This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 476.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 1998.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 995.01 287.86 976.88 593.90 285.15 290.11 786.90 279.46 1186.26 1084.67 1888.50 2698.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 490.57 384.73 589.38 2691.60 1688.24 774.15 1293.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3098.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 1990.96 1878.48 5472.63 2293.10 465.84 4080.67 2381.55 1974.80 2885.94 1385.39 883.75 14396.77 11
DPE-MVScopyleft87.60 590.44 484.29 792.09 893.44 588.69 375.11 993.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4797.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 594.57 388.34 576.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 2995.42 20
APDe-MVS86.37 788.41 884.00 991.43 1491.83 1488.34 574.67 1091.19 781.76 591.13 481.94 1880.07 783.38 2782.58 3487.69 4596.78 10
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2489.21 3486.51 1473.64 1690.98 877.99 1289.89 880.04 2379.18 1382.00 4881.37 4986.88 6995.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 390.24 2585.83 1674.21 1190.68 975.63 1786.77 1384.15 878.68 1586.33 885.26 987.32 5695.60 17
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1190.71 1986.71 1273.16 1990.56 1074.33 1883.07 1885.88 477.16 1986.28 985.58 687.23 6095.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3786.47 6685.63 1873.62 1790.13 1179.24 989.67 982.99 1277.72 1781.22 5380.92 5886.68 7394.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1895.37 23
SD-MVS84.31 1586.96 1481.22 1688.98 3088.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 673.71 3382.66 3581.60 4685.48 10694.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS85.96 887.58 1184.06 892.58 492.40 1087.62 1077.77 488.44 1475.93 1679.49 2581.97 1781.65 587.04 686.58 488.79 1697.18 7
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2590.10 2785.27 2071.66 2387.38 1573.08 2184.23 1780.16 2275.31 2484.85 1783.64 2486.57 7494.21 35
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 6988.25 4481.12 4267.71 4387.10 1673.31 2085.23 1583.68 976.64 2180.43 6181.47 4888.15 3695.66 16
DPM-MVS85.41 1186.72 1683.89 1091.66 1291.92 1390.49 278.09 386.90 1773.95 1974.52 3482.01 1679.29 1290.24 190.65 189.86 690.78 72
NCCC84.16 1685.46 2182.64 1192.34 790.57 2286.57 1376.51 886.85 1872.91 2277.20 3178.69 2579.09 1484.64 2084.88 1688.44 2795.41 21
train_agg83.35 1886.93 1579.17 2689.70 2388.41 4185.60 1972.89 2186.31 1966.58 3990.48 682.24 1573.06 3983.10 3182.64 3387.21 6495.30 24
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2286.53 6586.32 1566.72 5085.96 2065.43 4188.98 1182.29 1467.57 8082.06 4681.33 5083.93 14193.75 41
MCST-MVS85.75 986.99 1384.31 694.07 292.80 788.15 879.10 285.66 2170.72 2876.50 3280.45 2182.17 488.35 287.49 391.63 297.65 4
HFP-MVS82.48 2284.12 2480.56 1990.15 1887.55 5284.28 2369.67 3285.22 2277.95 1384.69 1675.94 2975.04 2681.85 4981.17 5386.30 8192.40 55
OMC-MVS74.03 6475.82 6471.95 6879.56 7380.98 11375.35 7663.21 7484.48 2361.83 5561.54 6166.89 5769.41 6876.60 9474.07 12782.34 16386.15 118
ACMMPR80.62 2882.98 2777.87 3288.41 3287.05 5783.02 2869.18 3583.91 2468.35 3582.89 1973.64 3472.16 4680.78 5981.13 5486.10 8691.43 62
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1687.81 5183.42 2674.04 1383.77 2571.09 2666.88 4572.44 3779.48 1085.08 1584.97 1488.12 3793.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11682.49 10074.51 8561.83 9283.16 2649.31 10482.22 2151.62 12968.94 7278.76 7675.52 11282.67 15884.23 135
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1789.39 3284.79 2170.95 2582.86 2768.32 3686.44 1477.19 2673.07 3883.63 2583.64 2487.82 4194.34 31
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 3988.50 4083.23 2773.27 1882.78 2871.01 2762.86 5769.93 5074.80 2884.30 2184.20 2186.79 7294.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA71.37 7970.27 9572.66 6480.79 6881.33 10971.07 11365.75 5682.36 2964.80 4342.46 13556.49 10572.70 4373.00 13470.52 16880.84 17685.76 124
PHI-MVS79.43 3284.06 2574.04 5586.15 4691.57 1780.85 4568.90 3882.22 3051.81 9278.10 2774.28 3270.39 5984.01 2484.00 2286.14 8594.24 33
