SED-MVS | | | 97.98 1 | 98.36 1 | 97.54 3 | 98.94 17 | 99.29 2 | 98.81 3 | 96.64 3 | 97.14 2 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 11 | 98.00 1 | 97.24 8 | 98.75 13 | 99.25 2 |
|
DVP-MVS | | | 97.93 2 | 98.23 2 | 97.58 2 | 99.05 6 | 99.31 1 | 98.64 5 | 96.62 4 | 97.56 1 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 3 | 97.31 6 | 98.77 12 | 99.26 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 97.83 3 | 98.13 3 | 97.48 4 | 98.83 23 | 99.19 3 | 98.99 1 | 96.70 1 | 96.05 19 | 94.39 10 | 98.30 1 | 99.47 3 | 97.02 6 | 97.75 6 | 97.02 13 | 98.98 2 | 99.10 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 97.79 4 | 97.96 5 | 97.60 1 | 99.20 2 | 99.10 5 | 98.88 2 | 96.68 2 | 96.81 6 | 94.64 6 | 97.84 3 | 98.02 10 | 97.24 3 | 97.74 7 | 97.02 13 | 98.97 3 | 99.16 5 |
|
MSP-MVS | | | 97.70 5 | 98.09 4 | 97.24 6 | 99.00 11 | 99.17 4 | 98.76 4 | 96.41 9 | 96.91 4 | 93.88 15 | 97.72 4 | 99.04 6 | 96.93 10 | 97.29 15 | 97.31 6 | 98.45 32 | 99.23 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 97.53 6 | 97.93 6 | 97.07 11 | 99.21 1 | 99.02 7 | 98.08 19 | 96.25 11 | 96.36 11 | 93.57 16 | 96.56 14 | 99.27 4 | 96.78 16 | 97.91 3 | 97.43 3 | 98.51 22 | 98.94 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 97.35 7 | 97.73 7 | 96.90 15 | 97.35 45 | 98.66 13 | 97.85 25 | 96.25 11 | 96.86 5 | 94.54 9 | 96.75 11 | 99.13 5 | 96.99 7 | 96.94 24 | 96.58 22 | 98.39 40 | 99.20 4 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 97.31 8 | 97.64 8 | 96.92 14 | 97.28 47 | 98.56 22 | 98.61 6 | 95.48 29 | 96.72 7 | 94.03 14 | 96.73 12 | 98.29 8 | 97.15 4 | 97.61 11 | 96.42 26 | 98.96 4 | 99.13 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 97.30 9 | 97.41 10 | 97.18 8 | 99.02 10 | 98.60 20 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 12 | 95.54 25 | 97.99 11 | 96.99 7 | 97.97 2 | 97.17 9 | 98.57 20 | 98.50 28 |
|
HPM-MVS++ |  | | 97.22 10 | 97.40 11 | 97.01 12 | 99.08 4 | 98.55 23 | 98.19 14 | 96.48 6 | 96.02 20 | 93.28 21 | 96.26 17 | 98.71 7 | 96.76 17 | 97.30 14 | 96.25 35 | 98.30 50 | 98.68 13 |
|
SF-MVS | | | 97.20 11 | 97.29 13 | 97.10 9 | 98.95 15 | 98.51 27 | 97.51 29 | 96.48 6 | 96.17 15 | 94.64 6 | 97.32 5 | 97.57 18 | 96.23 26 | 96.78 28 | 96.15 38 | 98.79 10 | 98.55 24 |
|
APD-MVS |  | | 97.12 12 | 97.05 17 | 97.19 7 | 99.04 7 | 98.63 18 | 98.45 7 | 96.54 5 | 94.81 37 | 93.50 17 | 96.10 19 | 97.40 21 | 96.81 13 | 97.05 21 | 96.82 18 | 98.80 7 | 98.56 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 97.11 13 | 97.19 15 | 97.00 13 | 98.97 13 | 98.73 11 | 98.37 11 | 95.69 22 | 96.60 8 | 93.28 21 | 96.87 8 | 96.64 28 | 97.27 2 | 96.64 32 | 96.33 33 | 98.44 33 | 98.56 19 |
|
SteuartSystems-ACMMP | | | 97.10 14 | 97.49 9 | 96.65 19 | 98.97 13 | 98.95 8 | 98.43 8 | 95.96 18 | 95.12 29 | 91.46 29 | 96.85 9 | 97.60 17 | 96.37 24 | 97.76 5 | 97.16 10 | 98.68 14 | 98.97 10 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 96.98 15 | 96.68 23 | 97.33 5 | 99.09 3 | 98.71 12 | 98.43 8 | 96.01 16 | 96.11 18 | 95.19 3 | 92.89 33 | 97.32 22 | 96.84 12 | 97.20 16 | 96.09 41 | 98.44 33 | 98.46 32 |
|
ACMMP_NAP | | | 96.93 16 | 97.27 14 | 96.53 24 | 99.06 5 | 98.95 8 | 98.24 13 | 96.06 15 | 95.66 22 | 90.96 34 | 95.63 24 | 97.71 15 | 96.53 20 | 97.66 9 | 96.68 19 | 98.30 50 | 98.61 18 |
|
ACMMPR | | | 96.92 17 | 96.96 18 | 96.87 16 | 98.99 12 | 98.78 10 | 98.38 10 | 95.52 25 | 96.57 9 | 92.81 25 | 96.06 20 | 95.90 36 | 97.07 5 | 96.60 34 | 96.34 32 | 98.46 29 | 98.42 33 |
|
MCST-MVS | | | 96.83 18 | 97.06 16 | 96.57 20 | 98.88 21 | 98.47 31 | 98.02 21 | 96.16 14 | 95.58 24 | 90.96 34 | 95.78 23 | 97.84 13 | 96.46 22 | 97.00 23 | 96.17 37 | 98.94 5 | 98.55 24 |
|
NCCC | | | 96.75 19 | 96.67 24 | 96.85 17 | 99.03 9 | 98.44 33 | 98.15 16 | 96.28 10 | 96.32 12 | 92.39 26 | 92.16 35 | 97.55 19 | 96.68 19 | 97.32 12 | 96.65 21 | 98.55 21 | 98.26 37 |
|
CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 18 | 98.85 22 | 98.58 21 | 98.18 15 | 95.51 27 | 95.34 26 | 92.94 24 | 95.21 28 | 96.25 31 | 96.79 15 | 96.44 39 | 95.77 45 | 98.35 42 | 98.56 19 |
|
MP-MVS |  | | 96.56 21 | 96.72 22 | 96.37 25 | 98.93 19 | 98.48 29 | 98.04 20 | 95.55 24 | 94.32 41 | 90.95 36 | 95.88 22 | 97.02 25 | 96.29 25 | 96.77 30 | 96.01 43 | 98.47 27 | 98.56 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 21 | 98.70 26 | 98.31 37 | 97.97 22 | 95.76 21 | 96.31 13 | 92.01 28 | 91.43 40 | 95.42 40 | 96.46 22 | 97.65 10 | 97.69 1 | 98.49 26 | 98.12 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + ACMM | | | 96.19 23 | 97.39 12 | 94.78 38 | 97.70 40 | 98.41 34 | 97.72 27 | 95.49 28 | 96.47 10 | 86.66 66 | 96.35 15 | 97.85 12 | 93.99 51 | 97.19 18 | 96.37 28 | 97.12 127 | 99.13 6 |
|
PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 27 | 99.04 7 | 98.63 18 | 98.32 12 | 92.76 43 | 93.42 48 | 90.49 39 | 96.30 16 | 95.31 41 | 96.71 18 | 96.46 37 | 96.02 42 | 98.38 41 | 98.19 41 |
|
train_agg | | | 96.15 25 | 96.64 25 | 95.58 34 | 98.44 28 | 98.03 44 | 98.14 18 | 95.40 32 | 93.90 45 | 87.72 56 | 96.26 17 | 98.10 9 | 95.75 31 | 96.25 44 | 95.45 51 | 98.01 80 | 98.47 30 |
|
X-MVS | | | 96.07 26 | 96.33 28 | 95.77 30 | 98.94 17 | 98.66 13 | 97.94 23 | 95.41 31 | 95.12 29 | 88.03 52 | 93.00 32 | 96.06 32 | 95.85 29 | 96.65 31 | 96.35 29 | 98.47 27 | 98.48 29 |
|
MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 22 | 98.33 30 | 98.17 40 | 96.94 37 | 94.61 35 | 94.70 39 | 94.37 11 | 89.20 53 | 95.96 35 | 96.81 13 | 95.57 55 | 97.33 5 | 98.24 58 | 98.47 30 |
|
TSAR-MVS + GP. | | | 95.86 28 | 96.95 20 | 94.60 43 | 94.07 82 | 98.11 42 | 96.30 44 | 91.76 51 | 95.67 21 | 91.07 32 | 96.82 10 | 97.69 16 | 95.71 33 | 95.96 49 | 95.75 46 | 98.68 14 | 98.63 15 |
|
PHI-MVS | | | 95.86 28 | 96.93 21 | 94.61 42 | 97.60 42 | 98.65 17 | 96.49 41 | 93.13 41 | 94.07 43 | 87.91 55 | 97.12 7 | 97.17 24 | 93.90 54 | 96.46 37 | 96.93 16 | 98.64 16 | 98.10 48 |
|
