 15122.83 2155.35 22029.91 21625.25 21832.33 220
FC-MVSNet-train68.83 9368.29 10769.47 8478.35 8579.94 12364.72 15166.38 5454.96 12354.51 8656.75 7647.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
DCV-MVSNet69.13 9069.07 10069.21 8677.65 9277.52 14774.68 8357.85 12454.92 12455.34 8455.74 7855.56 11366.35 8475.05 10876.56 9783.35 14888.13 105
USDC59.69 16160.03 16659.28 15864.04 17771.84 17963.15 16655.36 15554.90 12535.02 17448.34 10529.79 20658.16 13170.60 15871.33 16279.99 18373.42 183
HyFIR lowres test68.39 9668.28 10868.52 9380.85 6988.11 4771.08 11458.09 11954.87 12647.80 11227.55 20055.80 11064.97 8979.11 7479.14 7488.31 3393.35 47
UGNet67.57 10471.69 8462.76 13569.88 14282.58 9966.43 14758.64 11554.71 12751.87 9361.74 6262.01 7845.46 17974.78 11274.99 11484.24 13791.02 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42062.23 14566.57 11957.17 17159.88 19368.92 19061.20 17342.28 20454.17 12839.57 14847.78 10964.97 6662.68 10273.85 12469.52 17477.43 19486.75 113
Effi-MVS+-dtu64.58 12464.08 13365.16 11273.04 12675.17 16570.68 11956.23 14454.12 12944.71 12447.42 11151.10 13163.82 9668.08 17466.32 18582.47 16386.38 117
PatchT60.46 15763.85 13456.51 17465.95 16975.68 16247.34 19941.39 20753.89 13041.40 14037.84 16350.30 13457.29 14272.76 13773.27 14085.67 10183.23 146
EPP-MVSNet67.58 10371.10 8863.48 12875.71 11183.35 9366.85 14357.83 12553.02 13141.15 14355.82 7767.89 5756.01 14574.40 11672.92 14683.33 14990.30 80
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 8161.89 9352.54 13258.50 7028.89 19656.78 10569.29 7274.96 11176.61 9582.73 15791.36 67
Fast-Effi-MVS+-dtu63.05 13664.72 13161.11 14571.21 13776.81 15370.72 11843.13 20252.51 13335.34 17346.55 12346.36 14361.40 11271.57 15171.44 15884.84 12287.79 107
tpm64.85 12266.02 12563.48 12874.52 11978.38 13770.98 11644.99 19551.61 13443.28 13347.66 11053.18 12660.57 11570.58 15971.30 16386.54 7589.45 90
Anonymous20240521166.35 12278.00 8984.41 8574.85 8263.18 7751.00 13531.37 19153.73 12469.67 6676.28 9676.84 9383.21 15390.85 72
ADS-MVSNet58.40 17059.16 17157.52 16865.80 17174.57 17060.26 17440.17 21150.51 13638.01 15940.11 15344.72 14759.36 12564.91 18366.55 18381.53 17372.72 187
IterMVS-LS66.08 11466.56 12065.51 10973.67 12274.88 16670.89 11753.55 16950.42 13748.32 11050.59 9955.66 11161.83 10873.93 12274.42 12484.82 12586.01 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 14263.51 13660.89 14669.48 14777.83 14364.07 15563.94 7050.03 13831.17 18544.82 12641.12 15751.37 15971.02 15374.81 11785.30 10984.95 131
OPM-MVS72.74 7170.93 9074.85 5485.30 5284.34 8682.82 3369.79 3349.96 13955.39 8354.09 8960.14 8970.04 6380.38 6379.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)60.62 15662.93 14357.92 16467.64 15777.90 14261.75 17061.24 10049.83 14029.80 18942.57 13340.62 16343.36 18370.49 16173.27 14083.76 14385.81 125
DU-MVS60.87 15561.82 15259.76 15366.69 16275.87 15864.07 15561.96 9149.31 14131.17 18542.76 13036.95 17651.37 15969.67 16873.20 14383.30 15084.95 131
NR-MVSNet61.08 15462.09 15159.90 15171.96 13175.87 15863.60 16161.96 9149.31 14127.95 19042.76 13033.85 19448.82 16674.35 11874.05 12985.13 11284.45 134
thres100view90067.14 10966.09 12468.38 9577.70 9083.84 9174.52 8866.33 5649.16 14343.40 13143.24 12841.34 15462.59 10379.31 7275.92 10585.73 9789.81 84
