This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 53
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7799.77 53
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 89
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8999.76 58
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6899.76 58
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6899.73 73
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5899.77 53
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 69
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 8099.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 129
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 23
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 122
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7499.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11799.76 58
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 11099.69 93
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8399.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 87
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 11099.66 103
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 116
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6899.73 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8699.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9999.64 11099.36 147
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7799.74 69
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 133
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9399.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15499.17 157
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9199.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10699.52 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8999.75 65
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12198.92 3499.78 2899.90 3
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 69
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9299.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13999.07 164
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13599.82 24
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11299.71 6899.76 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7899.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11799.58 116
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 8099.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 99
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12599.58 116
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 103
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 106
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 110
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 8099.57 121
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8298.88 5198.99 2999.74 4499.86 15
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7599.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 116
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8399.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10299.48 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8396.28 14097.47 3999.58 894.70 5998.99 3399.85 4097.24 11499.55 1099.34 997.73 19899.56 122
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11599.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11598.11 8699.40 16699.28 150
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9399.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9799.14 161
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9699.06 3899.52 199.82 1099.79 39
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7598.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12297.45 11799.57 13998.89 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16398.92 5899.22 2798.84 4199.76 3599.56 122
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8998.82 5498.87 3899.81 1699.89 6
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 31
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 39
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16198.59 7598.55 5799.29 17399.84 19
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18399.48 137
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 133
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 8099.09 3599.42 599.83 899.80 31
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 8099.42 141
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9997.85 9899.68 8999.15 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8997.06 12494.09 6898.72 11195.14 5298.47 5896.29 9198.43 8198.65 6697.44 11899.45 15898.94 167
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10493.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10897.65 10191.68 10598.00 14397.01 3197.72 8194.83 10998.85 6598.44 8498.86 3999.41 16499.52 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13192.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 31
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12293.39 8399.35 2894.40 6798.79 4499.59 5394.24 18198.04 10798.29 7799.73 5199.80 31
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10198.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7996.61 15795.43 16797.74 19697.93 190
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9993.71 7998.47 12495.75 4298.78 4593.20 12998.91 6098.52 7998.44 6299.81 1699.53 126
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14898.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9698.44 6299.76 3599.87 12
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12297.80 9593.05 9398.76 10794.39 6899.07 3197.03 8598.55 7798.31 8897.61 10799.43 16199.21 156
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 11095.02 5299.08 6595.51 4598.05 7090.11 14098.07 9098.91 4898.40 6599.72 5899.78 45
baseline97.45 7298.70 5995.99 9495.89 10599.36 7598.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9498.60 7398.60 5599.42 16399.86 15
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14493.75 7799.26 4093.38 8693.73 14499.35 5696.47 13698.96 4298.46 6199.77 3399.90 3
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9493.22 8898.82 9791.40 10996.94 9698.56 6695.70 15399.14 3399.41 699.79 2599.75 65
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13799.16 4397.66 12899.05 2499.76 3599.90 3
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8798.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10299.78 45
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12693.23 8699.17 5192.60 9898.75 4896.19 9398.17 8498.19 9496.10 15399.72 5899.77 53
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12793.23 8699.15 5292.56 9998.74 4996.12 9698.17 8498.21 9296.10 15399.73 5199.78 45
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13798.63 6392.10 9798.68 11295.96 4199.23 1891.79 13496.87 12298.76 5997.37 12299.57 13999.68 98
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10392.04 9898.48 12388.03 12498.39 6299.91 3194.03 18499.33 2399.23 1799.81 1699.25 153
Anonymous2023121197.10 8197.06 11897.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16394.58 11498.90 6197.72 12698.10 8799.71 6899.75 65