CSCG | | | 95.68 30 | 95.46 35 | 95.93 28 | 98.71 25 | 99.07 6 | 97.13 36 | 93.55 38 | 95.48 25 | 93.35 20 | 90.61 45 | 93.82 46 | 95.16 37 | 94.60 77 | 95.57 49 | 97.70 101 | 99.08 9 |
|
xxxxxxxxxxxxxcwj | | | 95.62 31 | 94.35 47 | 97.10 9 | 98.95 15 | 98.51 27 | 97.51 29 | 96.48 6 | 96.17 15 | 94.64 6 | 97.32 5 | 76.98 137 | 96.23 26 | 96.78 28 | 96.15 38 | 98.79 10 | 98.55 24 |
|
CPTT-MVS | | | 95.54 32 | 95.07 36 | 96.10 26 | 97.88 36 | 97.98 47 | 97.92 24 | 94.86 33 | 94.56 40 | 92.16 27 | 91.01 42 | 95.71 37 | 96.97 9 | 94.56 78 | 93.50 87 | 96.81 150 | 98.14 44 |
|
ACMMP |  | | 95.54 32 | 95.49 34 | 95.61 33 | 98.27 31 | 98.53 25 | 97.16 35 | 94.86 33 | 94.88 35 | 89.34 42 | 95.36 27 | 91.74 56 | 95.50 35 | 95.51 56 | 94.16 70 | 98.50 24 | 98.22 39 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 92.65 2 | 95.50 34 | 96.96 18 | 93.79 51 | 96.44 57 | 98.21 38 | 93.51 93 | 94.08 37 | 96.94 3 | 89.29 43 | 93.08 31 | 96.77 27 | 93.82 55 | 97.68 8 | 97.40 4 | 95.59 173 | 98.65 14 |
|
DeepC-MVS | | 92.10 3 | 95.22 35 | 94.77 40 | 95.75 31 | 97.77 38 | 98.54 24 | 97.63 28 | 95.96 18 | 95.07 32 | 88.85 47 | 85.35 74 | 91.85 55 | 95.82 30 | 96.88 27 | 97.10 11 | 98.44 33 | 98.63 15 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DPM-MVS | | | 95.07 36 | 94.84 38 | 95.34 35 | 97.44 44 | 97.49 61 | 97.76 26 | 95.52 25 | 94.88 35 | 88.92 46 | 87.25 59 | 96.44 30 | 94.41 43 | 95.78 52 | 96.11 40 | 97.99 82 | 95.95 122 |
|
3Dnovator+ | | 90.56 5 | 95.06 37 | 94.56 43 | 95.65 32 | 98.11 32 | 98.15 41 | 97.19 34 | 91.59 53 | 95.11 31 | 93.23 23 | 81.99 100 | 94.71 43 | 95.43 36 | 96.48 36 | 96.88 17 | 98.35 42 | 98.63 15 |
|
AdaColmap |  | | 95.02 38 | 93.71 50 | 96.54 23 | 98.51 27 | 97.76 53 | 96.69 40 | 95.94 20 | 93.72 46 | 93.50 17 | 89.01 54 | 90.53 66 | 96.49 21 | 94.51 80 | 93.76 79 | 98.07 74 | 96.69 97 |
|
CANet | | | 94.85 39 | 94.92 37 | 94.78 38 | 97.25 48 | 98.52 26 | 97.20 33 | 91.81 49 | 93.25 49 | 91.06 33 | 86.29 66 | 94.46 44 | 92.99 66 | 97.02 22 | 96.68 19 | 98.34 44 | 98.20 40 |
|
MVS_111021_LR | | | 94.84 40 | 95.57 32 | 94.00 45 | 97.11 50 | 97.72 57 | 94.88 63 | 91.16 57 | 95.24 28 | 88.74 48 | 96.03 21 | 91.52 59 | 94.33 47 | 95.96 49 | 95.01 58 | 97.79 92 | 97.49 73 |
|
MVS_111021_HR | | | 94.84 40 | 95.91 30 | 93.60 52 | 97.35 45 | 98.46 32 | 95.08 60 | 91.19 56 | 94.18 42 | 85.97 70 | 95.38 26 | 92.56 52 | 93.61 58 | 96.61 33 | 96.25 35 | 98.40 38 | 97.92 56 |
|
CDPH-MVS | | | 94.80 42 | 95.50 33 | 93.98 47 | 98.34 29 | 98.06 43 | 97.41 31 | 93.23 40 | 92.81 52 | 82.98 94 | 92.51 34 | 94.82 42 | 93.53 59 | 96.08 47 | 96.30 34 | 98.42 36 | 97.94 54 |
|
3Dnovator | | 90.28 7 | 94.70 43 | 94.34 48 | 95.11 36 | 98.06 33 | 98.21 38 | 96.89 38 | 91.03 59 | 94.72 38 | 91.45 30 | 82.87 91 | 93.10 50 | 94.61 41 | 96.24 45 | 97.08 12 | 98.63 17 | 98.16 42 |
|
OMC-MVS | | | 94.49 44 | 94.36 46 | 94.64 41 | 97.17 49 | 97.73 55 | 95.49 56 | 92.25 45 | 96.18 14 | 90.34 40 | 88.51 55 | 92.88 51 | 94.90 40 | 94.92 65 | 94.17 69 | 97.69 102 | 96.15 117 |
|
PLC |  | 90.69 4 | 94.32 45 | 92.99 57 | 95.87 29 | 97.91 34 | 96.49 87 | 95.95 51 | 94.12 36 | 94.94 33 | 94.09 13 | 85.90 70 | 90.77 63 | 95.58 34 | 94.52 79 | 93.32 93 | 97.55 110 | 95.00 142 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_0304 | | | 94.30 46 | 94.68 41 | 93.86 50 | 96.33 59 | 98.48 29 | 97.41 31 | 91.20 55 | 92.75 53 | 86.96 63 | 86.03 69 | 93.81 47 | 92.64 70 | 96.89 26 | 96.54 25 | 98.61 18 | 98.24 38 |
|
QAPM | | | 94.13 47 | 94.33 49 | 93.90 48 | 97.82 37 | 98.37 36 | 96.47 42 | 90.89 60 | 92.73 55 | 85.63 77 | 85.35 74 | 93.87 45 | 94.17 49 | 95.71 54 | 95.90 44 | 98.40 38 | 98.42 33 |
|
CS-MVS | | | 94.03 48 | 94.83 39 | 93.09 61 | 93.25 98 | 97.39 63 | 95.10 59 | 87.26 106 | 91.48 67 | 88.41 51 | 89.96 48 | 93.41 48 | 95.72 32 | 97.06 20 | 96.55 24 | 98.81 6 | 98.00 50 |
|
EPNet | | | 93.92 49 | 94.40 45 | 93.36 54 | 97.89 35 | 96.55 85 | 96.08 47 | 92.14 46 | 91.65 64 | 89.16 44 | 94.07 30 | 90.17 70 | 87.78 121 | 95.24 59 | 94.97 59 | 97.09 129 | 98.15 43 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETV-MVS | | | 93.80 50 | 94.57 42 | 92.91 64 | 93.98 84 | 97.50 60 | 93.62 90 | 88.70 82 | 91.95 60 | 87.57 57 | 90.21 47 | 90.79 62 | 94.56 42 | 97.20 16 | 96.35 29 | 99.02 1 | 97.98 51 |
|
DELS-MVS | | | 93.71 51 | 93.47 52 | 94.00 45 | 96.82 54 | 98.39 35 | 96.80 39 | 91.07 58 | 89.51 94 | 89.94 41 | 83.80 84 | 89.29 71 | 90.95 87 | 97.32 12 | 97.65 2 | 98.42 36 | 98.32 36 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNLPA | | | 93.69 52 | 92.50 63 | 95.06 37 | 97.11 50 | 97.36 64 | 93.88 83 | 93.30 39 | 95.64 23 | 93.44 19 | 80.32 108 | 90.73 64 | 94.99 39 | 93.58 97 | 93.33 91 | 97.67 104 | 96.57 102 |
|
TAPA-MVS | | 90.35 6 | 93.69 52 | 93.52 51 | 93.90 48 | 96.89 53 | 97.62 58 | 96.15 45 | 91.67 52 | 94.94 33 | 85.97 70 | 87.72 58 | 91.96 53 | 94.40 44 | 93.76 95 | 93.06 102 | 98.30 50 | 95.58 130 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CS-MVS-test | | | 93.49 54 | 94.53 44 | 92.28 71 | 93.07 103 | 97.05 75 | 94.16 76 | 86.24 113 | 92.25 59 | 85.40 85 | 89.41 51 | 91.96 53 | 96.03 28 | 96.90 25 | 95.61 48 | 98.80 7 | 98.52 27 |
|
canonicalmvs | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 78 | 97.86 49 | 95.45 57 | 87.86 98 | 94.00 44 | 87.47 58 | 88.32 56 | 82.37 103 | 95.13 38 | 93.96 94 | 96.41 27 | 98.27 54 | 98.73 12 |
|
PCF-MVS | | 90.19 8 | 92.98 56 | 92.07 71 | 94.04 44 | 96.39 58 | 97.87 48 | 96.03 48 | 95.47 30 | 87.16 112 | 85.09 88 | 84.81 78 | 93.21 49 | 93.46 61 | 91.98 128 | 91.98 125 | 97.78 93 | 97.51 72 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PVSNet_BlendedMVS | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 61 | 97.83 51 | 93.74 87 | 90.58 61 | 91.86 61 | 90.69 37 | 85.87 72 | 82.04 105 | 90.01 94 | 96.39 40 | 95.26 54 | 98.34 44 | 97.81 61 |
|