CSCG82.90 2084.52 2381.02 1891.85 1093.43 687.14 1174.01 1481.96 3176.14 1470.84 3682.49 1369.71 6282.32 4185.18 1187.26 5995.40 22
CP-MVS79.44 3181.51 3477.02 3686.95 4185.96 7582.00 3368.44 4081.82 3267.39 3777.43 2973.68 3371.62 5079.56 7079.58 7085.73 9692.51 54
EPNet79.28 3682.25 2975.83 4388.31 3590.14 2679.43 5268.07 4181.76 3361.26 5977.26 3070.08 4970.06 6082.43 3982.00 3887.82 4192.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 2782.93 2878.53 2986.83 4392.26 1181.19 4166.95 4781.60 3469.90 3166.93 4474.80 3176.79 2084.68 1984.77 1789.50 995.50 18
NP-MVS81.60 34
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 9980.78 11673.81 8962.10 8880.80 3651.28 9360.91 6363.80 7067.98 7574.59 11372.42 14982.37 16280.97 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3188.16 4582.82 3169.34 3480.79 3769.67 3282.35 2077.13 2771.60 5180.97 5880.96 5785.87 9294.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3481.84 3376.60 3888.38 3486.69 6182.97 3065.75 5680.39 3864.94 4281.95 2272.11 4271.41 5380.45 6080.55 6386.18 8390.76 74
canonicalmvs77.65 4279.59 4175.39 4581.52 6289.83 3181.32 4060.74 10580.05 3966.72 3868.43 4065.09 6274.72 3078.87 7482.73 3187.32 5692.16 56
HQP-MVS78.26 3980.91 3675.17 4885.67 4884.33 8783.01 2969.38 3379.88 4055.83 7779.85 2464.90 6570.81 5582.46 3781.78 4186.30 8193.18 47
CDPH-MVS79.39 3582.13 3176.19 4189.22 2988.34 4284.20 2471.00 2479.67 4156.97 7677.77 2872.24 4168.50 7481.33 5282.74 3087.23 6092.84 51
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4785.58 7681.42 3867.38 4679.38 4262.61 5178.53 2665.79 6168.80 7378.56 7778.50 8185.75 9390.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS78.16 4080.55 3775.38 4687.99 3886.27 7081.05 4368.98 3678.33 4361.07 6175.25 3372.27 3867.52 8180.03 6380.52 6485.66 10391.20 66
MVSTER76.92 4879.92 3973.42 5874.98 11582.97 9578.15 5763.41 7378.02 4464.41 4467.54 4272.80 3671.05 5483.29 3083.73 2388.53 2591.12 67
CLD-MVS77.36 4677.29 5377.45 3582.21 5888.11 4681.92 3468.96 3777.97 4569.62 3362.08 5859.44 9173.57 3581.75 5081.27 5188.41 2890.39 78
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5777.13 5573.44 5781.43 6382.55 9980.96 4464.35 6477.95 4661.39 5869.20 3970.94 4669.38 6973.89 12373.32 13783.14 15392.06 58
MAR-MVS77.19 4778.37 4875.81 4489.87 2190.58 2179.33 5365.56 5877.62 4758.33 7059.24 7067.98 5474.83 2782.37 4083.12 2986.95 6787.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS76.25 5180.22 3871.63 7178.23 8687.95 5072.75 9260.27 11077.50 4857.73 7271.53 3566.60 5873.16 3780.99 5781.23 5287.63 4895.73 14
MVS_030479.43 3282.20 3076.20 4084.22 5191.79 1581.82 3663.81 6976.83 4961.71 5666.37 4775.52 3076.38 2285.54 1485.03 1389.28 1194.32 32
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2685.00 8079.99 5073.04 2076.60 5071.17 2555.18 7957.99 10077.87 1676.82 9376.82 9484.67 12886.45 114
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3384.79 8184.62 2266.17 5475.96 5178.40 1061.59 6071.47 4473.54 3678.43 7878.88 7688.97 1490.18 81
DROMVSNet76.05 5378.87 4372.77 6278.87 8286.63 6277.50 6257.04 13575.34 5261.68 5764.20 5269.56 5173.96 3282.12 4480.65 6187.57 4993.57 43
CS-MVS-test75.09 6077.84 4971.87 7079.27 7786.92 5870.53 11860.36 10875.13 5363.13 4867.92 4165.08 6371.43 5278.15 8278.51 8086.53 7693.16 48
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5689.90 2975.45 7465.45 5974.99 5470.66 2963.07 5558.27 9867.60 7884.24 2281.70 4388.18 3497.10 8
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2888.32 4380.09 4867.95 4274.89 5671.83 2452.05 9270.68 4776.27 2382.27 4282.04 3685.92 8990.77 73
CS-MVS75.84 5478.61 4472.61 6579.03 7986.74 6074.43 8860.27 11074.15 5762.78 5066.26 4864.25 6772.81 4183.36 2881.69 4586.32 7993.85 39
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1490.27 2481.84 3570.79 2672.10 5871.95 2350.02 9967.86 5677.47 1882.89 3284.24 2088.61 2289.99 82
CANet_DTU72.84 6976.63 5968.43 9276.81 10186.62 6475.54 7354.71 16072.06 5943.54 12767.11 4358.46 9572.40 4481.13 5680.82 6087.57 4990.21 80
PMMVS70.37 8475.06 6764.90 11371.46 13181.88 10164.10 15255.64 14771.31 6046.69 11170.69 3758.56 9269.53 6579.03 7375.63 10881.96 16788.32 102
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7585.04 7972.71 9365.27 6170.92 6163.58 4769.32 3860.31 8769.43 6777.01 9177.15 9183.22 15091.93 60