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14496.53 13593.42 8299.04 7393.02 9298.03 7294.32 11797.47 11097.93 11397.77 10399.75 3999.88 10
FMVSNet397.02 8398.12 7995.73 10093.59 15597.98 15898.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10698.61 7098.62 5399.61 11799.65 106
GBi-Net96.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
test196.98 8498.00 8595.78 9693.81 14997.98 15898.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9798.07 10298.34 7299.68 8999.67 99
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9893.22 8898.98 7892.64 9694.97 13291.71 13598.93 5798.62 6998.52 6099.82 1099.72 84
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8898.05 10697.91 9599.74 4499.73 73
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 8098.06 9093.22 8899.43 2192.30 10296.90 9889.83 14598.55 7798.00 11098.14 8399.64 11099.70 89
TSAR-MVS + COLMAP96.79 8996.55 12997.06 6297.70 7098.46 13999.07 4596.23 4499.38 2391.32 11098.80 4385.61 16998.69 7097.64 13196.92 12999.37 16899.06 165
thres20096.76 9096.53 13097.03 6496.31 9299.67 1298.37 7293.99 7197.68 15994.49 6395.83 12486.77 15799.18 4098.26 8997.82 10099.82 1099.66 103
tfpn200view996.75 9196.51 13297.03 6496.31 9299.67 1298.41 6993.99 7197.35 16494.52 6195.90 12186.93 15599.14 4498.26 8997.80 10199.82 1099.70 89
CLD-MVS96.74 9296.51 13297.01 6896.71 8698.62 12898.73 6094.38 6498.94 8294.46 6497.33 8587.03 15398.07 9097.20 14796.87 13099.72 5899.54 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9396.47 13597.00 6996.31 9299.52 5398.28 7894.01 6997.35 16494.52 6195.90 12186.93 15599.09 4998.07 10297.87 9799.81 1699.63 112
thres40096.71 9496.45 13797.02 6696.28 9599.63 2598.41 6994.00 7097.82 15494.42 6695.74 12586.26 16499.18 4098.20 9397.79 10299.81 1699.70 89
thres600view796.69 9596.43 13997.00 6996.28 9599.67 1298.41 6993.99 7197.85 15394.29 6995.96 11985.91 16799.19 3898.26 8997.63 10699.82 1099.73 73
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10395.86 14690.82 12298.38 12792.54 10096.66 10497.33 7995.75 15197.75 12498.34 7299.60 12599.40 145
ACMM96.26 996.67 9796.69 12696.66 7597.29 7898.46 13996.48 13695.09 5199.21 4693.19 8898.78 4586.73 15898.17 8497.84 11996.32 14599.74 4499.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU96.64 9899.08 3993.81 12497.10 8299.42 6698.85 5690.01 13499.31 3179.98 17599.78 299.10 6097.42 11198.35 8698.05 8999.47 15699.53 126
FMVSNet296.64 9897.50 9795.63 10293.81 14997.98 15898.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9798.63 6898.80 4699.68 8999.67 99
ACMP96.25 1096.62 10096.72 12596.50 8396.96 8498.75 11997.80 9594.30 6698.85 9093.12 8998.78 4586.61 16097.23 11597.73 12596.61 13799.62 11599.71 87
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14298.96 10697.46 10691.75 10397.86 15290.07 11596.02 11897.25 8296.21 14098.04 10798.38 6799.60 12599.65 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10296.99 12095.74 9998.01 6699.72 697.70 10090.78 12499.13 6090.03 11687.35 19195.36 10398.33 8398.59 7598.91 3699.59 13199.87 12
HQP-MVS96.37 10396.58 12796.13 8997.31 7798.44 14198.45 6895.22 5098.86 8888.58 12198.33 6487.00 15497.67 10597.23 14596.56 13999.56 14299.62 113
baseline296.36 10497.82 9094.65 11194.60 14199.09 9996.45 13789.63 14298.36 12991.29 11197.60 8494.13 12096.37 13798.45 8297.70 10499.54 14899.41 142
EPNet_dtu96.30 10598.53 6293.70 12898.97 5098.24 15297.36 10894.23 6798.85 9079.18 17999.19 1998.47 6794.09 18397.89 11698.21 8098.39 18998.85 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train96.23 10696.89 12295.46 10397.32 7598.77 11598.81 5893.60 8098.58 11685.52 14199.08 3086.67 15997.83 10397.87 11797.51 11199.69 8099.73 73