PVSNet_Blended | | | 92.80 57 | 92.44 65 | 93.23 55 | 96.02 61 | 97.83 51 | 93.74 87 | 90.58 61 | 91.86 61 | 90.69 37 | 85.87 72 | 82.04 105 | 90.01 94 | 96.39 40 | 95.26 54 | 98.34 44 | 97.81 61 |
|
EIA-MVS | | | 92.72 59 | 92.96 58 | 92.44 67 | 93.86 91 | 97.76 53 | 93.13 99 | 88.65 84 | 89.78 91 | 86.68 65 | 86.69 63 | 87.57 72 | 93.74 56 | 96.07 48 | 95.32 52 | 98.58 19 | 97.53 71 |
|
MAR-MVS | | | 92.71 60 | 92.63 61 | 92.79 65 | 97.70 40 | 97.15 70 | 93.75 86 | 87.98 92 | 90.71 71 | 85.76 75 | 86.28 67 | 86.38 77 | 94.35 46 | 94.95 63 | 95.49 50 | 97.22 120 | 97.44 74 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
OpenMVS |  | 88.18 11 | 92.51 61 | 91.61 78 | 93.55 53 | 97.74 39 | 98.02 45 | 95.66 54 | 90.46 63 | 89.14 97 | 86.50 67 | 75.80 133 | 90.38 69 | 92.69 69 | 94.99 62 | 95.30 53 | 98.27 54 | 97.63 65 |
|
CLD-MVS | | | 92.50 62 | 91.96 73 | 93.13 58 | 93.93 88 | 96.24 93 | 95.69 53 | 88.77 81 | 92.92 50 | 89.01 45 | 88.19 57 | 81.74 108 | 93.13 65 | 93.63 96 | 93.08 100 | 98.23 59 | 97.91 58 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TSAR-MVS + COLMAP | | | 92.39 63 | 92.31 68 | 92.47 66 | 95.35 73 | 96.46 89 | 96.13 46 | 92.04 48 | 95.33 27 | 80.11 110 | 94.95 29 | 77.35 135 | 94.05 50 | 94.49 81 | 93.08 100 | 97.15 124 | 94.53 146 |
|
HQP-MVS | | | 92.39 63 | 92.49 64 | 92.29 70 | 95.65 65 | 95.94 99 | 95.64 55 | 92.12 47 | 92.46 57 | 79.65 112 | 91.97 37 | 82.68 99 | 92.92 68 | 93.47 102 | 92.77 107 | 97.74 97 | 98.12 46 |
|
EPP-MVSNet | | | 92.13 65 | 93.06 56 | 91.05 87 | 93.66 96 | 97.30 65 | 92.18 112 | 87.90 94 | 90.24 81 | 83.63 91 | 86.14 68 | 90.52 68 | 90.76 89 | 94.82 70 | 94.38 66 | 98.18 64 | 97.98 51 |
|
ACMP | | 89.13 9 | 92.03 66 | 91.70 77 | 92.41 68 | 94.92 74 | 96.44 91 | 93.95 79 | 89.96 66 | 91.81 63 | 85.48 82 | 90.97 43 | 79.12 119 | 92.42 72 | 93.28 108 | 92.55 111 | 97.76 95 | 97.74 64 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LS3D | | | 91.97 67 | 90.98 85 | 93.12 59 | 97.03 52 | 97.09 73 | 95.33 58 | 95.59 23 | 92.47 56 | 79.26 114 | 81.60 103 | 82.77 98 | 94.39 45 | 94.28 82 | 94.23 68 | 97.14 126 | 94.45 148 |
|
PVSNet_Blended_VisFu | | | 91.92 68 | 92.39 67 | 91.36 85 | 95.45 71 | 97.85 50 | 92.25 111 | 89.54 74 | 88.53 104 | 87.47 58 | 79.82 110 | 90.53 66 | 85.47 146 | 96.31 43 | 95.16 57 | 97.99 82 | 98.56 19 |
|
IS_MVSNet | | | 91.87 69 | 93.35 54 | 90.14 98 | 94.09 81 | 97.73 55 | 93.09 100 | 88.12 90 | 88.71 101 | 79.98 111 | 84.49 79 | 90.63 65 | 87.49 125 | 97.07 19 | 96.96 15 | 98.07 74 | 97.88 60 |
|
LGP-MVS_train | | | 91.83 70 | 92.04 72 | 91.58 77 | 95.46 69 | 96.18 95 | 95.97 50 | 89.85 67 | 90.45 77 | 77.76 117 | 91.92 38 | 80.07 116 | 92.34 74 | 94.27 83 | 93.47 88 | 98.11 71 | 97.90 59 |
|
MVS_Test | | | 91.81 71 | 92.19 69 | 91.37 84 | 93.24 99 | 96.95 78 | 94.43 65 | 86.25 112 | 91.45 68 | 83.45 92 | 86.31 65 | 85.15 85 | 92.93 67 | 93.99 90 | 94.71 63 | 97.92 86 | 96.77 95 |
|
MVSTER | | | 91.73 72 | 91.61 78 | 91.86 74 | 93.18 100 | 94.56 109 | 94.37 67 | 87.90 94 | 90.16 85 | 88.69 49 | 89.23 52 | 81.28 110 | 88.92 114 | 95.75 53 | 93.95 76 | 98.12 69 | 96.37 108 |
|
casdiffmvs | | | 91.72 73 | 91.16 83 | 92.38 69 | 93.16 101 | 97.15 70 | 93.95 79 | 89.49 75 | 91.58 66 | 86.03 69 | 80.75 107 | 80.95 111 | 93.16 64 | 95.25 58 | 95.22 56 | 98.50 24 | 97.23 82 |
|
ACMM | | 88.76 10 | 91.70 74 | 90.43 88 | 93.19 57 | 95.56 66 | 95.14 106 | 93.35 96 | 91.48 54 | 92.26 58 | 87.12 61 | 84.02 82 | 79.34 118 | 93.99 51 | 94.07 89 | 92.68 108 | 97.62 109 | 95.50 131 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UGNet | | | 91.52 75 | 93.41 53 | 89.32 104 | 94.13 79 | 97.15 70 | 91.83 121 | 89.01 78 | 90.62 74 | 85.86 74 | 86.83 60 | 91.73 57 | 77.40 186 | 94.68 74 | 94.43 65 | 97.71 99 | 98.40 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
diffmvs | | | 91.37 76 | 91.09 84 | 91.70 76 | 92.71 113 | 96.47 88 | 94.03 77 | 88.78 80 | 92.74 54 | 85.43 84 | 83.63 86 | 80.37 113 | 91.76 79 | 93.39 104 | 93.78 78 | 97.50 112 | 97.23 82 |
|
DCV-MVSNet | | | 91.24 77 | 91.26 81 | 91.22 86 | 92.84 109 | 93.44 136 | 93.82 84 | 86.75 109 | 91.33 69 | 85.61 78 | 84.00 83 | 85.46 84 | 91.27 82 | 92.91 110 | 93.62 82 | 97.02 133 | 98.05 49 |
|
baseline | | | 91.19 78 | 91.89 74 | 90.38 90 | 92.76 110 | 95.04 107 | 93.55 92 | 84.54 131 | 92.92 50 | 85.71 76 | 86.68 64 | 86.96 74 | 89.28 104 | 92.00 127 | 92.62 110 | 96.46 155 | 96.99 89 |
|
OPM-MVS | | | 91.08 79 | 89.34 98 | 93.11 60 | 96.18 60 | 96.13 96 | 96.39 43 | 92.39 44 | 82.97 152 | 81.74 97 | 82.55 97 | 80.20 115 | 93.97 53 | 94.62 75 | 93.23 94 | 98.00 81 | 95.73 126 |
|
DI_MVS_plusplus_trai | | | 91.05 80 | 90.15 92 | 92.11 72 | 92.67 114 | 96.61 83 | 96.03 48 | 88.44 86 | 90.25 80 | 85.92 72 | 73.73 141 | 84.89 87 | 91.92 76 | 94.17 87 | 94.07 74 | 97.68 103 | 97.31 80 |
|
thisisatest0530 | | | 91.04 81 | 91.74 75 | 90.21 94 | 92.93 108 | 97.00 76 | 92.06 117 | 87.63 103 | 90.74 70 | 81.51 98 | 86.81 61 | 82.48 100 | 89.23 106 | 94.81 71 | 93.03 104 | 97.90 87 | 97.33 79 |
|
tttt0517 | | | 91.01 82 | 91.71 76 | 90.19 96 | 92.98 104 | 97.07 74 | 91.96 120 | 87.63 103 | 90.61 75 | 81.42 99 | 86.76 62 | 82.26 104 | 89.23 106 | 94.86 69 | 93.03 104 | 97.90 87 | 97.36 77 |
|
UA-Net | | | 90.81 83 | 92.58 62 | 88.74 111 | 94.87 75 | 97.44 62 | 92.61 104 | 88.22 88 | 82.35 155 | 78.93 115 | 85.20 76 | 95.61 38 | 79.56 181 | 96.52 35 | 96.57 23 | 98.23 59 | 94.37 149 |
|
baseline1 | | | 90.81 83 | 90.29 89 | 91.42 81 | 93.67 95 | 95.86 100 | 93.94 81 | 89.69 72 | 89.29 96 | 82.85 95 | 82.91 90 | 80.30 114 | 89.60 97 | 95.05 61 | 94.79 62 | 98.80 7 | 93.82 157 |
|
CHOSEN 280x420 | | | 90.77 85 | 92.14 70 | 89.17 107 | 93.86 91 | 92.81 159 | 93.16 98 | 80.22 176 | 90.21 82 | 84.67 90 | 89.89 49 | 91.38 60 | 90.57 92 | 94.94 64 | 92.11 120 | 92.52 195 | 93.65 159 |
|