baseline72.89 6874.46 7071.07 7275.99 10887.50 5374.57 8060.49 10770.72 6257.60 7360.63 6560.97 8270.79 5675.27 10776.33 10086.94 6889.79 85
LGP-MVS_train72.02 7473.18 7670.67 7682.13 5980.26 12179.58 5163.04 7670.09 6351.98 9065.06 5055.62 11262.49 10475.97 10176.32 10184.80 12588.93 94
EPNet_dtu66.17 11270.13 9661.54 14281.04 6477.39 14768.87 12862.50 8769.78 6433.51 17863.77 5456.22 10737.65 19172.20 14272.18 15285.69 9979.38 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.22 5876.69 5873.51 5679.30 7688.82 3780.06 4958.74 11469.77 6557.50 7559.78 6961.35 7975.31 2482.07 4583.60 2690.13 591.41 64
EIA-MVS73.48 6676.05 6170.47 7778.12 8787.21 5571.78 10060.63 10669.66 6655.56 8164.86 5160.69 8369.53 6577.35 8978.59 7787.22 6294.01 37
ACMP68.86 772.15 7372.25 7872.03 6780.96 6580.87 11577.93 5964.13 6669.29 6760.79 6464.04 5353.54 12463.91 9473.74 12675.27 11384.45 13388.98 93
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7274.88 16472.64 9463.70 7169.26 6855.71 7947.24 11455.31 11470.42 5872.05 14570.67 16681.66 17077.19 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5288.04 4981.47 3770.62 2969.24 6957.52 7460.59 6669.18 5270.65 5777.11 9077.65 8884.75 12694.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
diffmvspermissive74.32 6275.42 6673.04 6075.60 11287.27 5478.20 5662.96 7868.66 7061.89 5459.79 6859.84 8971.80 4878.30 8179.87 6687.80 4394.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7889.07 3578.47 5563.59 7267.05 7163.79 4655.72 7760.32 8673.58 3482.16 4381.78 4189.08 1393.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7189.31 3380.79 4664.04 6766.95 7263.87 4557.52 7261.33 8172.90 4082.01 4781.99 3988.03 3893.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22490.09 2877.20 650.02 22166.83 730.05 22559.90 6773.33 350.04 22078.40 7979.30 7388.65 2095.20 25
QAPM77.50 4477.43 5177.59 3491.52 1392.00 1281.41 3970.63 2766.22 7458.05 7154.70 8071.79 4374.49 3182.46 3782.04 3689.46 1092.79 53
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4190.68 2077.41 6370.56 3066.21 7562.48 5366.17 4963.98 6872.08 4782.87 3383.15 2888.24 3395.71 15
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2090.38 2378.01 5866.35 5266.09 7662.80 4946.33 12364.55 6671.77 4979.92 6580.88 5987.52 5189.20 91
CostFormer72.18 7273.90 7270.18 7979.47 7486.19 7376.94 6648.62 18066.07 7760.40 6654.14 8665.82 6067.98 7575.84 10276.41 9987.67 4692.83 52
GBi-Net69.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
test169.21 8870.40 9367.81 9569.49 14278.65 13374.54 8160.97 10165.32 7851.06 9447.37 11162.05 7363.43 9677.49 8578.22 8387.37 5383.73 137
FMVSNet370.41 8371.89 8268.68 8870.89 13779.42 12875.63 7060.97 10165.32 7851.06 9447.37 11162.05 7364.90 8982.49 3682.27 3588.64 2184.34 134
DELS-MVS79.49 3079.84 4079.08 2788.26 3692.49 884.12 2570.63 2765.27 8169.60 3461.29 6266.50 5972.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5377.76 14377.70 6164.76 6364.61 8260.74 6549.29 10053.97 12265.86 8574.97 10975.57 11084.13 14083.29 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20788.06 4877.29 6460.95 10463.61 8348.36 10766.60 4660.67 8479.55 973.56 12780.58 6287.30 5889.80 84
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9586.03 7473.33 9149.12 17963.55 8455.77 7848.91 10356.26 10667.78 7777.60 8479.62 6987.19 6590.40 77
baseline271.22 8073.01 7769.13 8475.76 11086.34 6971.23 10862.78 8462.62 8552.85 8857.32 7354.31 11963.27 9979.74 6879.31 7288.89 1591.43 62
RPSCF55.07 17858.06 17351.57 18548.87 21058.95 20753.68 18841.26 20762.42 8645.88 11354.38 8554.26 12053.75 15157.15 19953.53 20966.01 20865.75 200
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10486.80 5980.41 4761.47 9662.35 8759.44 6847.91 10668.12 5372.24 4582.84 3481.50 4787.15 6694.42 30
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4492.41 975.63 7066.77 4962.08 8852.32 8930.27 19250.74 13266.14 8486.22 1285.41 791.90 196.75 12
EPMVS66.21 11167.49 11464.73 11475.81 10984.20 8968.94 12744.37 19561.55 8948.07 10949.21 10254.87 11762.88 10071.82 14671.40 15988.28 3279.37 163
tpm cat167.47 10567.05 11667.98 9476.63 10281.51 10774.49 8647.65 18561.18 9061.12 6042.51 13453.02 12764.74 9170.11 16471.50 15583.22 15089.49 87
