SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 10 | 87.77 4 | 58.90 73 | 87.82 5 | 86.78 12 | 64.18 33 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 3 | 78.63 13 | 90.87 4 | 88.23 11 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 31 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 9 | 90.51 21 | 63.71 10 | 89.23 18 | 81.51 1 | 88.44 30 | 88.09 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 80.84 3 | 81.64 2 | 78.42 34 | 87.75 7 | 59.07 68 | 87.85 3 | 85.03 36 | 64.26 30 | 83.82 7 | 92.00 3 | 64.82 7 | 90.75 6 | 78.66 11 | 90.61 9 | 85.45 107 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 80.56 4 | 80.98 4 | 79.29 12 | 87.27 12 | 60.56 46 | 85.71 24 | 86.42 16 | 63.28 45 | 83.27 11 | 91.83 8 | 64.96 6 | 90.47 8 | 76.41 25 | 89.67 20 | 86.84 56 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 22 | 61.95 22 | 86.33 11 | 85.75 25 | 62.49 63 | 82.20 13 | 92.28 1 | 56.53 32 | 89.70 13 | 79.85 3 | 91.48 1 | 88.19 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 26 | 86.64 20 | 60.02 51 | 88.12 1 | 86.42 16 | 62.94 52 | 82.40 12 | 92.12 2 | 59.64 16 | 89.76 12 | 78.70 9 | 88.32 34 | 86.79 59 |
|
HPM-MVS++ |  | | 79.88 7 | 80.14 7 | 79.10 18 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 63 | 65.37 15 | 78.78 22 | 90.64 17 | 58.63 21 | 87.24 53 | 79.00 8 | 90.37 12 | 85.26 117 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 8 | 87.90 2 | 62.17 20 | 84.37 34 | 85.03 36 | 66.96 5 | 77.58 29 | 90.06 38 | 59.47 18 | 89.13 20 | 78.67 10 | 89.73 18 | 87.03 52 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 78 | 62.18 19 | 87.60 7 | 85.83 23 | 66.69 10 | 78.03 28 | 90.98 12 | 54.26 55 | 90.06 10 | 78.42 15 | 89.02 25 | 87.69 30 |
Skip Steuart: Steuart Systems R&D Blog. |
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 30 | 86.34 28 | 58.11 85 | 84.65 32 | 87.66 4 | 58.56 135 | 78.87 21 | 89.54 51 | 63.67 11 | 89.57 14 | 74.60 34 | 89.98 15 | 88.14 14 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 16 | 84.92 60 | 60.32 49 | 83.03 60 | 85.33 31 | 62.86 55 | 80.17 14 | 90.03 41 | 61.76 12 | 88.95 22 | 74.21 36 | 88.67 29 | 88.12 15 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 47 | 82.88 80 | 57.83 89 | 84.99 30 | 88.13 3 | 61.86 76 | 79.16 17 | 90.75 15 | 57.96 23 | 87.09 60 | 77.08 21 | 90.18 13 | 87.87 22 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 11 | 86.43 27 | 62.05 21 | 86.62 9 | 86.01 22 | 63.32 44 | 75.08 40 | 90.47 25 | 53.96 59 | 88.68 26 | 76.48 24 | 89.63 22 | 87.16 49 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 28 | 85.44 48 | 61.04 36 | 83.84 50 | 85.16 33 | 62.88 54 | 78.10 25 | 91.26 11 | 52.51 75 | 88.39 29 | 79.34 5 | 90.52 11 | 86.78 60 |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 46 | 83.06 75 | 57.86 88 | 84.14 43 | 88.31 1 | 60.37 98 | 79.14 19 | 90.35 27 | 57.76 26 | 87.00 63 | 77.16 20 | 89.90 16 | 87.97 19 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 9 | 87.51 11 | 62.61 16 | 85.20 29 | 84.42 45 | 66.73 9 | 74.67 51 | 89.38 54 | 55.30 44 | 89.18 19 | 74.19 37 | 87.34 46 | 86.38 66 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 5 | 83.60 68 | 61.62 26 | 84.17 40 | 86.85 9 | 63.23 47 | 73.84 64 | 90.25 33 | 57.68 27 | 89.96 11 | 74.62 33 | 89.03 24 | 87.89 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 78.47 18 | 78.43 18 | 78.61 30 | 86.82 14 | 60.67 44 | 86.07 16 | 85.38 30 | 62.12 69 | 78.65 23 | 90.29 31 | 55.76 40 | 89.31 17 | 73.55 45 | 87.22 47 | 85.84 88 |