CANet_DTU | | | 90.74 86 | 92.93 59 | 88.19 116 | 94.36 77 | 96.61 83 | 94.34 69 | 84.66 128 | 90.66 72 | 68.75 165 | 90.41 46 | 86.89 75 | 89.78 96 | 95.46 57 | 94.87 60 | 97.25 119 | 95.62 128 |
|
FC-MVSNet-train | | | 90.55 87 | 90.19 91 | 90.97 88 | 93.78 93 | 95.16 105 | 92.11 116 | 88.85 79 | 87.64 109 | 83.38 93 | 84.36 81 | 78.41 126 | 89.53 98 | 94.69 73 | 93.15 99 | 98.15 65 | 97.92 56 |
|
Vis-MVSNet (Re-imp) | | | 90.54 88 | 92.76 60 | 87.94 120 | 93.73 94 | 96.94 79 | 92.17 114 | 87.91 93 | 88.77 100 | 76.12 126 | 83.68 85 | 90.80 61 | 79.49 182 | 96.34 42 | 96.35 29 | 98.21 61 | 96.46 104 |
|
MSDG | | | 90.42 89 | 88.25 109 | 92.94 63 | 96.67 56 | 94.41 115 | 93.96 78 | 92.91 42 | 89.59 93 | 86.26 68 | 76.74 125 | 80.92 112 | 90.43 93 | 92.60 116 | 92.08 122 | 97.44 115 | 91.41 174 |
|
PatchMatch-RL | | | 90.30 90 | 88.93 102 | 91.89 73 | 95.41 72 | 95.68 101 | 90.94 124 | 88.67 83 | 89.80 90 | 86.95 64 | 85.90 70 | 72.51 147 | 92.46 71 | 93.56 99 | 92.18 117 | 96.93 142 | 92.89 167 |
|
GBi-Net | | | 90.21 91 | 90.11 93 | 90.32 92 | 88.66 156 | 93.65 132 | 94.25 72 | 85.78 118 | 90.03 86 | 85.56 79 | 77.38 118 | 86.13 78 | 89.38 101 | 93.97 91 | 94.16 70 | 98.31 47 | 95.47 132 |
|
test1 | | | 90.21 91 | 90.11 93 | 90.32 92 | 88.66 156 | 93.65 132 | 94.25 72 | 85.78 118 | 90.03 86 | 85.56 79 | 77.38 118 | 86.13 78 | 89.38 101 | 93.97 91 | 94.16 70 | 98.31 47 | 95.47 132 |
|
FMVSNet3 | | | 90.19 93 | 90.06 95 | 90.34 91 | 88.69 155 | 93.85 124 | 94.58 64 | 85.78 118 | 90.03 86 | 85.56 79 | 77.38 118 | 86.13 78 | 89.22 108 | 93.29 107 | 94.36 67 | 98.20 62 | 95.40 136 |
|
ET-MVSNet_ETH3D | | | 89.93 94 | 90.84 86 | 88.87 109 | 79.60 208 | 96.19 94 | 94.43 65 | 86.56 110 | 90.63 73 | 80.75 107 | 90.71 44 | 77.78 131 | 93.73 57 | 91.36 136 | 93.45 89 | 98.15 65 | 95.77 125 |
|
PMMVS | | | 89.88 95 | 91.19 82 | 88.35 114 | 89.73 146 | 91.97 179 | 90.62 127 | 81.92 163 | 90.57 76 | 80.58 109 | 92.16 35 | 86.85 76 | 91.17 84 | 92.31 120 | 91.35 136 | 96.11 161 | 93.11 166 |
|
Anonymous20231211 | | | 89.82 96 | 88.18 110 | 91.74 75 | 92.52 115 | 96.09 97 | 93.38 95 | 89.30 77 | 88.95 99 | 85.90 73 | 64.55 188 | 84.39 88 | 92.41 73 | 92.24 123 | 93.06 102 | 96.93 142 | 97.95 53 |
|
Effi-MVS+ | | | 89.79 97 | 89.83 96 | 89.74 100 | 92.98 104 | 96.45 90 | 93.48 94 | 84.24 133 | 87.62 110 | 76.45 124 | 81.76 101 | 77.56 134 | 93.48 60 | 94.61 76 | 93.59 83 | 97.82 91 | 97.22 84 |
|
RPSCF | | | 89.68 98 | 89.24 99 | 90.20 95 | 92.97 106 | 92.93 155 | 92.30 108 | 87.69 100 | 90.44 78 | 85.12 87 | 91.68 39 | 85.84 83 | 90.69 90 | 87.34 184 | 86.07 186 | 92.46 196 | 90.37 184 |
|
FMVSNet2 | | | 89.61 99 | 89.14 100 | 90.16 97 | 88.66 156 | 93.65 132 | 94.25 72 | 85.44 122 | 88.57 103 | 84.96 89 | 73.53 143 | 83.82 90 | 89.38 101 | 94.23 84 | 94.68 64 | 98.31 47 | 95.47 132 |
|
tfpn200view9 | | | 89.55 100 | 87.86 116 | 91.53 79 | 93.90 89 | 97.26 66 | 94.31 71 | 89.74 69 | 85.87 125 | 81.15 102 | 76.46 127 | 70.38 156 | 91.76 79 | 94.92 65 | 93.51 84 | 98.28 53 | 96.61 99 |
|
thres200 | | | 89.49 101 | 87.72 118 | 91.55 78 | 93.95 86 | 97.25 67 | 94.34 69 | 89.74 69 | 85.66 128 | 81.18 101 | 76.12 132 | 70.19 159 | 91.80 77 | 94.92 65 | 93.51 84 | 98.27 54 | 96.40 107 |
|
thres400 | | | 89.40 102 | 87.58 123 | 91.53 79 | 94.06 83 | 97.21 69 | 94.19 75 | 89.83 68 | 85.69 127 | 81.08 104 | 75.50 135 | 69.76 160 | 91.80 77 | 94.79 72 | 93.51 84 | 98.20 62 | 96.60 100 |
|
thres100view900 | | | 89.36 103 | 87.61 121 | 91.39 82 | 93.90 89 | 96.86 81 | 94.35 68 | 89.66 73 | 85.87 125 | 81.15 102 | 76.46 127 | 70.38 156 | 91.17 84 | 94.09 88 | 93.43 90 | 98.13 68 | 96.16 116 |
|
Vis-MVSNet |  | | 89.36 103 | 91.49 80 | 86.88 131 | 92.10 119 | 97.60 59 | 92.16 115 | 85.89 115 | 84.21 141 | 75.20 128 | 82.58 95 | 87.13 73 | 77.40 186 | 95.90 51 | 95.63 47 | 98.51 22 | 97.36 77 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 89.29 105 | 88.68 104 | 89.99 99 | 92.75 112 | 96.03 98 | 93.07 102 | 83.79 140 | 86.98 114 | 81.34 100 | 74.72 138 | 78.92 120 | 91.22 83 | 93.31 106 | 93.21 96 | 97.78 93 | 97.60 70 |
|
thres600view7 | | | 89.28 106 | 87.47 126 | 91.39 82 | 94.12 80 | 97.25 67 | 93.94 81 | 89.74 69 | 85.62 130 | 80.63 108 | 75.24 137 | 69.33 161 | 91.66 81 | 94.92 65 | 93.23 94 | 98.27 54 | 96.72 96 |
|
baseline2 | | | 88.97 107 | 89.50 97 | 88.36 113 | 91.14 132 | 95.30 102 | 90.13 138 | 85.17 125 | 87.24 111 | 80.80 106 | 84.46 80 | 78.44 125 | 85.60 143 | 93.54 100 | 91.87 126 | 97.31 117 | 95.66 127 |
|
IterMVS-LS | | | 88.60 108 | 88.45 105 | 88.78 110 | 92.02 120 | 92.44 169 | 92.00 119 | 83.57 144 | 86.52 121 | 78.90 116 | 78.61 115 | 81.34 109 | 89.12 109 | 90.68 149 | 93.18 97 | 97.10 128 | 96.35 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 1792x2688 | | | 88.57 109 | 87.82 117 | 89.44 103 | 95.46 69 | 96.89 80 | 93.74 87 | 85.87 116 | 89.63 92 | 77.42 121 | 61.38 195 | 83.31 93 | 88.80 116 | 93.44 103 | 93.16 98 | 95.37 178 | 96.95 91 |
|
Fast-Effi-MVS+ | | | 88.56 110 | 87.99 113 | 89.22 105 | 91.56 126 | 95.21 103 | 92.29 109 | 82.69 151 | 86.82 115 | 77.73 118 | 76.24 130 | 73.39 145 | 93.36 62 | 94.22 85 | 93.64 80 | 97.65 105 | 96.43 105 |
|
DROMVSNet | | | 88.56 110 | 87.99 113 | 89.22 105 | 91.56 126 | 95.21 103 | 92.29 109 | 82.69 151 | 86.82 115 | 77.73 118 | 76.24 130 | 73.39 145 | 93.36 62 | 94.22 85 | 93.64 80 | 97.65 105 | 96.43 105 |
|
CDS-MVSNet | | | 88.34 112 | 88.71 103 | 87.90 121 | 90.70 140 | 94.54 110 | 92.38 106 | 86.02 114 | 80.37 164 | 79.42 113 | 79.30 111 | 83.43 92 | 82.04 169 | 93.39 104 | 94.01 75 | 96.86 148 | 95.93 123 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EPNet_dtu | | | 88.32 113 | 90.61 87 | 85.64 143 | 96.79 55 | 92.27 171 | 92.03 118 | 90.31 64 | 89.05 98 | 65.44 186 | 89.43 50 | 85.90 82 | 74.22 195 | 92.76 111 | 92.09 121 | 95.02 184 | 92.76 168 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 85.10 14 | 87.98 114 | 87.97 115 | 87.99 119 | 94.55 76 | 96.86 81 | 84.52 190 | 88.21 89 | 86.48 123 | 88.54 50 | 74.41 140 | 77.74 132 | 74.10 197 | 89.65 167 | 92.85 106 | 98.06 76 | 97.80 63 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HyFIR lowres test | | | 87.87 115 | 86.42 132 | 89.57 101 | 95.56 66 | 96.99 77 | 92.37 107 | 84.15 135 | 86.64 118 | 77.17 122 | 57.65 201 | 83.97 89 | 91.08 86 | 92.09 126 | 92.44 112 | 97.09 129 | 95.16 139 |