tfpn200view965.90 11564.96 12867.00 10577.70 9081.58 10671.71 10562.94 8349.16 14343.40 13143.24 12841.34 15461.42 11176.24 9774.63 12084.84 12288.52 101
Baseline_NR-MVSNet59.47 16260.28 16358.54 16266.69 16273.90 17261.63 17162.90 8449.15 14526.87 19235.18 18037.62 17248.20 16769.67 16873.61 13284.92 11782.82 149
Vis-MVSNetpermissive65.53 11869.83 9760.52 14870.80 14084.59 8266.37 14955.47 15448.40 14640.62 14757.67 7458.43 9745.37 18077.49 8576.24 10284.47 13385.99 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17852.90 19157.73 16773.47 12567.21 19462.13 16855.82 14747.83 14734.39 17631.60 19034.24 19144.90 18163.88 19062.52 19875.67 19863.02 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT60.21 15962.97 14157.00 17266.64 16471.84 17967.53 13846.93 19047.56 14836.77 16646.85 12148.21 13752.51 15570.36 16272.40 15171.63 20883.53 142
IterMVS61.87 14963.55 13559.90 15167.29 16072.20 17867.34 14148.56 18347.48 14937.86 16147.07 11748.27 13654.08 15272.12 14473.71 13184.30 13683.99 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net64.62 12368.23 10960.42 14977.53 9481.38 10960.08 17657.47 13047.01 15044.75 12360.68 6771.32 4741.84 18773.27 12972.25 15280.83 17971.68 189
V4262.86 13962.97 14162.74 13660.84 19078.99 13271.46 10857.13 13446.85 15144.28 12638.87 15640.73 16257.63 14172.60 14074.14 12685.09 11588.63 99
TranMVSNet+NR-MVSNet60.38 15861.30 15659.30 15768.34 15175.57 16463.38 16463.78 7246.74 15227.73 19142.56 13436.84 17747.66 16970.36 16274.59 12184.91 11982.46 151
v863.44 13462.58 14664.43 11968.28 15278.07 14071.82 10154.85 16046.70 15345.20 12039.40 15540.91 15960.54 11672.85 13674.39 12585.92 9085.76 126
MIMVSNet57.78 17359.71 16855.53 17754.79 20477.10 15163.89 15945.02 19446.59 15436.79 16528.36 19840.77 16145.84 17874.97 10976.58 9686.87 7073.60 182
thres20065.58 11664.74 13066.56 10677.52 9581.61 10473.44 9362.95 8146.23 15542.45 13842.76 13041.18 15658.12 13276.24 9775.59 10984.89 12089.58 87
test0.0.03 157.35 17559.89 16754.38 18371.37 13473.45 17452.71 19161.03 10146.11 15626.33 19441.73 14144.08 14929.72 19771.43 15270.90 16485.10 11371.56 190
ACMH+60.36 1361.16 15258.38 17264.42 12077.37 9874.35 17168.45 13162.81 8545.86 15738.48 15635.71 17637.35 17459.81 12167.24 17669.80 17379.58 18678.32 168
FC-MVSNet-test47.24 20254.37 18538.93 20859.49 19558.25 21134.48 21553.36 17045.66 1586.66 22150.62 9842.02 15216.62 21558.39 19661.21 20062.99 21264.40 204
v1063.00 13762.22 14963.90 12667.88 15577.78 14471.59 10654.34 16445.37 15942.76 13738.53 15738.93 16861.05 11474.39 11774.52 12385.75 9486.04 121
GA-MVS64.55 12565.76 12763.12 13069.68 14381.56 10769.59 12558.16 11845.23 16035.58 17247.01 11941.82 15359.41 12479.62 7078.54 7986.32 7886.56 115
thres40065.18 12164.44 13266.04 10776.40 10582.63 9871.52 10764.27 6844.93 16140.69 14641.86 14040.79 16058.12 13277.67 8474.64 11985.26 11088.56 100
test_part166.32 11163.35 13769.77 8177.40 9778.35 13877.85 6156.25 14344.52 16262.15 5433.05 18553.91 12362.38 10772.19 14374.65 11882.59 16086.81 112
v2v48263.68 13262.85 14464.65 11768.01 15380.46 12071.90 10057.60 12744.26 16342.82 13639.80 15438.62 17061.56 11073.06 13274.86 11686.03 8888.90 97
TDRefinement52.70 18851.02 19754.66 18157.41 20165.06 20061.47 17254.94 15744.03 16433.93 17830.13 19527.57 20946.17 17661.86 19262.48 19974.01 20466.06 201