OPM-MVS96.22 10795.85 14896.65 7697.75 6898.54 13499.00 5095.53 4796.88 17789.88 11795.95 12086.46 16298.07 9097.65 13096.63 13699.67 9798.83 174
ET-MVSNet_ETH3D96.17 10896.99 12095.21 10588.53 20598.54 13498.28 7892.61 9498.85 9093.60 8399.06 3290.39 13998.63 7395.98 17996.68 13499.61 11799.41 142
Vis-MVSNetpermissive96.16 10998.22 7493.75 12595.33 12999.70 1197.27 11290.85 12198.30 13185.51 14295.72 12796.45 8793.69 19098.70 6499.00 2899.84 599.69 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18397.15 11889.19 14799.08 6588.23 12294.97 13294.73 11197.84 10297.86 11898.26 7899.60 12599.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11197.94 8793.89 12293.60 15498.67 12596.62 13290.30 13398.76 10788.62 12095.57 13097.63 7794.48 17797.97 11197.48 11599.71 6899.52 129
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11897.27 11286.97 16899.09 6389.83 11893.51 14797.78 7596.18 14297.53 13595.71 16499.35 16998.41 180
HyFIR lowres test95.99 11296.56 12895.32 10497.99 6799.65 1796.54 13388.86 14998.44 12589.77 11984.14 20197.05 8499.03 5298.55 7798.19 8299.73 5199.86 15
GeoE95.98 11497.24 11494.51 11395.02 13499.38 7198.02 9187.86 16398.37 12887.86 12792.99 15793.54 12498.56 7698.61 7097.92 9399.73 5199.85 18
Effi-MVS+95.81 11597.31 11294.06 12095.09 13299.35 7897.24 11488.22 15898.54 11985.38 14398.52 5588.68 14798.70 6898.32 8797.93 9299.74 4499.84 19
FMVSNet195.77 11696.41 14095.03 10693.42 15697.86 16597.11 12189.89 13798.53 12092.00 10589.17 17593.23 12898.15 8798.07 10298.34 7299.61 11799.69 93
Effi-MVS+-dtu95.74 11798.04 8293.06 14293.92 14599.16 9697.90 9288.16 16099.07 7082.02 16398.02 7394.32 11796.74 12698.53 7897.56 10999.61 11799.62 113
testgi95.67 11897.48 9993.56 13195.07 13399.00 10195.33 15788.47 15598.80 10086.90 13397.30 8792.33 13195.97 14897.66 12897.91 9599.60 12599.38 146
MDTV_nov1_ep1395.57 11997.48 9993.35 13995.43 12698.97 10597.19 11783.72 18998.92 8587.91 12697.75 7996.12 9697.88 10096.84 15695.64 16597.96 19498.10 186
test_part195.56 12095.38 15295.78 9696.07 9998.16 15597.57 10290.78 12497.43 16393.04 9189.12 17889.41 14697.93 9596.38 16597.38 12199.29 17399.78 45
TAMVS95.53 12196.50 13494.39 11693.86 14899.03 10096.67 13089.55 14497.33 16690.64 11393.02 15691.58 13696.21 14097.72 12697.43 11999.43 16199.36 147
test-LLR95.50 12297.32 10993.37 13795.49 12498.74 12096.44 13890.82 12298.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
FMVSNet595.42 12396.47 13594.20 11792.26 16895.99 20495.66 14987.15 16797.87 15193.46 8596.68 10393.79 12397.52 10797.10 15197.21 12499.11 18096.62 204
ACMH+95.51 1395.40 12496.00 14294.70 11096.33 9098.79 11296.79 12891.32 11498.77 10687.18 13195.60 12985.46 17096.97 11997.15 14896.59 13899.59 13199.65 106
Fast-Effi-MVS+-dtu95.38 12598.20 7592.09 15393.91 14698.87 10997.35 10985.01 18299.08 6581.09 16798.10 6996.36 9095.62 15698.43 8597.03 12699.55 14499.50 135
Fast-Effi-MVS+95.38 12596.52 13194.05 12194.15 14499.14 9897.24 11486.79 16998.53 12087.62 12994.51 13787.06 15298.76 6698.60 7398.04 9099.72 5899.77 53
CVMVSNet95.33 12797.09 11693.27 14095.23 13098.39 14695.49 15392.58 9597.71 15883.00 15794.44 13993.28 12793.92 18797.79 12098.54 5999.41 16499.45 139
ACMH95.42 1495.27 12895.96 14494.45 11596.83 8598.78 11494.72 17191.67 10698.95 7986.82 13496.42 11283.67 18097.00 11897.48 13796.68 13499.69 8099.76 58