|
MS-PatchMatch | | | 87.63 116 | 87.61 121 | 87.65 124 | 93.95 86 | 94.09 120 | 92.60 105 | 81.52 168 | 86.64 118 | 76.41 125 | 73.46 145 | 85.94 81 | 85.01 150 | 92.23 124 | 90.00 165 | 96.43 157 | 90.93 180 |
|
COLMAP_ROB |  | 84.39 15 | 87.61 117 | 86.03 136 | 89.46 102 | 95.54 68 | 94.48 112 | 91.77 122 | 90.14 65 | 87.16 112 | 75.50 127 | 73.41 146 | 76.86 139 | 87.33 127 | 90.05 161 | 89.76 171 | 96.48 154 | 90.46 183 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_part1 | | | 87.53 118 | 84.97 147 | 90.52 89 | 92.11 118 | 93.31 141 | 93.32 97 | 85.79 117 | 79.56 172 | 87.38 60 | 62.89 192 | 78.60 123 | 89.25 105 | 90.65 150 | 92.17 118 | 95.24 180 | 97.62 67 |
|
Effi-MVS+-dtu | | | 87.51 119 | 88.13 111 | 86.77 133 | 91.10 133 | 94.90 108 | 90.91 125 | 82.67 153 | 83.47 148 | 71.55 144 | 81.11 106 | 77.04 136 | 89.41 100 | 92.65 115 | 91.68 132 | 95.00 185 | 96.09 119 |
|
FMVSNet1 | | | 87.33 120 | 86.00 138 | 88.89 108 | 87.13 182 | 92.83 158 | 93.08 101 | 84.46 132 | 81.35 160 | 82.20 96 | 66.33 175 | 77.96 129 | 88.96 111 | 93.97 91 | 94.16 70 | 97.54 111 | 95.38 137 |
|
ACMH | | 85.51 13 | 87.31 121 | 86.59 130 | 88.14 117 | 93.96 85 | 94.51 111 | 89.00 160 | 87.99 91 | 81.58 158 | 70.15 155 | 78.41 116 | 71.78 152 | 90.60 91 | 91.30 137 | 91.99 124 | 97.17 123 | 96.58 101 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 85.75 12 | 87.19 122 | 86.02 137 | 88.56 112 | 93.42 97 | 94.41 115 | 89.91 144 | 87.66 102 | 83.45 149 | 72.25 142 | 76.42 129 | 71.99 151 | 90.78 88 | 89.86 162 | 90.94 139 | 97.32 116 | 95.11 141 |
|
test-LLR | | | 86.88 123 | 88.28 107 | 85.24 147 | 91.22 130 | 92.07 175 | 87.41 173 | 83.62 142 | 84.58 134 | 69.33 161 | 83.00 88 | 82.79 96 | 84.24 154 | 92.26 121 | 89.81 168 | 95.64 171 | 93.44 160 |
|
UniMVSNet_NR-MVSNet | | | 86.80 124 | 85.86 141 | 87.89 122 | 88.17 162 | 94.07 121 | 90.15 136 | 88.51 85 | 84.20 142 | 73.45 135 | 72.38 151 | 70.30 158 | 88.95 112 | 90.25 155 | 92.21 116 | 98.12 69 | 97.62 67 |
|
CostFormer | | | 86.78 125 | 86.05 135 | 87.62 126 | 92.15 117 | 93.20 146 | 91.55 123 | 75.83 190 | 88.11 107 | 85.29 86 | 81.76 101 | 76.22 141 | 87.80 120 | 84.45 196 | 85.21 192 | 93.12 190 | 93.42 162 |
|
USDC | | | 86.73 126 | 85.96 139 | 87.63 125 | 91.64 123 | 93.97 122 | 92.76 103 | 84.58 130 | 88.19 105 | 70.67 152 | 80.10 109 | 67.86 168 | 89.43 99 | 91.81 129 | 89.77 170 | 96.69 152 | 90.05 187 |
|
MDTV_nov1_ep13 | | | 86.64 127 | 87.50 125 | 85.65 142 | 90.73 138 | 93.69 130 | 89.96 142 | 78.03 185 | 89.48 95 | 76.85 123 | 84.92 77 | 82.42 102 | 86.14 140 | 86.85 188 | 86.15 185 | 92.17 197 | 88.97 192 |
|
Fast-Effi-MVS+-dtu | | | 86.25 128 | 87.70 119 | 84.56 156 | 90.37 143 | 93.70 129 | 90.54 128 | 78.14 183 | 83.50 147 | 65.37 187 | 81.59 104 | 75.83 143 | 86.09 142 | 91.70 131 | 91.70 130 | 96.88 146 | 95.84 124 |
|
SCA | | | 86.25 128 | 87.52 124 | 84.77 152 | 91.59 124 | 93.90 123 | 89.11 157 | 73.25 202 | 90.38 79 | 72.84 138 | 83.26 87 | 83.79 91 | 88.49 118 | 86.07 191 | 85.56 189 | 93.33 188 | 89.67 189 |
|
UniMVSNet (Re) | | | 86.22 130 | 85.46 146 | 87.11 128 | 88.34 160 | 94.42 114 | 89.65 150 | 87.10 108 | 84.39 138 | 74.61 129 | 70.41 159 | 68.10 166 | 85.10 149 | 91.17 140 | 91.79 128 | 97.84 90 | 97.94 54 |
|
FC-MVSNet-test | | | 86.15 131 | 89.10 101 | 82.71 181 | 89.83 144 | 93.18 147 | 87.88 170 | 84.69 127 | 86.54 120 | 62.18 196 | 82.39 98 | 83.31 93 | 74.18 196 | 92.52 118 | 91.86 127 | 97.50 112 | 93.88 156 |
|
DU-MVS | | | 86.12 132 | 84.81 150 | 87.66 123 | 87.77 169 | 93.78 126 | 90.15 136 | 87.87 96 | 84.40 136 | 73.45 135 | 70.59 156 | 64.82 186 | 88.95 112 | 90.14 156 | 92.33 113 | 97.76 95 | 97.62 67 |
|
TESTMET0.1,1 | | | 86.11 133 | 88.28 107 | 83.59 168 | 87.80 167 | 92.07 175 | 87.41 173 | 77.12 187 | 84.58 134 | 69.33 161 | 83.00 88 | 82.79 96 | 84.24 154 | 92.26 121 | 89.81 168 | 95.64 171 | 93.44 160 |
|
test-mter | | | 86.09 134 | 88.38 106 | 83.43 171 | 87.89 166 | 92.61 163 | 86.89 178 | 77.11 188 | 84.30 139 | 68.62 167 | 82.57 96 | 82.45 101 | 84.34 153 | 92.40 119 | 90.11 162 | 95.74 166 | 94.21 152 |
|
pmmvs4 | | | 86.00 135 | 84.28 154 | 88.00 118 | 87.80 167 | 92.01 178 | 89.94 143 | 84.91 126 | 86.79 117 | 80.98 105 | 73.41 146 | 66.34 177 | 88.12 119 | 89.31 170 | 88.90 179 | 96.24 160 | 93.20 165 |
|
EPMVS | | | 85.77 136 | 86.24 134 | 85.23 148 | 92.76 110 | 93.78 126 | 89.91 144 | 73.60 198 | 90.19 83 | 74.22 130 | 82.18 99 | 78.06 128 | 87.55 124 | 85.61 193 | 85.38 191 | 93.32 189 | 88.48 196 |
|
thisisatest0515 | | | 85.70 137 | 87.00 127 | 84.19 161 | 88.16 163 | 93.67 131 | 84.20 192 | 84.14 136 | 83.39 150 | 72.91 137 | 76.79 124 | 74.75 144 | 78.82 184 | 92.57 117 | 91.26 137 | 96.94 139 | 96.56 103 |
|
PatchmatchNet |  | | 85.70 137 | 86.65 129 | 84.60 155 | 91.79 121 | 93.40 137 | 89.27 153 | 73.62 197 | 90.19 83 | 72.63 140 | 82.74 94 | 81.93 107 | 87.64 122 | 84.99 194 | 84.29 196 | 92.64 194 | 89.00 191 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test0.0.03 1 | | | 85.58 139 | 87.69 120 | 83.11 174 | 91.22 130 | 92.54 166 | 85.60 189 | 83.62 142 | 85.66 128 | 67.84 172 | 82.79 93 | 79.70 117 | 73.51 199 | 91.15 141 | 90.79 141 | 96.88 146 | 91.23 177 |
|
TranMVSNet+NR-MVSNet | | | 85.57 140 | 84.41 153 | 86.92 130 | 87.67 172 | 93.34 139 | 90.31 132 | 88.43 87 | 83.07 151 | 70.11 156 | 69.99 162 | 65.28 181 | 86.96 130 | 89.73 164 | 92.27 114 | 98.06 76 | 97.17 86 |
|