thres600view763.77 13163.14 13964.51 11875.49 11481.61 10469.59 12562.95 8143.96 16538.90 15441.09 14440.24 16555.25 14976.24 9771.54 15584.89 12087.30 109
CDS-MVSNet64.22 12765.89 12662.28 14070.05 14180.59 11869.91 12357.98 12043.53 16646.58 11448.22 10650.76 13246.45 17475.68 10376.08 10382.70 15886.34 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet163.48 13363.07 14063.97 12465.31 17276.37 15671.77 10457.90 12343.32 16745.66 11635.06 18149.43 13558.57 13077.49 8578.22 8384.59 13181.60 158
v114463.00 13762.39 14863.70 12767.72 15680.27 12171.23 11056.40 14042.51 16840.81 14538.12 16237.73 17160.42 11874.46 11574.55 12285.64 10589.12 93
v14862.00 14861.19 15762.96 13167.46 15979.49 12867.87 13457.66 12642.30 16945.02 12238.20 16138.89 16954.77 15069.83 16772.60 14984.96 11687.01 111
CVMVSNet54.92 18258.16 17351.13 19062.61 18568.44 19155.45 18752.38 17542.28 17021.45 20147.10 11646.10 14437.96 19264.42 18863.81 19276.92 19675.01 176
PM-MVS50.11 19550.38 19949.80 19147.23 21462.08 20750.91 19444.84 19641.90 17136.10 16935.22 17926.05 21346.83 17357.64 19855.42 20972.90 20574.32 178
CMPMVSbinary43.63 1757.67 17455.43 18260.28 15072.01 13079.00 13162.77 16753.23 17141.77 17245.42 11730.74 19339.03 16753.01 15464.81 18564.65 19175.26 20068.03 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v119262.25 14361.64 15362.96 13166.88 16179.72 12569.96 12155.77 14841.58 17339.42 15037.05 16735.96 18460.50 11774.30 12074.09 12785.24 11188.76 98
thisisatest051559.37 16360.68 16157.84 16664.39 17675.65 16358.56 18153.86 16741.55 17442.12 13940.40 15039.59 16647.09 17271.69 15073.79 13081.02 17782.08 155
v14419262.05 14761.46 15562.73 13766.59 16579.87 12469.30 12755.88 14641.50 17539.41 15137.23 16536.45 17959.62 12272.69 13973.51 13385.61 10688.93 95
v192192061.66 15061.10 15862.31 13966.32 16679.57 12768.41 13255.49 15341.03 17638.69 15536.64 17335.27 18759.60 12373.23 13073.41 13585.37 10888.51 102
pmmvs-eth3d55.20 17753.95 18656.65 17357.34 20267.77 19257.54 18353.74 16840.93 17741.09 14431.19 19229.10 20849.07 16565.54 18067.28 17981.14 17575.81 172
pmnet_mix0253.92 18653.30 18854.65 18261.89 18771.33 18354.54 18954.17 16540.38 17834.65 17534.76 18230.68 20540.44 18960.97 19363.71 19382.19 16771.24 192
TinyColmap52.66 18950.09 20055.65 17659.72 19464.02 20457.15 18452.96 17340.28 17932.51 18232.42 18720.97 21756.65 14463.95 18965.15 19074.91 20163.87 205
pmmvs559.72 16060.24 16459.11 15962.77 18477.33 15063.17 16554.00 16640.21 18037.23 16240.41 14935.99 18351.75 15772.55 14172.74 14885.72 9982.45 152
ACMH59.42 1461.59 15159.22 17064.36 12178.92 8178.26 13967.65 13667.48 4839.81 18130.98 18738.25 16034.59 19061.37 11370.55 16073.47 13479.74 18579.59 163
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v124061.09 15360.55 16261.72 14365.92 17079.28 13067.16 14254.91 15939.79 18238.10 15836.08 17534.64 18959.15 12772.86 13573.36 13785.10 11387.84 106
MVS-HIRNet53.86 18753.02 18954.85 17960.30 19272.36 17744.63 20742.20 20539.45 18343.47 13021.66 21034.00 19355.47 14765.42 18167.16 18183.02 15671.08 193
MDTV_nov1_ep13_2view54.47 18454.61 18354.30 18460.50 19173.82 17357.92 18243.38 19939.43 18432.51 18233.23 18434.05 19247.26 17162.36 19166.21 18684.24 13773.19 185
TAMVS58.86 16660.91 15956.47 17562.38 18677.57 14658.97 18052.98 17238.76 18536.17 16842.26 13847.94 13946.45 17470.23 16470.79 16681.86 17078.82 167