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 12995.90 14594.14 11892.29 16797.70 16995.45 15490.31 13198.60 11490.70 11293.25 15089.90 14396.67 12997.13 14995.42 16899.44 16099.28 150
EPMVS95.05 13096.86 12492.94 14495.84 10798.96 10696.68 12979.87 19699.05 7190.15 11497.12 9395.99 9897.49 10995.17 18894.75 18697.59 20096.96 200
IB-MVS93.96 1595.02 13196.44 13893.36 13897.05 8399.28 8790.43 19893.39 8398.02 14296.02 3994.92 13492.07 13383.52 20795.38 18495.82 16199.72 5899.59 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA94.95 13297.44 10292.04 15495.55 12199.16 9696.26 14179.30 20099.02 7485.73 14098.18 6797.13 8397.69 10496.03 17794.91 18197.69 19997.65 192
TESTMET0.1,194.95 13297.32 10992.20 15192.62 16098.74 12096.44 13886.67 17198.18 13682.75 15896.60 10794.67 11295.54 15998.09 9996.00 15599.20 17798.93 168
IterMVS-SCA-FT94.89 13497.87 8991.42 16794.86 13897.70 16997.24 11484.88 18398.93 8375.74 19194.26 14098.25 7096.69 12798.52 7997.68 10599.10 18199.73 73
test-mter94.86 13597.32 10992.00 15692.41 16598.82 11196.18 14386.35 17598.05 14182.28 16196.48 11194.39 11695.46 16398.17 9596.20 14999.32 17199.13 162
IterMVS94.81 13697.71 9291.42 16794.83 13997.63 17697.38 10785.08 18098.93 8375.67 19294.02 14197.64 7696.66 13098.45 8297.60 10898.90 18499.72 84
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchmatchNetpermissive94.70 13797.08 11791.92 15995.53 12298.85 11095.77 14779.54 19898.95 7985.98 13798.52 5596.45 8797.39 11295.32 18594.09 19197.32 20297.38 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet94.66 13897.16 11591.75 16394.98 13598.59 13197.00 12578.37 20797.98 14483.78 14896.27 11494.09 12296.91 12197.36 14096.73 13299.48 15499.09 163
ADS-MVSNet94.65 13997.04 11991.88 16295.68 11598.99 10395.89 14579.03 20399.15 5285.81 13996.96 9598.21 7297.10 11694.48 19694.24 19097.74 19697.21 196
dps94.63 14095.31 15593.84 12395.53 12298.71 12396.54 13380.12 19597.81 15697.21 2896.98 9492.37 13096.34 13992.46 20391.77 20397.26 20497.08 198
thisisatest051594.61 14196.89 12291.95 15892.00 17298.47 13892.01 19390.73 12698.18 13683.96 14594.51 13795.13 10693.38 19197.38 13994.74 18799.61 11799.79 39
UniMVSNet_NR-MVSNet94.59 14295.47 15193.55 13291.85 17797.89 16495.03 15992.00 9997.33 16686.12 13593.19 15187.29 15196.60 13296.12 17496.70 13399.72 5899.80 31
UniMVSNet (Re)94.58 14395.34 15393.71 12792.25 16998.08 15794.97 16191.29 11897.03 17587.94 12593.97 14386.25 16596.07 14596.27 17195.97 15899.72 5899.79 39
CR-MVSNet94.57 14497.34 10791.33 17094.90 13698.59 13197.15 11879.14 20197.98 14480.42 17196.59 10993.50 12696.85 12398.10 9797.49 11399.50 15399.15 158
MIMVSNet94.49 14597.59 9690.87 17991.74 18098.70 12494.68 17378.73 20597.98 14483.71 15197.71 8294.81 11096.96 12097.97 11197.92 9399.40 16698.04 187
pm-mvs194.27 14695.57 15092.75 14592.58 16198.13 15694.87 16690.71 12796.70 18383.78 14889.94 17189.85 14494.96 17497.58 13397.07 12599.61 11799.72 84
USDC94.26 14794.83 15993.59 13096.02 10098.44 14197.84 9388.65 15398.86 8882.73 16094.02 14180.56 19696.76 12597.28 14496.15 15299.55 14498.50 178
CostFormer94.25 14894.88 15893.51 13495.43 12698.34 14996.21 14280.64 19397.94 14894.01 7298.30 6586.20 16697.52 10792.71 20192.69 19797.23 20598.02 188
tpm cat194.06 14994.90 15793.06 14295.42 12898.52 13696.64 13180.67 19297.82 15492.63 9793.39 14995.00 10796.06 14691.36 20691.58 20596.98 20696.66 203
NR-MVSNet94.01 15094.51 16593.44 13592.56 16297.77 16695.67 14891.57 10897.17 17085.84 13893.13 15380.53 19795.29 16797.01 15296.17 15099.69 8099.75 65
TinyColmap94.00 15194.35 16893.60 12995.89 10598.26 15097.49 10588.82 15098.56 11883.21 15491.28 16280.48 19896.68 12897.34 14196.26 14899.53 15098.24 184