CR-MVSNet | | | 85.48 141 | 86.29 133 | 84.53 157 | 91.08 135 | 92.10 173 | 89.18 155 | 73.30 200 | 84.75 132 | 71.08 149 | 73.12 149 | 77.91 130 | 86.27 138 | 91.48 133 | 90.75 144 | 96.27 159 | 93.94 154 |
|
NR-MVSNet | | | 85.46 142 | 84.54 152 | 86.52 136 | 88.33 161 | 93.78 126 | 90.45 129 | 87.87 96 | 84.40 136 | 71.61 143 | 70.59 156 | 62.09 195 | 82.79 165 | 91.75 130 | 91.75 129 | 98.10 72 | 97.44 74 |
|
IterMVS-SCA-FT | | | 85.44 143 | 86.71 128 | 83.97 165 | 90.59 141 | 90.84 192 | 89.73 148 | 78.34 182 | 84.07 145 | 66.40 181 | 77.27 123 | 78.66 122 | 83.06 162 | 91.20 138 | 90.10 163 | 95.72 168 | 94.78 143 |
|
Baseline_NR-MVSNet | | | 85.28 144 | 83.42 162 | 87.46 127 | 87.77 169 | 90.80 194 | 89.90 146 | 87.69 100 | 83.93 146 | 74.16 131 | 64.72 186 | 66.43 176 | 87.48 126 | 90.14 156 | 90.83 140 | 97.73 98 | 97.11 87 |
|
IterMVS | | | 85.25 145 | 86.49 131 | 83.80 166 | 90.42 142 | 90.77 195 | 90.02 140 | 78.04 184 | 84.10 143 | 66.27 182 | 77.28 122 | 78.41 126 | 83.01 163 | 90.88 143 | 89.72 172 | 95.04 183 | 94.24 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GA-MVS | | | 85.08 146 | 85.65 143 | 84.42 158 | 89.77 145 | 94.25 118 | 89.26 154 | 84.62 129 | 81.19 161 | 62.25 195 | 75.72 134 | 68.44 165 | 84.14 157 | 93.57 98 | 91.68 132 | 96.49 153 | 94.71 145 |
|
dps | | | 85.00 147 | 83.21 167 | 87.08 129 | 90.73 138 | 92.55 165 | 89.34 152 | 75.29 192 | 84.94 131 | 87.01 62 | 79.27 112 | 67.69 169 | 87.27 128 | 84.22 197 | 83.56 197 | 92.83 193 | 90.25 185 |
|
TDRefinement | | | 84.97 148 | 83.39 163 | 86.81 132 | 92.97 106 | 94.12 119 | 92.18 112 | 87.77 99 | 82.78 153 | 71.31 147 | 68.43 165 | 68.07 167 | 81.10 177 | 89.70 166 | 89.03 178 | 95.55 175 | 91.62 172 |
|
TAMVS | | | 84.94 149 | 84.95 148 | 84.93 151 | 88.82 152 | 93.18 147 | 88.44 166 | 81.28 170 | 77.16 184 | 73.76 134 | 75.43 136 | 76.57 140 | 82.04 169 | 90.59 151 | 90.79 141 | 95.22 181 | 90.94 179 |
|
RPMNet | | | 84.82 150 | 85.90 140 | 83.56 169 | 91.10 133 | 92.10 173 | 88.73 164 | 71.11 205 | 84.75 132 | 68.79 164 | 73.56 142 | 77.62 133 | 85.33 147 | 90.08 160 | 89.43 174 | 96.32 158 | 93.77 158 |
|
UniMVSNet_ETH3D | | | 84.57 151 | 81.40 185 | 88.28 115 | 89.34 150 | 94.38 117 | 90.33 130 | 86.50 111 | 74.74 197 | 77.52 120 | 59.90 199 | 62.04 196 | 88.78 117 | 88.82 177 | 92.65 109 | 97.22 120 | 97.24 81 |
|
pm-mvs1 | | | 84.55 152 | 83.46 159 | 85.82 139 | 88.16 163 | 93.39 138 | 89.05 159 | 85.36 124 | 74.03 198 | 72.43 141 | 65.08 183 | 71.11 153 | 82.30 168 | 93.48 101 | 91.70 130 | 97.64 107 | 95.43 135 |
|
anonymousdsp | | | 84.51 153 | 85.85 142 | 82.95 178 | 86.30 193 | 93.51 135 | 85.77 187 | 80.38 175 | 78.25 179 | 63.42 193 | 73.51 144 | 72.20 149 | 84.64 152 | 93.21 109 | 92.16 119 | 97.19 122 | 98.14 44 |
|
v2v482 | | | 84.51 153 | 83.05 169 | 86.20 138 | 87.25 178 | 93.28 143 | 90.22 134 | 85.40 123 | 79.94 170 | 69.78 158 | 67.74 167 | 65.15 183 | 87.57 123 | 89.12 173 | 90.55 150 | 96.97 135 | 95.60 129 |
|
V42 | | | 84.48 155 | 83.36 165 | 85.79 141 | 87.14 181 | 93.28 143 | 90.03 139 | 83.98 138 | 80.30 165 | 71.20 148 | 66.90 172 | 67.17 170 | 85.55 144 | 89.35 168 | 90.27 155 | 96.82 149 | 96.27 114 |
|
FMVSNet5 | | | 84.47 156 | 84.72 151 | 84.18 162 | 83.30 203 | 88.43 200 | 88.09 168 | 79.42 179 | 84.25 140 | 74.14 132 | 73.15 148 | 78.74 121 | 83.65 160 | 91.19 139 | 91.19 138 | 96.46 155 | 86.07 201 |
|
v8 | | | 84.45 157 | 83.30 166 | 85.80 140 | 87.53 174 | 92.95 153 | 90.31 132 | 82.46 157 | 80.46 163 | 71.43 145 | 66.99 170 | 67.16 171 | 86.14 140 | 89.26 171 | 90.22 157 | 96.94 139 | 96.06 120 |
|
v10 | | | 84.18 158 | 83.17 168 | 85.37 144 | 87.34 176 | 92.68 161 | 90.32 131 | 81.33 169 | 79.93 171 | 69.23 163 | 66.33 175 | 65.74 179 | 87.03 129 | 90.84 144 | 90.38 152 | 96.97 135 | 96.29 113 |
|
tpm cat1 | | | 84.13 159 | 81.99 179 | 86.63 135 | 91.74 122 | 91.50 186 | 90.68 126 | 75.69 191 | 86.12 124 | 85.44 83 | 72.39 150 | 70.72 154 | 85.16 148 | 80.89 205 | 81.56 201 | 91.07 203 | 90.71 181 |
|
ADS-MVSNet | | | 84.08 160 | 84.95 148 | 83.05 177 | 91.53 129 | 91.75 182 | 88.16 167 | 70.70 206 | 89.96 89 | 69.51 160 | 78.83 113 | 76.97 138 | 86.29 137 | 84.08 198 | 84.60 194 | 92.13 199 | 88.48 196 |
|
TinyColmap | | | 84.04 161 | 82.01 178 | 86.42 137 | 90.87 136 | 91.84 180 | 88.89 162 | 84.07 137 | 82.11 157 | 69.89 157 | 71.08 154 | 60.81 201 | 89.04 110 | 90.52 152 | 89.19 176 | 95.76 165 | 88.50 195 |
|
v1144 | | | 84.03 162 | 82.88 170 | 85.37 144 | 87.17 180 | 93.15 150 | 90.18 135 | 83.31 147 | 78.83 175 | 67.85 171 | 65.99 177 | 64.99 184 | 86.79 132 | 90.75 146 | 90.33 154 | 96.90 144 | 96.15 117 |
|
PatchT | | | 83.86 163 | 85.51 145 | 81.94 187 | 88.41 159 | 91.56 185 | 78.79 204 | 71.57 204 | 84.08 144 | 71.08 149 | 70.62 155 | 76.13 142 | 86.27 138 | 91.48 133 | 90.75 144 | 95.52 176 | 93.94 154 |
|
CVMVSNet | | | 83.83 164 | 85.53 144 | 81.85 188 | 89.60 147 | 90.92 190 | 87.81 171 | 83.21 148 | 80.11 167 | 60.16 200 | 76.47 126 | 78.57 124 | 76.79 188 | 89.76 163 | 90.13 158 | 93.51 187 | 92.75 169 |
|
tfpnnormal | | | 83.80 165 | 81.26 187 | 86.77 133 | 89.60 147 | 93.26 145 | 89.72 149 | 87.60 105 | 72.78 199 | 70.44 153 | 60.53 198 | 61.15 200 | 85.55 144 | 92.72 112 | 91.44 134 | 97.71 99 | 96.92 92 |
|
tpmrst | | | 83.72 166 | 83.45 160 | 84.03 164 | 92.21 116 | 91.66 183 | 88.74 163 | 73.58 199 | 88.14 106 | 72.67 139 | 77.37 121 | 72.11 150 | 86.34 136 | 82.94 201 | 82.05 200 | 90.63 205 | 89.86 188 |
|
v148 | | | 83.61 167 | 82.10 176 | 85.37 144 | 87.34 176 | 92.94 154 | 87.48 172 | 85.72 121 | 78.92 174 | 73.87 133 | 65.71 180 | 64.69 187 | 81.78 173 | 87.82 180 | 89.35 175 | 96.01 162 | 95.26 138 |
|
v1192 | | | 83.56 168 | 82.35 173 | 84.98 149 | 86.84 187 | 92.84 156 | 90.01 141 | 82.70 150 | 78.54 176 | 66.48 179 | 64.88 185 | 62.91 190 | 86.91 131 | 90.72 147 | 90.25 156 | 96.94 139 | 96.32 111 |
|