WR-MVS51.02 19254.56 18446.90 19963.84 17869.23 18944.78 20656.38 14138.19 18614.19 21137.38 16436.82 17822.39 20760.14 19566.20 18779.81 18473.95 181
CP-MVSNet50.57 19352.60 19448.21 19658.77 19865.82 19848.17 19756.29 14237.41 18716.59 20637.14 16631.95 19829.21 19856.60 20263.71 19380.22 18175.56 174
PEN-MVS51.04 19152.94 19048.82 19361.45 18966.00 19748.68 19657.20 13236.87 18815.36 20936.98 16832.72 19628.77 20157.63 19966.37 18481.44 17474.00 180
test_method28.15 21234.48 21320.76 2146.76 22521.18 22121.03 21918.41 22036.77 18917.52 20415.67 21731.63 20024.05 20641.03 21526.69 21736.82 21968.38 195
Anonymous2023120652.23 19052.80 19251.56 18864.70 17569.41 18851.01 19358.60 11636.63 19022.44 20021.80 20931.42 20130.52 19666.79 17767.83 17782.10 16875.73 173
WR-MVS_H49.62 19752.63 19346.11 20258.80 19767.58 19346.14 20454.94 15736.51 19113.63 21436.75 17135.67 18622.10 20856.43 20362.76 19781.06 17672.73 186
PS-CasMVS50.17 19452.02 19548.02 19758.60 19965.54 19948.04 19856.19 14536.42 19216.42 20835.68 17731.33 20228.85 20056.42 20463.54 19580.01 18275.18 175
UniMVSNet_ETH3D57.83 17156.46 18159.43 15663.24 18173.22 17567.70 13555.58 15136.17 19336.84 16432.64 18635.14 18851.50 15865.81 17969.81 17281.73 17182.44 153
DTE-MVSNet49.82 19651.92 19647.37 19861.75 18864.38 20245.89 20557.33 13136.11 19412.79 21636.87 16931.93 19925.73 20458.01 19765.22 18980.75 18070.93 194
N_pmnet47.67 20147.00 20548.45 19554.72 20562.78 20546.95 20151.25 17836.01 19526.09 19526.59 20225.93 21435.50 19455.67 20659.01 20276.22 19763.04 206
FPMVS39.11 20936.39 21142.28 20455.97 20345.94 21646.23 20341.57 20635.73 19622.61 19823.46 20519.82 21928.32 20243.57 21140.67 21358.96 21445.54 214
v7n57.04 17656.64 17957.52 16862.85 18374.75 16861.76 16951.80 17735.58 19736.02 17032.33 18833.61 19550.16 16467.73 17570.34 17082.51 16182.12 154
pm-mvs159.21 16459.58 16958.77 16167.97 15477.07 15264.12 15357.20 13234.73 19836.86 16335.34 17840.54 16443.34 18474.32 11973.30 13983.13 15581.77 157
anonymousdsp54.99 18057.24 17752.36 18653.82 20671.75 18251.49 19248.14 18433.74 19933.66 17938.34 15936.13 18247.54 17064.53 18770.60 16879.53 18785.59 128
EU-MVSNet44.84 20447.85 20441.32 20749.26 21156.59 21243.07 20847.64 18833.03 20013.82 21236.78 17030.99 20324.37 20553.80 20855.57 20869.78 20968.21 196
tfpnnormal58.97 16556.48 18061.89 14171.27 13676.21 15766.65 14661.76 9732.90 20136.41 16727.83 19929.14 20750.64 16373.06 13273.05 14484.58 13283.15 148
EG-PatchMatch MVS58.73 16858.03 17559.55 15472.32 12880.49 11963.44 16355.55 15232.49 20238.31 15728.87 19737.22 17542.84 18574.30 12075.70 10784.84 12277.14 171
TransMVSNet (Re)57.83 17156.90 17858.91 16072.26 12974.69 16963.57 16261.42 9932.30 20332.65 18133.97 18335.96 18439.17 19173.84 12572.84 14784.37 13574.69 177
ambc42.30 20850.36 21049.51 21535.47 21432.04 20423.53 19717.36 2138.95 22429.06 19964.88 18456.26 20661.29 21367.12 199
SixPastTwentyTwo49.11 19949.22 20248.99 19258.54 20064.14 20347.18 20047.75 18631.15 20524.42 19641.01 14626.55 21144.04 18254.76 20758.70 20471.99 20768.21 196
MDA-MVSNet-bldmvs44.15 20542.27 21046.34 20038.34 21662.31 20646.28 20255.74 14929.83 20620.98 20227.11 20116.45 22241.98 18641.11 21457.47 20574.72 20261.65 210
test20.0347.23 20348.69 20345.53 20363.28 18064.39 20141.01 21056.93 13729.16 20715.21 21023.90 20330.76 20417.51 21464.63 18665.26 18879.21 18962.71 208