SCA63.90 12966.67 11760.66 14573.75 11871.78 17959.87 17543.66 19661.13 9145.03 11951.64 9359.45 9057.92 13470.96 15370.80 16483.71 14480.92 158
LS3D64.54 12562.14 14967.34 10180.85 6675.79 15869.99 11965.87 5560.77 9244.35 12342.43 13645.95 14465.01 8769.88 16568.69 17577.97 19171.43 189
tpmrst67.15 10868.12 11066.03 10676.21 10680.98 11371.27 10745.05 19160.69 9350.63 9846.95 11954.15 12165.30 8671.80 14771.77 15387.72 4490.48 76
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12282.83 9666.42 14645.40 19060.40 9445.27 11649.22 10157.60 10260.01 11870.61 15671.38 16086.08 8781.91 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE68.96 9269.32 9868.54 8976.61 10383.12 9471.78 10056.87 13760.21 9554.86 8545.95 12454.79 11864.27 9274.59 11375.54 11186.84 7191.01 69
thisisatest053068.38 9770.98 8965.35 10972.61 12584.42 8468.21 13157.98 12059.77 9650.80 9754.63 8158.48 9457.92 13476.99 9277.47 8984.60 12985.07 128
Effi-MVS+70.42 8171.23 8769.47 8178.04 8885.24 7875.57 7258.88 11359.56 9748.47 10652.73 9154.94 11569.69 6378.34 8077.06 9286.18 8390.73 75
tttt051767.99 10070.61 9264.94 11271.94 13083.96 9067.62 13557.98 12059.30 9849.90 10254.50 8457.98 10157.92 13476.48 9577.47 8984.24 13684.58 131
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12081.14 11271.12 11154.79 15958.88 9950.61 9946.70 12147.05 14169.12 7176.06 10076.44 9886.43 7886.65 112
test-LLR68.23 9871.61 8564.28 12071.37 13281.32 11063.98 15561.03 9958.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16581.32 11063.98 15555.36 15258.62 10042.96 13252.74 8961.65 7757.74 13775.64 10478.09 8688.61 2293.21 45
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13681.72 10269.28 12649.50 17858.08 10243.94 12650.50 9856.02 10858.86 12770.72 15573.37 13584.24 13680.52 159
test250669.26 8770.79 9167.48 9978.64 8386.40 6772.22 9562.75 8558.05 10345.24 11750.76 9554.93 11658.05 13279.82 6679.70 6787.96 3985.90 122
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8386.40 6772.22 9562.75 8558.05 10344.06 12540.92 14648.20 13758.05 13279.82 6679.70 6787.96 3986.32 117
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5085.35 7777.84 6061.77 9458.01 10555.40 8241.26 14258.34 9761.69 10781.70 5178.29 8289.56 880.02 160
FMVSNet558.86 16560.24 16357.25 16852.66 20666.25 19463.77 15852.86 17157.85 10637.92 15836.12 17352.22 12851.37 15770.88 15471.43 15884.92 11666.91 198
dps64.08 12763.22 13765.08 11175.27 11479.65 12566.68 14346.63 18956.94 10755.67 8043.96 12643.63 14964.00 9369.50 16969.82 17082.25 16479.02 164
pmmvs463.14 13462.46 14663.94 12366.03 16676.40 15366.82 14257.60 12756.74 10850.26 10140.81 14737.51 17159.26 12471.75 14871.48 15683.68 14582.53 148
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6189.01 3664.50 15064.91 6256.65 10962.59 5247.89 10745.23 14551.99 15469.18 17081.88 4088.77 1792.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG65.57 11661.57 15370.24 7882.02 6076.47 15274.46 8768.73 3956.52 11050.33 10038.47 15741.10 15662.42 10572.12 14372.94 14483.47 14673.37 182
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8087.16 5672.05 9761.80 9356.46 11159.66 6753.88 8862.48 7159.08 12681.17 5478.90 7586.53 7694.74 27
FMVSNet268.06 9968.57 10467.45 10069.49 14278.65 13374.54 8160.23 11256.29 11249.64 10342.13 13857.08 10363.43 9681.15 5580.99 5587.37 5383.73 137
baseline171.47 7672.02 7970.82 7480.56 7084.51 8376.61 6766.93 4856.22 11348.66 10555.40 7860.43 8562.55 10383.35 2980.99 5589.60 783.28 143
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14775.75 15959.27 17660.35 10956.09 11453.80 8747.06 11736.45 17764.80 9068.22 17267.22 17977.10 19374.02 177
CR-MVSNet62.31 14064.75 12959.47 15368.63 14871.29 18267.53 13643.18 19855.83 11541.40 13841.04 14455.85 10957.29 14072.76 13773.27 13978.77 18883.23 144
RPMNet58.63 16862.80 14453.76 18367.59 15671.29 18254.60 18638.13 21055.83 11535.70 16941.58 14153.04 12647.89 16666.10 17767.38 17778.65 19084.40 133
IS_MVSNet67.29 10771.98 8061.82 14076.92 10084.32 8865.90 14858.22 11755.75 11739.22 15054.51 8362.47 7245.99 17578.83 7578.52 7984.70 12789.47 88
test-mter64.06 12869.24 9958.01 16159.07 19477.40 14659.13 17748.11 18355.64 11839.18 15151.56 9458.54 9355.38 14673.52 12876.00 10487.22 6292.05 59