v144192 | | | 83.48 169 | 82.23 174 | 84.94 150 | 86.65 188 | 92.84 156 | 89.63 151 | 82.48 156 | 77.87 180 | 67.36 175 | 65.33 182 | 63.50 189 | 86.51 134 | 89.72 165 | 89.99 166 | 97.03 132 | 96.35 109 |
|
pmmvs5 | | | 83.37 170 | 82.68 171 | 84.18 162 | 87.13 182 | 93.18 147 | 86.74 179 | 82.08 162 | 76.48 188 | 67.28 176 | 71.26 153 | 62.70 192 | 84.71 151 | 90.77 145 | 90.12 161 | 97.15 124 | 94.24 150 |
|
v1921920 | | | 83.30 171 | 82.09 177 | 84.70 153 | 86.59 191 | 92.67 162 | 89.82 147 | 82.23 160 | 78.32 177 | 65.76 184 | 64.64 187 | 62.35 193 | 86.78 133 | 90.34 154 | 90.02 164 | 97.02 133 | 96.31 112 |
|
tpm | | | 83.16 172 | 83.64 157 | 82.60 183 | 90.75 137 | 91.05 189 | 88.49 165 | 73.99 195 | 82.36 154 | 67.08 178 | 78.10 117 | 68.79 162 | 84.17 156 | 85.95 192 | 85.96 187 | 91.09 202 | 93.23 164 |
|
WR-MVS | | | 83.14 173 | 83.38 164 | 82.87 179 | 87.55 173 | 93.29 142 | 86.36 183 | 84.21 134 | 80.05 168 | 66.41 180 | 66.91 171 | 66.92 173 | 75.66 193 | 88.96 175 | 90.56 149 | 97.05 131 | 96.96 90 |
|
SixPastTwentyTwo | | | 83.12 174 | 83.44 161 | 82.74 180 | 87.71 171 | 93.11 151 | 82.30 197 | 82.33 158 | 79.24 173 | 64.33 190 | 78.77 114 | 62.75 191 | 84.11 158 | 88.11 179 | 87.89 181 | 95.70 169 | 94.21 152 |
|
CP-MVSNet | | | 83.11 175 | 82.15 175 | 84.23 160 | 87.20 179 | 92.70 160 | 86.42 182 | 83.53 145 | 77.83 181 | 67.67 173 | 66.89 173 | 60.53 203 | 82.47 166 | 89.23 172 | 90.65 148 | 98.08 73 | 97.20 85 |
|
MIMVSNet | | | 82.97 176 | 84.00 156 | 81.77 189 | 82.23 204 | 92.25 172 | 87.40 175 | 72.73 203 | 81.48 159 | 69.55 159 | 68.79 164 | 72.42 148 | 81.82 172 | 92.23 124 | 92.25 115 | 96.89 145 | 88.61 194 |
|
v1240 | | | 82.88 177 | 81.66 181 | 84.29 159 | 86.46 192 | 92.52 168 | 89.06 158 | 81.82 165 | 77.16 184 | 65.09 188 | 64.17 189 | 61.50 198 | 86.36 135 | 90.12 158 | 90.13 158 | 96.95 138 | 96.04 121 |
|
WR-MVS_H | | | 82.86 178 | 82.66 172 | 83.10 175 | 87.44 175 | 93.33 140 | 85.71 188 | 83.20 149 | 77.36 183 | 68.20 170 | 66.37 174 | 65.23 182 | 76.05 192 | 89.35 168 | 90.13 158 | 97.99 82 | 96.89 93 |
|
TransMVSNet (Re) | | | 82.67 179 | 80.93 190 | 84.69 154 | 88.71 154 | 91.50 186 | 87.90 169 | 87.15 107 | 71.54 204 | 68.24 169 | 63.69 190 | 64.67 188 | 78.51 185 | 91.65 132 | 90.73 146 | 97.64 107 | 92.73 170 |
|
PS-CasMVS | | | 82.53 180 | 81.54 183 | 83.68 167 | 87.08 184 | 92.54 166 | 86.20 184 | 83.46 146 | 76.46 189 | 65.73 185 | 65.71 180 | 59.41 208 | 81.61 174 | 89.06 174 | 90.55 150 | 98.03 78 | 97.07 88 |
|
PEN-MVS | | | 82.49 181 | 81.58 182 | 83.56 169 | 86.93 185 | 92.05 177 | 86.71 180 | 83.84 139 | 76.94 186 | 64.68 189 | 67.24 168 | 60.11 204 | 81.17 176 | 87.78 181 | 90.70 147 | 98.02 79 | 96.21 115 |
|
LTVRE_ROB | | 81.71 16 | 82.44 182 | 81.84 180 | 83.13 173 | 89.01 151 | 92.99 152 | 88.90 161 | 82.32 159 | 66.26 210 | 54.02 210 | 74.68 139 | 59.62 207 | 88.87 115 | 90.71 148 | 92.02 123 | 95.68 170 | 96.62 98 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 82.25 183 | 81.54 183 | 83.07 176 | 85.55 197 | 92.58 164 | 86.68 181 | 81.10 173 | 76.54 187 | 65.97 183 | 62.91 191 | 60.56 202 | 82.36 167 | 91.07 142 | 90.35 153 | 96.77 151 | 96.80 94 |
|
testgi | | | 81.94 184 | 84.09 155 | 79.43 194 | 89.53 149 | 90.83 193 | 82.49 196 | 81.75 166 | 80.59 162 | 59.46 202 | 82.82 92 | 65.75 178 | 67.97 201 | 90.10 159 | 89.52 173 | 95.39 177 | 89.03 190 |
|
gg-mvs-nofinetune | | | 81.83 185 | 83.58 158 | 79.80 193 | 91.57 125 | 96.54 86 | 93.79 85 | 68.80 209 | 62.71 213 | 43.01 218 | 55.28 204 | 85.06 86 | 83.65 160 | 96.13 46 | 94.86 61 | 97.98 85 | 94.46 147 |
|
DTE-MVSNet | | | 81.76 186 | 81.04 188 | 82.60 183 | 86.63 189 | 91.48 188 | 85.97 186 | 83.70 141 | 76.45 190 | 62.44 194 | 67.16 169 | 59.98 205 | 78.98 183 | 87.15 185 | 89.93 167 | 97.88 89 | 95.12 140 |
|
EG-PatchMatch MVS | | | 81.70 187 | 81.31 186 | 82.15 186 | 88.75 153 | 93.81 125 | 87.14 176 | 78.89 181 | 71.57 202 | 64.12 192 | 61.20 197 | 68.46 164 | 76.73 190 | 91.48 133 | 90.77 143 | 97.28 118 | 91.90 171 |
|
pmmvs6 | | | 80.90 188 | 78.77 194 | 83.38 172 | 85.84 194 | 91.61 184 | 86.01 185 | 82.54 155 | 64.17 211 | 70.43 154 | 54.14 208 | 67.06 172 | 80.73 178 | 90.50 153 | 89.17 177 | 94.74 186 | 94.75 144 |
|
MDTV_nov1_ep13_2view | | | 80.43 189 | 80.94 189 | 79.84 192 | 84.82 200 | 90.87 191 | 84.23 191 | 73.80 196 | 80.28 166 | 64.33 190 | 70.05 161 | 68.77 163 | 79.67 179 | 84.83 195 | 83.50 198 | 92.17 197 | 88.25 198 |
|
PM-MVS | | | 80.29 190 | 79.30 193 | 81.45 190 | 81.91 205 | 88.23 201 | 82.61 195 | 79.01 180 | 79.99 169 | 67.15 177 | 69.07 163 | 51.39 213 | 82.92 164 | 87.55 183 | 85.59 188 | 95.08 182 | 93.28 163 |
|
pmnet_mix02 | | | 80.14 191 | 80.21 192 | 80.06 191 | 86.61 190 | 89.66 197 | 80.40 201 | 82.20 161 | 82.29 156 | 61.35 197 | 71.52 152 | 66.67 175 | 76.75 189 | 82.55 202 | 80.18 205 | 93.05 191 | 88.62 193 |
|
CMPMVS |  | 61.19 17 | 79.86 192 | 77.46 200 | 82.66 182 | 91.54 128 | 91.82 181 | 83.25 193 | 81.57 167 | 70.51 206 | 68.64 166 | 59.89 200 | 66.77 174 | 79.63 180 | 84.00 199 | 84.30 195 | 91.34 201 | 84.89 204 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs-eth3d | | | 79.78 193 | 77.58 198 | 82.34 185 | 81.57 206 | 87.46 204 | 82.92 194 | 81.28 170 | 75.33 196 | 71.34 146 | 61.88 193 | 52.41 212 | 81.59 175 | 87.56 182 | 86.90 184 | 95.36 179 | 91.48 173 |
|
EU-MVSNet | | | 78.43 194 | 80.25 191 | 76.30 199 | 83.81 202 | 87.27 206 | 80.99 199 | 79.52 178 | 76.01 191 | 54.12 209 | 70.44 158 | 64.87 185 | 67.40 203 | 86.23 190 | 85.54 190 | 91.95 200 | 91.41 174 |
|
MVS-HIRNet | | | 78.16 195 | 77.57 199 | 78.83 195 | 85.83 195 | 87.76 202 | 76.67 205 | 70.22 207 | 75.82 194 | 67.39 174 | 55.61 203 | 70.52 155 | 81.96 171 | 86.67 189 | 85.06 193 | 90.93 204 | 81.58 207 |
|
Anonymous20231206 | | | 78.09 196 | 78.11 197 | 78.07 197 | 85.19 199 | 89.17 198 | 80.99 199 | 81.24 172 | 75.46 195 | 58.25 204 | 54.78 207 | 59.90 206 | 66.73 204 | 88.94 176 | 88.26 180 | 96.01 162 | 90.25 185 |