testgi48.51 20050.53 19846.16 20164.78 17367.15 19541.54 20954.81 16129.12 20817.03 20532.07 18931.98 19720.15 21165.26 18267.00 18278.67 19161.10 211
new_pmnet33.19 21035.52 21230.47 21127.55 22145.31 21729.29 21730.92 21729.00 2099.88 22018.77 21217.64 22126.77 20344.07 21045.98 21258.41 21547.87 213
new-patchmatchnet42.21 20642.97 20741.33 20653.05 20759.89 20839.38 21149.61 18028.26 21012.10 21722.17 20821.54 21619.22 21250.96 20956.04 20774.61 20361.92 209
MIMVSNet140.84 20843.46 20637.79 20932.14 21758.92 21039.24 21250.83 17927.00 21111.29 21816.76 21626.53 21217.75 21357.14 20161.12 20175.46 19956.78 212
pmmvs654.20 18553.54 18754.97 17863.22 18272.98 17660.17 17552.32 17626.77 21234.30 17723.29 20636.23 18140.33 19068.77 17268.76 17579.47 18878.00 169
gg-mvs-nofinetune62.34 14066.19 12357.86 16576.15 10788.61 4071.18 11241.24 21025.74 21313.16 21522.91 20763.97 7154.52 15185.06 1685.25 1090.92 391.78 63
Gipumacopyleft24.91 21324.61 21525.26 21331.47 21821.59 22018.06 22037.53 21325.43 21410.03 2194.18 2224.25 22614.85 21643.20 21247.03 21139.62 21826.55 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft19.81 22317.01 22110.02 22123.61 2155.85 22217.21 2148.03 22521.13 20922.60 21821.42 22330.01 217
pmmvs341.86 20742.29 20941.36 20539.80 21552.66 21438.93 21335.85 21623.40 21620.22 20319.30 21120.84 21840.56 18855.98 20558.79 20372.80 20665.03 203
gm-plane-assit54.99 18057.99 17651.49 18969.27 14854.42 21332.32 21642.59 20321.18 21713.71 21323.61 20443.84 15060.21 11987.09 586.55 590.81 489.28 91
PMVScopyleft27.44 1832.08 21129.07 21435.60 21048.33 21324.79 21926.97 21841.34 20820.45 21822.50 19917.11 21518.64 22020.44 21041.99 21338.06 21454.02 21642.44 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB47.26 1649.41 19849.91 20148.82 19364.76 17469.79 18749.05 19547.12 18920.36 21916.52 20736.65 17226.96 21050.76 16260.47 19463.16 19664.73 21172.00 188
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS220.45 21422.31 21618.27 21720.52 22226.73 21814.85 22228.43 21913.69 2200.79 22610.35 2189.10 2233.83 22127.64 21732.87 21541.17 21735.81 216
EMVS14.40 21610.71 21918.70 21628.15 22012.09 2257.06 22436.89 21411.00 2213.56 2254.95 2202.27 22813.91 21710.13 22116.06 22022.63 22218.51 221
E-PMN15.08 21511.65 21819.08 21528.73 21912.31 2246.95 22536.87 21510.71 2223.63 2245.13 2192.22 22913.81 21811.34 22018.50 21924.49 22121.32 220
MVEpermissive15.98 1914.37 21716.36 21712.04 2197.72 22420.24 2225.90 22629.05 2188.28 2233.92 2234.72 2212.42 2279.57 21918.89 21931.46 21616.07 22428.53 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2180.08 2200.01 2200.00 2270.01 2270.03 2280.01 2240.05 2240.00 2280.14 2240.01 2300.03 2240.05 2220.05 2210.01 2250.24 223
test1230.05 2180.08 2200.01 2200.00 2270.01 2270.01 2290.00 2250.05 2240.00 2280.16 2230.00 2310.04 2220.02 2230.05 2210.00 2260.26 222
uanet_test0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
RE-MVS-def31.47 184
9.1484.47 7
SR-MVS86.33 4867.54 4780.78 20
our_test_363.32 17971.07 18655.90 186
MTAPA78.32 1279.42 25
MTMP76.04 1776.65 30
Patchmatch-RL test2.17 227
XVS82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
X-MVStestdata82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
mPP-MVS86.96 4370.61 50
Patchmtry78.06 14167.53 13843.18 20041.40 140