test111166.72 11067.80 11165.45 10877.42 9786.63 6269.69 12262.98 7755.29 11939.47 14740.12 15147.11 14055.70 14479.96 6480.00 6587.47 5285.49 127
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 11978.74 13256.51 18357.49 12955.22 12026.86 19154.56 8261.35 7931.06 19373.10 13174.90 11582.49 16083.31 141
tmp_tt16.09 21613.07 2218.12 22413.61 2212.08 22055.09 12130.10 18640.26 15022.83 2135.35 21829.91 21525.25 21732.33 218
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8579.94 12264.72 14966.38 5154.96 12254.51 8656.75 7447.91 13966.91 8275.57 10675.75 10685.92 8987.12 109
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9277.52 14574.68 7957.85 12454.92 12355.34 8455.74 7655.56 11366.35 8375.05 10876.56 9783.35 14788.13 104
USDC59.69 16060.03 16559.28 15664.04 17571.84 17763.15 16455.36 15254.90 12435.02 17248.34 10429.79 20458.16 12970.60 15771.33 16179.99 18173.42 181
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6688.11 4671.08 11258.09 11954.87 12547.80 11027.55 19855.80 11064.97 8879.11 7279.14 7488.31 3193.35 44
UGNet67.57 10471.69 8462.76 13369.88 14082.58 9866.43 14558.64 11554.71 12651.87 9161.74 5962.01 7645.46 17774.78 11274.99 11484.24 13691.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19168.92 18861.20 17142.28 20254.17 12739.57 14647.78 10864.97 6462.68 10173.85 12469.52 17377.43 19286.75 111
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12475.17 16370.68 11756.23 14154.12 12844.71 12247.42 11051.10 13063.82 9568.08 17366.32 18482.47 16186.38 115
PatchT60.46 15663.85 13456.51 17265.95 16775.68 16047.34 19741.39 20553.89 12941.40 13837.84 16250.30 13357.29 14072.76 13773.27 13985.67 10083.23 144
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11183.35 9366.85 14157.83 12553.02 13041.15 14155.82 7567.89 5556.01 14374.40 11672.92 14583.33 14890.30 79
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 7761.89 9152.54 13158.50 6928.89 19456.78 10469.29 7074.96 11176.61 9582.73 15691.36 65
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13576.81 15170.72 11643.13 20052.51 13235.34 17146.55 12246.36 14261.40 11071.57 15071.44 15784.84 12187.79 106
tpm64.85 12166.02 12563.48 12674.52 11778.38 13670.98 11444.99 19351.61 13343.28 13147.66 10953.18 12560.57 11370.58 15871.30 16286.54 7589.45 89
Anonymous20240521166.35 12278.00 8984.41 8574.85 7863.18 7551.00 13431.37 18953.73 12369.67 6476.28 9676.84 9383.21 15290.85 70
ADS-MVSNet58.40 16959.16 17057.52 16665.80 16974.57 16860.26 17240.17 20950.51 13538.01 15740.11 15244.72 14659.36 12364.91 18266.55 18281.53 17172.72 185
IterMVS-LS66.08 11366.56 12065.51 10773.67 12074.88 16470.89 11553.55 16650.42 13648.32 10850.59 9755.66 11161.83 10673.93 12274.42 12384.82 12486.01 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14577.83 14164.07 15363.94 6850.03 13731.17 18344.82 12541.12 15551.37 15771.02 15274.81 11785.30 10884.95 129
OPM-MVS72.74 7070.93 9074.85 5285.30 4984.34 8682.82 3169.79 3149.96 13855.39 8354.09 8760.14 8870.04 6180.38 6279.43 7185.74 9588.20 103
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15577.90 14061.75 16861.24 9849.83 13929.80 18742.57 13240.62 16143.36 18170.49 16073.27 13983.76 14285.81 123
DU-MVS60.87 15461.82 15159.76 15166.69 16075.87 15664.07 15361.96 8949.31 14031.17 18342.76 12936.95 17451.37 15769.67 16773.20 14283.30 14984.95 129
NR-MVSNet61.08 15362.09 15059.90 14971.96 12975.87 15663.60 15961.96 8949.31 14027.95 18842.76 12933.85 19248.82 16474.35 11874.05 12885.13 11184.45 132
thres100view90067.14 10966.09 12468.38 9377.70 9083.84 9174.52 8466.33 5349.16 14243.40 12943.24 12741.34 15262.59 10279.31 7175.92 10585.73 9689.81 83
tfpn200view965.90 11464.96 12867.00 10377.70 9081.58 10571.71 10362.94 8149.16 14243.40 12943.24 12741.34 15261.42 10976.24 9774.63 11984.84 12188.52 100
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16073.90 17061.63 16962.90 8249.15 14426.87 19035.18 17937.62 17048.20 16569.67 16773.61 13184.92 11682.82 147
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13884.59 8266.37 14755.47 15148.40 14540.62 14557.67 7158.43 9645.37 17877.49 8576.24 10284.47 13285.99 121