|
gm-plane-assit | | | 77.65 197 | 78.50 195 | 76.66 198 | 87.96 165 | 85.43 208 | 64.70 214 | 74.50 193 | 64.15 212 | 51.26 213 | 61.32 196 | 58.17 209 | 84.11 158 | 95.16 60 | 93.83 77 | 97.45 114 | 91.41 174 |
|
N_pmnet | | | 77.55 198 | 76.68 201 | 78.56 196 | 85.43 198 | 87.30 205 | 78.84 203 | 81.88 164 | 78.30 178 | 60.61 198 | 61.46 194 | 62.15 194 | 74.03 198 | 82.04 203 | 80.69 204 | 90.59 206 | 84.81 205 |
|
test20.03 | | | 76.41 199 | 78.49 196 | 73.98 201 | 85.64 196 | 87.50 203 | 75.89 206 | 80.71 174 | 70.84 205 | 51.07 214 | 68.06 166 | 61.40 199 | 54.99 210 | 88.28 178 | 87.20 183 | 95.58 174 | 86.15 200 |
|
MDA-MVSNet-bldmvs | | | 73.81 200 | 72.56 204 | 75.28 200 | 72.52 213 | 88.87 199 | 74.95 208 | 82.67 153 | 71.57 202 | 55.02 207 | 65.96 178 | 42.84 219 | 76.11 191 | 70.61 211 | 81.47 202 | 90.38 207 | 86.59 199 |
|
MIMVSNet1 | | | 73.19 201 | 73.70 202 | 72.60 204 | 65.42 216 | 86.69 207 | 75.56 207 | 79.65 177 | 67.87 209 | 55.30 206 | 45.24 212 | 56.41 210 | 63.79 206 | 86.98 186 | 87.66 182 | 95.85 164 | 85.04 203 |
|
new-patchmatchnet | | | 72.32 202 | 71.09 205 | 73.74 202 | 81.17 207 | 84.86 209 | 72.21 211 | 77.48 186 | 68.32 208 | 54.89 208 | 55.10 205 | 49.31 216 | 63.68 207 | 79.30 207 | 76.46 208 | 93.03 192 | 84.32 206 |
|
new_pmnet | | | 72.29 203 | 73.25 203 | 71.16 206 | 75.35 210 | 81.38 210 | 73.72 210 | 69.27 208 | 75.97 192 | 49.84 215 | 56.27 202 | 56.12 211 | 69.08 200 | 81.73 204 | 80.86 203 | 89.72 209 | 80.44 209 |
|
pmmvs3 | | | 71.13 204 | 71.06 206 | 71.21 205 | 73.54 212 | 80.19 211 | 71.69 212 | 64.86 211 | 62.04 214 | 52.10 211 | 54.92 206 | 48.00 217 | 75.03 194 | 83.75 200 | 83.24 199 | 90.04 208 | 85.27 202 |
|
FPMVS | | | 69.87 205 | 67.10 208 | 73.10 203 | 84.09 201 | 78.35 213 | 79.40 202 | 76.41 189 | 71.92 200 | 57.71 205 | 54.06 209 | 50.04 214 | 56.72 208 | 71.19 210 | 68.70 210 | 84.25 211 | 75.43 211 |
|
GG-mvs-BLEND | | | 62.84 206 | 90.21 90 | 30.91 215 | 0.57 223 | 94.45 113 | 86.99 177 | 0.34 221 | 88.71 101 | 0.98 223 | 81.55 105 | 91.58 58 | 0.86 220 | 92.66 114 | 91.43 135 | 95.73 167 | 91.11 178 |
|
PMVS |  | 56.77 18 | 61.27 207 | 58.64 210 | 64.35 207 | 75.66 209 | 54.60 217 | 53.62 217 | 74.23 194 | 53.69 215 | 58.37 203 | 44.27 213 | 49.38 215 | 44.16 214 | 69.51 212 | 65.35 212 | 80.07 213 | 73.66 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 58.52 208 | 56.17 211 | 61.27 208 | 67.14 215 | 58.06 216 | 52.16 218 | 68.40 210 | 69.00 207 | 45.02 217 | 22.79 215 | 20.57 222 | 55.11 209 | 76.27 208 | 79.33 207 | 79.80 214 | 67.16 214 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 58.10 209 | 64.61 209 | 50.51 210 | 28.26 221 | 41.71 220 | 61.28 215 | 32.07 217 | 75.92 193 | 52.04 212 | 47.94 210 | 61.83 197 | 51.80 211 | 79.83 206 | 63.95 214 | 77.60 215 | 81.05 208 |
|
PMMVS2 | | | 53.68 210 | 55.72 212 | 51.30 209 | 58.84 217 | 67.02 215 | 54.23 216 | 60.97 214 | 47.50 216 | 19.42 220 | 34.81 214 | 31.97 220 | 30.88 216 | 65.84 213 | 69.99 209 | 83.47 212 | 72.92 213 |
|
E-PMN | | | 40.00 211 | 35.74 214 | 44.98 212 | 57.69 219 | 39.15 222 | 28.05 220 | 62.70 212 | 35.52 218 | 17.78 221 | 20.90 216 | 14.36 224 | 44.47 213 | 35.89 216 | 47.86 215 | 59.15 218 | 56.47 216 |
|
MVE |  | 39.81 19 | 39.52 212 | 41.58 213 | 37.11 214 | 33.93 220 | 49.06 218 | 26.45 222 | 54.22 215 | 29.46 219 | 24.15 219 | 20.77 217 | 10.60 225 | 34.42 215 | 51.12 215 | 65.27 213 | 49.49 220 | 64.81 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 39.04 213 | 34.32 215 | 44.54 213 | 58.25 218 | 39.35 221 | 27.61 221 | 62.55 213 | 35.99 217 | 16.40 222 | 20.04 218 | 14.77 223 | 44.80 212 | 33.12 217 | 44.10 216 | 57.61 219 | 52.89 217 |
|
testmvs | | | 4.35 214 | 6.54 216 | 1.79 216 | 0.60 222 | 1.82 223 | 3.06 224 | 0.95 219 | 7.22 220 | 0.88 224 | 12.38 219 | 1.25 226 | 3.87 219 | 6.09 218 | 5.58 217 | 1.40 221 | 11.42 219 |
|
test123 | | | 3.48 215 | 5.31 217 | 1.34 217 | 0.20 224 | 1.52 224 | 2.17 225 | 0.58 220 | 6.13 221 | 0.31 225 | 9.85 220 | 0.31 227 | 3.90 218 | 2.65 219 | 5.28 218 | 0.87 222 | 11.46 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 60.19 199 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
SR-MVS | | | | | | 98.93 19 | | | 96.00 17 | | | | 97.75 14 | | | | | |
|
Anonymous202405211 | | | | 88.00 112 | | 93.16 101 | 96.38 92 | 93.58 91 | 89.34 76 | 87.92 108 | | 65.04 184 | 83.03 95 | 92.07 75 | 92.67 113 | 93.33 91 | 96.96 137 | 97.63 65 |
|
our_test_3 | | | | | | 86.93 185 | 89.77 196 | 81.61 198 | | | | | | | | | | |
|
ambc | | | | 67.96 207 | | 73.69 211 | 79.79 212 | 73.82 209 | | 71.61 201 | 59.80 201 | 46.00 211 | 20.79 221 | 66.15 205 | 86.92 187 | 80.11 206 | 89.13 210 | 90.50 182 |
|
MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 20 | | | | | |
|
MTMP | | | | | | | | | | | 95.70 1 | | 96.90 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 18.47 223 | | | | | | | | | | |
|
tmp_tt | | | | | 50.24 211 | 68.55 214 | 46.86 219 | 48.90 219 | 18.28 218 | 86.51 122 | 68.32 168 | 70.19 160 | 65.33 180 | 26.69 217 | 74.37 209 | 66.80 211 | 70.72 217 | |
|
XVS | | | | | | 95.68 63 | 98.66 13 | 94.96 61 | | | 88.03 52 | | 96.06 32 | | | | 98.46 29 | |
|
X-MVStestdata | | | | | | 95.68 63 | 98.66 13 | 94.96 61 | | | 88.03 52 | | 96.06 32 | | | | 98.46 29 | |
|
abl_6 | | | | | 94.78 38 | 97.46 43 | 97.99 46 | 95.76 52 | 91.80 50 | 93.72 46 | 91.25 31 | 91.33 41 | 96.47 29 | 94.28 48 | | | 98.14 67 | 97.39 76 |
|
mPP-MVS | | | | | | 98.76 24 | | | | | | | 95.49 39 | | | | | |
|
NP-MVS | | | | | | | | | | 91.63 65 | | | | | | | | |
|
Patchmtry | | | | | | | 92.39 170 | 89.18 155 | 73.30 200 | | 71.08 149 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 71.82 214 | 68.37 213 | 48.05 216 | 77.38 182 | 46.88 216 | 65.77 179 | 47.03 218 | 67.48 202 | 64.27 214 | | 76.89 216 | 76.72 210 |
|