DU-MVS93.98 15294.44 16793.44 13591.66 18297.77 16695.03 15991.57 10897.17 17086.12 13593.13 15381.13 19596.60 13295.10 19097.01 12899.67 9799.80 31
PatchT93.96 15397.36 10690.00 18694.76 14098.65 12690.11 20178.57 20697.96 14780.42 17196.07 11794.10 12196.85 12398.10 9797.49 11399.26 17599.15 158
GA-MVS93.93 15496.31 14191.16 17493.61 15398.79 11295.39 15690.69 12898.25 13473.28 20096.15 11688.42 14894.39 17997.76 12395.35 16999.58 13599.45 139
Baseline_NR-MVSNet93.87 15593.98 17793.75 12591.66 18297.02 19695.53 15291.52 11197.16 17287.77 12887.93 18983.69 17996.35 13895.10 19097.23 12399.68 8999.73 73
tpmrst93.86 15695.88 14691.50 16695.69 11498.62 12895.64 15079.41 19998.80 10083.76 15095.63 12896.13 9597.25 11392.92 20092.31 19997.27 20396.74 201
tfpnnormal93.85 15794.12 17293.54 13393.22 15798.24 15295.45 15491.96 10194.61 20383.91 14690.74 16581.75 19397.04 11797.49 13696.16 15199.68 8999.84 19
TranMVSNet+NR-MVSNet93.67 15894.14 17093.13 14191.28 19697.58 18195.60 15191.97 10097.06 17384.05 14490.64 16882.22 19096.17 14394.94 19396.78 13199.69 8099.78 45
WR-MVS_H93.54 15994.67 16392.22 14991.95 17397.91 16394.58 17788.75 15196.64 18483.88 14790.66 16785.13 17394.40 17896.54 16195.91 16099.73 5199.89 6
TransMVSNet (Re)93.45 16094.08 17392.72 14692.83 15897.62 17994.94 16291.54 11095.65 20083.06 15688.93 17983.53 18194.25 18097.41 13897.03 12699.67 9798.40 183
SixPastTwentyTwo93.44 16195.32 15491.24 17292.11 17098.40 14592.77 18988.64 15498.09 14077.83 18493.51 14785.74 16896.52 13596.91 15494.89 18499.59 13199.73 73
WR-MVS93.43 16294.48 16692.21 15091.52 18997.69 17194.66 17589.98 13596.86 17883.43 15290.12 16985.03 17493.94 18696.02 17895.82 16199.71 6899.82 24
CP-MVSNet93.25 16394.00 17692.38 14891.65 18497.56 18394.38 18089.20 14696.05 19483.16 15589.51 17381.97 19196.16 14496.43 16396.56 13999.71 6899.89 6
UniMVSNet_ETH3D93.15 16492.33 19794.11 11993.91 14698.61 13094.81 16890.98 11997.06 17387.51 13082.27 20576.33 21197.87 10194.79 19497.47 11699.56 14299.81 29
anonymousdsp93.12 16595.86 14789.93 18891.09 19798.25 15195.12 15885.08 18097.44 16273.30 19990.89 16490.78 13895.25 16997.91 11495.96 15999.71 6899.82 24
V4293.05 16693.90 18092.04 15491.91 17497.66 17394.91 16389.91 13696.85 17980.58 17089.66 17283.43 18395.37 16595.03 19294.90 18299.59 13199.78 45
TDRefinement93.04 16793.57 18492.41 14796.58 8798.77 11597.78 9791.96 10198.12 13980.84 16889.13 17779.87 20387.78 20396.44 16294.50 18999.54 14898.15 185
v892.87 16893.87 18191.72 16592.05 17197.50 18694.79 16988.20 15996.85 17980.11 17490.01 17082.86 18795.48 16195.15 18994.90 18299.66 10299.80 31
LTVRE_ROB93.20 1692.84 16994.92 15690.43 18392.83 15898.63 12797.08 12387.87 16297.91 14968.42 20993.54 14679.46 20596.62 13197.55 13497.40 12099.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114492.81 17094.03 17591.40 16991.68 18197.60 18094.73 17088.40 15696.71 18278.48 18288.14 18684.46 17895.45 16496.31 17095.22 17399.65 10699.76 58
EU-MVSNet92.80 17194.76 16190.51 18191.88 17596.74 20192.48 19188.69 15296.21 18979.00 18091.51 15987.82 14991.83 19995.87 18196.27 14699.21 17698.92 171
v1092.79 17294.06 17491.31 17191.78 17997.29 19594.87 16686.10 17696.97 17679.82 17688.16 18584.56 17795.63 15596.33 16995.31 17099.65 10699.80 31
v2v48292.77 17393.52 18791.90 16191.59 18797.63 17694.57 17890.31 13196.80 18179.22 17888.74 18181.55 19496.04 14795.26 18694.97 18099.66 10299.69 93
PS-CasMVS92.72 17493.36 18891.98 15791.62 18697.52 18594.13 18488.98 14895.94 19781.51 16687.35 19179.95 20295.91 14996.37 16696.49 14199.70 7799.89 6