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12367.21 19262.13 16655.82 14447.83 14634.39 17431.60 18834.24 18944.90 17963.88 18962.52 19775.67 19663.02 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16271.84 17767.53 13646.93 18847.56 14736.77 16446.85 12048.21 13652.51 15370.36 16172.40 15071.63 20683.53 140
IterMVS61.87 14863.55 13559.90 14967.29 15872.20 17667.34 13948.56 18147.48 14837.86 15947.07 11648.27 13554.08 15072.12 14373.71 13084.30 13583.99 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net64.62 12268.23 10960.42 14777.53 9481.38 10860.08 17457.47 13047.01 14944.75 12160.68 6471.32 4541.84 18573.27 12972.25 15180.83 17771.68 187
V4262.86 13862.97 14062.74 13460.84 18878.99 13171.46 10657.13 13446.85 15044.28 12438.87 15540.73 16057.63 13972.60 14074.14 12585.09 11488.63 98
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 14975.57 16263.38 16263.78 7046.74 15127.73 18942.56 13336.84 17547.66 16770.36 16174.59 12084.91 11882.46 149
v863.44 13362.58 14564.43 11768.28 15078.07 13871.82 9954.85 15746.70 15245.20 11839.40 15440.91 15760.54 11472.85 13674.39 12485.92 8985.76 124
MIMVSNet57.78 17259.71 16755.53 17554.79 20277.10 14963.89 15745.02 19246.59 15336.79 16328.36 19640.77 15945.84 17674.97 10976.58 9686.87 7073.60 180
thres20065.58 11564.74 13066.56 10477.52 9581.61 10373.44 9062.95 7946.23 15442.45 13642.76 12941.18 15458.12 13076.24 9775.59 10984.89 11989.58 86
test0.0.03 157.35 17459.89 16654.38 18171.37 13273.45 17252.71 18961.03 9946.11 15526.33 19241.73 14044.08 14729.72 19571.43 15170.90 16385.10 11271.56 188
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9874.35 16968.45 12962.81 8345.86 15638.48 15435.71 17537.35 17259.81 11967.24 17569.80 17279.58 18478.32 166
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19358.25 20934.48 21353.36 16745.66 1576.66 21950.62 9642.02 15016.62 21358.39 19561.21 19962.99 21064.40 202
v1063.00 13662.22 14863.90 12467.88 15377.78 14271.59 10454.34 16145.37 15842.76 13538.53 15638.93 16661.05 11274.39 11774.52 12285.75 9386.04 119
GA-MVS64.55 12465.76 12763.12 12869.68 14181.56 10669.59 12358.16 11845.23 15935.58 17047.01 11841.82 15159.41 12279.62 6978.54 7886.32 7986.56 113
thres40065.18 12064.44 13266.04 10576.40 10582.63 9771.52 10564.27 6544.93 16040.69 14441.86 13940.79 15858.12 13077.67 8374.64 11885.26 10988.56 99
v2v48263.68 13162.85 14364.65 11568.01 15180.46 11971.90 9857.60 12744.26 16142.82 13439.80 15338.62 16861.56 10873.06 13274.86 11686.03 8888.90 96
TDRefinement52.70 18751.02 19654.66 17957.41 19965.06 19861.47 17054.94 15444.03 16233.93 17630.13 19327.57 20746.17 17461.86 19162.48 19874.01 20266.06 199
thres600view763.77 13063.14 13864.51 11675.49 11381.61 10369.59 12362.95 7943.96 16338.90 15241.09 14340.24 16355.25 14776.24 9771.54 15484.89 11987.30 108
CDS-MVSNet64.22 12665.89 12662.28 13870.05 13980.59 11769.91 12157.98 12043.53 16446.58 11248.22 10550.76 13146.45 17275.68 10376.08 10382.70 15786.34 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet163.48 13263.07 13963.97 12265.31 17076.37 15471.77 10257.90 12343.32 16545.66 11435.06 18049.43 13458.57 12877.49 8578.22 8384.59 13081.60 156
v114463.00 13662.39 14763.70 12567.72 15480.27 12071.23 10856.40 13842.51 16640.81 14338.12 16137.73 16960.42 11674.46 11574.55 12185.64 10489.12 92
v14862.00 14761.19 15662.96 12967.46 15779.49 12767.87 13257.66 12642.30 16745.02 12038.20 16038.89 16754.77 14869.83 16672.60 14884.96 11587.01 110
CVMVSNet54.92 18158.16 17251.13 18862.61 18368.44 18955.45 18552.38 17242.28 16821.45 19947.10 11546.10 14337.96 19064.42 18763.81 19176.92 19475.01 174
PM-MVS50.11 19450.38 19849.80 18947.23 21262.08 20550.91 19244.84 19441.90 16936.10 16735.22 17826.05 21146.83 17157.64 19755.42 20872.90 20374.32 176
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12879.00 13062.77 16553.23 16841.77 17045.42 11530.74 19139.03 16553.01 15264.81 18464.65 19075.26 19868.03 196
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v119262.25 14261.64 15262.96 12966.88 15979.72 12469.96 12055.77 14541.58 17139.42 14837.05 16635.96 18260.50 11574.30 12074.09 12685.24 11088.76 97
thisisatest051559.37 16260.68 16057.84 16464.39 17475.65 16158.56 17953.86 16441.55 17242.12 13740.40 14939.59 16447.09 17071.69 14973.79 12981.02 17582.08 153
v14419262.05 14661.46 15462.73 13566.59 16379.87 12369.30 12555.88 14341.50 17339.41 14937.23 16436.45 17759.62 12072.69 13973.51 13285.61 10588.93 94
v192192061.66 14961.10 15762.31 13766.32 16479.57 12668.41 13055.49 15041.03 17438.69 15336.64 17235.27 18559.60 12173.23 13073.41 13485.37 10788.51 101
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20067.77 19057.54 18153.74 16540.93 17541.09 14231.19 19029.10 20649.07 16365.54 17967.28 17881.14 17375.81 170
pmnet_mix0253.92 18553.30 18754.65 18061.89 18571.33 18154.54 18754.17 16240.38 17634.65 17334.76 18130.68 20340.44 18760.97 19263.71 19282.19 16571.24 190
TinyColmap52.66 18850.09 19955.65 17459.72 19264.02 20257.15 18252.96 17040.28 17732.51 18032.42 18520.97 21556.65 14263.95 18865.15 18974.91 19963.87 203
pmmvs559.72 15960.24 16359.11 15762.77 18277.33 14863.17 16354.00 16340.21 17837.23 16040.41 14835.99 18151.75 15572.55 14172.74 14785.72 9882.45 150
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8178.26 13767.65 13467.48 4539.81 17930.98 18538.25 15934.59 18861.37 11170.55 15973.47 13379.74 18379.59 161
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v124061.09 15260.55 16161.72 14165.92 16879.28 12967.16 14054.91 15639.79 18038.10 15636.08 17434.64 18759.15 12572.86 13573.36 13685.10 11287.84 105
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19072.36 17544.63 20542.20 20339.45 18143.47 12821.66 20834.00 19155.47 14565.42 18067.16 18083.02 15571.08 191
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 18973.82 17157.92 18043.38 19739.43 18232.51 18033.23 18334.05 19047.26 16962.36 19066.21 18584.24 13673.19 183
TAMVS58.86 16560.91 15856.47 17362.38 18477.57 14458.97 17852.98 16938.76 18336.17 16642.26 13747.94 13846.45 17270.23 16370.79 16581.86 16878.82 165
WR-MVS51.02 19154.56 18346.90 19763.84 17669.23 18744.78 20456.38 13938.19 18414.19 20937.38 16336.82 17622.39 20560.14 19466.20 18679.81 18273.95 179
CP-MVSNet50.57 19252.60 19348.21 19458.77 19665.82 19648.17 19556.29 14037.41 18516.59 20437.14 16531.95 19629.21 19656.60 20163.71 19280.22 17975.56 172
PEN-MVS51.04 19052.94 18948.82 19161.45 18766.00 19548.68 19457.20 13236.87 18615.36 20736.98 16732.72 19428.77 19957.63 19866.37 18381.44 17274.00 178
test_method28.15 21134.48 21220.76 2126.76 22321.18 21921.03 21718.41 21836.77 18717.52 20215.67 21531.63 19824.05 20441.03 21426.69 21636.82 21768.38 193
Anonymous2023120652.23 18952.80 19151.56 18664.70 17369.41 18651.01 19158.60 11636.63 18822.44 19821.80 20731.42 19930.52 19466.79 17667.83 17682.10 16675.73 171
WR-MVS_H49.62 19652.63 19246.11 20058.80 19567.58 19146.14 20254.94 15436.51 18913.63 21236.75 17035.67 18422.10 20656.43 20262.76 19681.06 17472.73 184
PS-CasMVS50.17 19352.02 19448.02 19558.60 19765.54 19748.04 19656.19 14236.42 19016.42 20635.68 17631.33 20028.85 19856.42 20363.54 19480.01 18075.18 173
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 17973.22 17367.70 13355.58 14836.17 19136.84 16232.64 18435.14 18651.50 15665.81 17869.81 17181.73 16982.44 151
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18664.38 20045.89 20357.33 13136.11 19212.79 21436.87 16831.93 19725.73 20258.01 19665.22 18880.75 17870.93 192
N_pmnet47.67 20047.00 20448.45 19354.72 20362.78 20346.95 19951.25 17536.01 19326.09 19326.59 20025.93 21235.50 19255.67 20559.01 20176.22 19563.04 204
FPMVS39.11 20836.39 21042.28 20255.97 20145.94 21446.23 20141.57 20435.73 19422.61 19623.46 20319.82 21728.32 20043.57 21040.67 21258.96 21245.54 212
v7n57.04 17556.64 17857.52 16662.85 18174.75 16661.76 16751.80 17435.58 19536.02 16832.33 18633.61 19350.16 16267.73 17470.34 16982.51 15982.12 152
pm-mvs159.21 16359.58 16858.77 15967.97 15277.07 15064.12 15157.20 13234.73 19636.86 16135.34 17740.54 16243.34 18274.32 11973.30 13883.13 15481.77 155
anonymousdsp54.99 17957.24 17652.36 18453.82 20471.75 18051.49 19048.14 18233.74 19733.66 17738.34 15836.13 18047.54 16864.53 18670.60 16779.53 18585.59 126
EU-MVSNet44.84 20347.85 20341.32 20549.26 20956.59 21043.07 20647.64 18633.03 19813.82 21036.78 16930.99 20124.37 20353.80 20755.57 20769.78 20768.21 194
tfpnnormal58.97 16456.48 17961.89 13971.27 13476.21 15566.65 14461.76 9532.90 19936.41 16527.83 19729.14 20550.64 16173.06 13273.05 14384.58 13183.15 146