PEN-MVS92.72 17493.20 19092.15 15291.29 19497.31 19394.67 17489.81 13896.19 19081.83 16488.58 18279.06 20695.61 15795.21 18796.27 14699.72 5899.82 24
pmmvs592.71 17694.27 16990.90 17891.42 19197.74 16893.23 18686.66 17295.99 19678.96 18191.45 16083.44 18295.55 15897.30 14395.05 17899.58 13598.93 168
MVS-HIRNet92.51 17795.97 14388.48 19493.73 15298.37 14790.33 19975.36 21398.32 13077.78 18589.15 17694.87 10895.14 17197.62 13296.39 14398.51 18697.11 197
EG-PatchMatch MVS92.45 17893.92 17990.72 18092.56 16298.43 14394.88 16584.54 18597.18 16979.55 17786.12 19883.23 18493.15 19497.22 14696.00 15599.67 9799.27 152
pmnet_mix0292.44 17994.68 16289.83 18992.46 16497.65 17589.92 20390.49 13098.76 10773.05 20291.78 15890.08 14294.86 17594.53 19591.94 20298.21 19298.01 189
MDTV_nov1_ep13_2view92.44 17995.66 14988.68 19291.05 19897.92 16292.17 19279.64 19798.83 9576.20 18991.45 16093.51 12595.04 17295.68 18393.70 19497.96 19498.53 177
v119292.43 18193.61 18391.05 17591.53 18897.43 18994.61 17687.99 16196.60 18576.72 18787.11 19382.74 18895.85 15096.35 16895.30 17199.60 12599.74 69
DTE-MVSNet92.42 18292.85 19391.91 16090.87 19996.97 19794.53 17989.81 13895.86 19981.59 16588.83 18077.88 20995.01 17394.34 19796.35 14499.64 11099.73 73
v14419292.38 18393.55 18691.00 17691.44 19097.47 18894.27 18187.41 16696.52 18778.03 18387.50 19082.65 18995.32 16695.82 18295.15 17599.55 14499.78 45
tpm92.38 18394.79 16089.56 19094.30 14397.50 18694.24 18378.97 20497.72 15774.93 19697.97 7482.91 18596.60 13293.65 19994.81 18598.33 19098.98 166
v192192092.36 18593.57 18490.94 17791.39 19297.39 19194.70 17287.63 16596.60 18576.63 18886.98 19482.89 18695.75 15196.26 17295.14 17699.55 14499.73 73
v14892.36 18592.88 19291.75 16391.63 18597.66 17392.64 19090.55 12996.09 19283.34 15388.19 18480.00 20092.74 19593.98 19894.58 18899.58 13599.69 93
N_pmnet92.21 18794.60 16489.42 19191.88 17597.38 19289.15 20589.74 14197.89 15073.75 19887.94 18892.23 13293.85 18896.10 17593.20 19698.15 19397.43 194
v124091.99 18893.33 18990.44 18291.29 19497.30 19494.25 18286.79 16996.43 18875.49 19486.34 19781.85 19295.29 16796.42 16495.22 17399.52 15199.73 73
pmmvs691.90 18992.53 19691.17 17391.81 17897.63 17693.23 18688.37 15793.43 20880.61 16977.32 20987.47 15094.12 18296.58 15995.72 16398.88 18599.53 126
v7n91.61 19092.95 19190.04 18590.56 20097.69 17193.74 18585.59 17895.89 19876.95 18686.60 19678.60 20893.76 18997.01 15294.99 17999.65 10699.87 12
gg-mvs-nofinetune90.85 19194.14 17087.02 19794.89 13799.25 8998.64 6276.29 21188.24 21257.50 21679.93 20795.45 10295.18 17098.77 5898.07 8899.62 11599.24 154
CMPMVSbinary70.31 1890.74 19291.06 20090.36 18497.32 7597.43 18992.97 18887.82 16493.50 20775.34 19583.27 20384.90 17592.19 19892.64 20291.21 20696.50 20994.46 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 19393.93 17886.92 19890.21 20396.79 19990.30 20086.61 17396.05 19469.25 20788.46 18384.86 17685.86 20597.11 15096.47 14299.30 17297.80 191
test20.0390.65 19493.71 18287.09 19690.44 20196.24 20289.74 20485.46 17995.59 20172.99 20390.68 16685.33 17184.41 20695.94 18095.10 17799.52 15197.06 199
new_pmnet90.45 19592.84 19487.66 19588.96 20496.16 20388.71 20684.66 18497.56 16071.91 20685.60 19986.58 16193.28 19296.07 17693.54 19598.46 18794.39 208
pmmvs-eth3d89.81 19689.65 20390.00 18686.94 20795.38 20691.08 19486.39 17494.57 20482.27 16283.03 20464.94 21493.96 18596.57 16093.82 19399.35 16999.24 154
PM-MVS89.55 19790.30 20288.67 19387.06 20695.60 20590.88 19684.51 18696.14 19175.75 19086.89 19563.47 21794.64 17696.85 15593.89 19299.17 17999.29 149