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12680.49 11863.44 16155.55 14932.49 20038.31 15528.87 19537.22 17342.84 18374.30 12075.70 10784.84 12177.14 169
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12774.69 16763.57 16061.42 9732.30 20132.65 17933.97 18235.96 18239.17 18973.84 12572.84 14684.37 13474.69 175
ambc42.30 20750.36 20849.51 21335.47 21232.04 20223.53 19517.36 2118.95 22229.06 19764.88 18356.26 20561.29 21167.12 197
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19864.14 20147.18 19847.75 18431.15 20324.42 19441.01 14526.55 20944.04 18054.76 20658.70 20371.99 20568.21 194
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21462.31 20446.28 20055.74 14629.83 20420.98 20027.11 19916.45 22041.98 18441.11 21357.47 20474.72 20061.65 208
test20.0347.23 20248.69 20245.53 20163.28 17864.39 19941.01 20856.93 13629.16 20515.21 20823.90 20130.76 20217.51 21264.63 18565.26 18779.21 18762.71 206
testgi48.51 19950.53 19746.16 19964.78 17167.15 19341.54 20754.81 15829.12 20617.03 20332.07 18731.98 19520.15 20965.26 18167.00 18178.67 18961.10 209
new_pmnet33.19 20935.52 21130.47 20927.55 21945.31 21529.29 21530.92 21529.00 2079.88 21818.77 21017.64 21926.77 20144.07 20945.98 21158.41 21347.87 211
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20559.89 20639.38 20949.61 17728.26 20812.10 21522.17 20621.54 21419.22 21050.96 20856.04 20674.61 20161.92 207
MIMVSNet140.84 20743.46 20537.79 20732.14 21558.92 20839.24 21050.83 17627.00 20911.29 21616.76 21426.53 21017.75 21157.14 20061.12 20075.46 19756.78 210
pmmvs654.20 18453.54 18654.97 17663.22 18072.98 17460.17 17352.32 17326.77 21034.30 17523.29 20436.23 17940.33 18868.77 17168.76 17479.47 18678.00 167
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10788.61 3971.18 11041.24 20825.74 21113.16 21322.91 20563.97 6954.52 14985.06 1685.25 1090.92 391.78 61
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21621.59 21818.06 21837.53 21125.43 21210.03 2174.18 2204.25 22414.85 21443.20 21147.03 21039.62 21626.55 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft19.81 22117.01 21910.02 21923.61 2135.85 22017.21 2128.03 22321.13 20722.60 21721.42 22130.01 215
pmmvs341.86 20642.29 20841.36 20339.80 21352.66 21238.93 21135.85 21423.40 21420.22 20119.30 20920.84 21640.56 18655.98 20458.79 20272.80 20465.03 201
gm-plane-assit54.99 17957.99 17551.49 18769.27 14654.42 21132.32 21442.59 20121.18 21513.71 21123.61 20243.84 14860.21 11787.09 586.55 590.81 489.28 90
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21124.79 21726.97 21641.34 20620.45 21622.50 19717.11 21318.64 21820.44 20841.99 21238.06 21354.02 21442.44 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17269.79 18549.05 19347.12 18720.36 21716.52 20536.65 17126.96 20850.76 16060.47 19363.16 19564.73 20972.00 186
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS220.45 21322.31 21518.27 21520.52 22026.73 21614.85 22028.43 21713.69 2180.79 22410.35 2169.10 2213.83 21927.64 21632.87 21441.17 21535.81 214
EMVS14.40 21510.71 21818.70 21428.15 21812.09 2237.06 22236.89 21211.00 2193.56 2234.95 2182.27 22613.91 21510.13 22016.06 21922.63 22018.51 219
E-PMN15.08 21411.65 21719.08 21328.73 21712.31 2226.95 22336.87 21310.71 2203.63 2225.13 2172.22 22713.81 21611.34 21918.50 21824.49 21921.32 218
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22220.24 2205.90 22429.05 2168.28 2213.92 2214.72 2192.42 2259.57 21718.89 21831.46 21516.07 22228.53 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2170.08 2190.01 2180.00 2250.01 2250.03 2260.01 2220.05 2220.00 2260.14 2220.01 2280.03 2220.05 2210.05 2200.01 2230.24 221
test1230.05 2170.08 2190.01 2180.00 2250.01 2250.01 2270.00 2230.05 2220.00 2260.16 2210.00 2290.04 2200.02 2220.05 2200.00 2240.26 220
uanet_test0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
sosnet0.00 2190.00 2210.00 2200.00 2250.00 2270.00 2280.00 2230.00 2240.00 2260.00 2230.00 2290.00 2230.00 2230.00 2220.00 2240.00 222
RE-MVS-def31.47 182
9.1484.47 7
SR-MVS86.33 4567.54 4480.78 20
our_test_363.32 17771.07 18455.90 184
MTAPA78.32 1179.42 24
MTMP76.04 1576.65 28
Patchmatch-RL test2.17 225
XVS82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
X-MVStestdata82.43 5486.27 7075.70 6861.07 6172.27 3885.67 100
mPP-MVS86.96 4070.61 48
Patchmtry78.06 13967.53 13643.18 19841.40 138