gm-plane-assit89.44 19892.82 19585.49 20191.37 19395.34 20779.55 21582.12 19091.68 21164.79 21387.98 18780.26 19995.66 15498.51 8197.56 10999.45 15898.41 180
MIMVSNet188.61 19990.68 20186.19 20081.56 21295.30 20887.78 20785.98 17794.19 20672.30 20578.84 20878.90 20790.06 20096.59 15895.47 16699.46 15795.49 206
pmmvs388.19 20091.27 19984.60 20385.60 20993.66 21085.68 21081.13 19192.36 21063.66 21589.51 17377.10 21093.22 19396.37 16692.40 19898.30 19197.46 193
MDA-MVSNet-bldmvs87.84 20189.22 20486.23 19981.74 21196.77 20083.74 21189.57 14394.50 20572.83 20496.64 10564.47 21692.71 19681.43 21192.28 20096.81 20798.47 179
test_method87.27 20291.58 19882.25 20575.65 21687.52 21586.81 20972.60 21497.51 16173.20 20185.07 20079.97 20188.69 20297.31 14295.24 17296.53 20898.41 180
new-patchmatchnet86.12 20387.30 20584.74 20286.92 20895.19 20983.57 21284.42 18792.67 20965.66 21080.32 20664.72 21589.41 20192.33 20589.21 20798.43 18896.69 202
FPMVS83.82 20484.61 20682.90 20490.39 20290.71 21290.85 19784.10 18895.47 20265.15 21183.44 20274.46 21275.48 20981.63 21079.42 21291.42 21487.14 212
Gipumacopyleft81.40 20581.78 20780.96 20783.21 21085.61 21679.73 21476.25 21297.33 16664.21 21455.32 21355.55 21886.04 20492.43 20492.20 20196.32 21093.99 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 20679.47 20974.70 20976.00 21588.37 21474.22 21676.34 21078.31 21454.13 21769.96 21152.50 21970.14 21384.83 20988.71 20897.35 20193.58 210
PMVScopyleft72.60 1776.39 20777.66 21074.92 20881.04 21369.37 22068.47 21780.54 19485.39 21365.07 21273.52 21072.91 21365.67 21580.35 21276.81 21388.71 21585.25 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND69.11 20898.13 7835.26 2133.49 22298.20 15494.89 1642.38 21998.42 1265.82 22396.37 11398.60 645.97 21898.75 6197.98 9199.01 18298.61 175
E-PMN68.30 20968.43 21168.15 21074.70 21871.56 21955.64 21977.24 20877.48 21639.46 21951.95 21641.68 22173.28 21170.65 21479.51 21188.61 21686.20 214
EMVS68.12 21068.11 21268.14 21175.51 21771.76 21855.38 22077.20 20977.78 21537.79 22053.59 21443.61 22074.72 21067.05 21576.70 21488.27 21786.24 213
MVEpermissive67.97 1965.53 21167.43 21363.31 21259.33 21974.20 21753.09 22170.43 21566.27 21743.13 21845.98 21730.62 22270.65 21279.34 21386.30 20983.25 21889.33 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21240.15 21420.86 21412.61 22017.99 22125.16 22213.30 21748.42 21824.82 22153.07 21530.13 22428.47 21642.73 21637.65 21520.79 21951.04 216
test12326.75 21334.25 21518.01 2157.93 22117.18 22224.85 22312.36 21844.83 21916.52 22241.80 21818.10 22528.29 21733.08 21734.79 21618.10 22049.95 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def69.05 208
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13593.55 14594.41 11598.88 6498.04 10798.24 7999.75 3999.76 58
our_test_392.30 16697.58 18190.09 202
ambc80.99 20880.04 21490.84 21190.91 19596.09 19274.18 19762.81 21230.59 22382.44 20896.25 17391.77 20395.91 21198.56 176
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 218
tmp_tt82.25 20597.73 6988.71 21380.18 21368.65 21699.15 5286.98 13299.47 985.31 17268.35 21487.51 20883.81 21091.64 213
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 80
abl_698.09 4099.33 4299.22 9398.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 8099.41 142
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117
Patchmtry98.59 13197.15 11879.14 20180.42 171
DeepMVS_CXcopyleft96.85 19887.43 20889.27 14598.30 13175.55 19395.05 13179.47 20492.62 19789.48 20795.18 21295.96 205