|
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 24 | 84.96 56 | 61.41 29 | 84.03 44 | 83.82 61 | 59.34 123 | 79.37 16 | 89.76 49 | 59.84 14 | 87.62 50 | 76.69 23 | 86.74 56 | 87.68 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 27 | 86.17 33 | 61.30 31 | 83.98 46 | 79.95 143 | 59.00 126 | 79.16 17 | 90.75 15 | 57.96 23 | 87.09 60 | 77.08 21 | 90.18 13 | 87.87 22 |
|
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 41 | 84.96 56 | 59.52 59 | 82.93 63 | 85.39 29 | 62.15 68 | 76.41 33 | 91.51 9 | 52.47 77 | 86.78 69 | 80.66 2 | 89.64 21 | 87.80 26 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 78.35 21 | 78.26 21 | 78.64 29 | 86.54 24 | 63.47 5 | 86.02 18 | 83.55 66 | 63.89 38 | 73.60 67 | 90.60 18 | 54.85 51 | 86.72 70 | 77.20 19 | 88.06 39 | 85.74 96 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 23 | 86.05 39 | 61.82 25 | 85.84 19 | 85.21 32 | 63.56 42 | 74.29 56 | 90.03 41 | 52.56 74 | 88.53 28 | 74.79 32 | 88.34 32 | 86.63 63 |
|
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 45 | 82.10 85 | 58.65 78 | 82.72 68 | 87.55 5 | 58.33 140 | 78.05 27 | 90.06 38 | 58.35 22 | 87.65 49 | 76.15 26 | 89.86 17 | 86.82 57 |
|
APD-MVS |  | | 78.02 24 | 78.04 25 | 77.98 42 | 86.44 26 | 60.81 41 | 85.52 26 | 84.36 46 | 60.61 90 | 79.05 20 | 90.30 30 | 55.54 43 | 88.32 32 | 73.48 46 | 87.03 50 | 84.83 128 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 18 | 86.71 17 | 62.81 10 | 86.29 12 | 84.32 47 | 62.82 56 | 73.96 59 | 90.50 22 | 53.20 70 | 88.35 30 | 74.02 39 | 87.05 48 | 86.13 79 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 18 | 86.71 17 | 62.81 10 | 85.69 25 | 84.32 47 | 61.61 79 | 73.96 59 | 90.50 22 | 53.20 70 | 88.35 30 | 73.68 42 | 87.05 48 | 86.13 79 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 14 | 86.75 16 | 62.93 9 | 86.29 12 | 84.24 49 | 62.82 56 | 73.55 68 | 90.56 20 | 49.80 104 | 88.24 33 | 74.02 39 | 87.03 50 | 86.32 74 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 43 | 84.47 63 | 61.88 24 | 84.55 33 | 83.87 59 | 60.37 98 | 79.89 15 | 89.38 54 | 54.97 48 | 85.58 101 | 76.12 27 | 84.94 67 | 86.33 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
region2R | | | 77.67 30 | 77.18 33 | 79.15 15 | 86.76 15 | 62.95 8 | 86.29 12 | 84.16 51 | 62.81 58 | 73.30 70 | 90.58 19 | 49.90 102 | 88.21 34 | 73.78 41 | 87.03 50 | 86.29 77 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 35 | 86.08 37 | 63.57 2 | 83.37 56 | 80.97 128 | 65.13 18 | 75.77 35 | 90.88 13 | 48.63 117 | 86.66 72 | 77.23 17 | 88.17 36 | 84.81 129 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 48 | 86.67 19 | 58.36 82 | 83.22 58 | 86.93 8 | 56.91 159 | 74.91 45 | 88.19 67 | 59.15 19 | 87.68 48 | 73.67 43 | 87.45 45 | 86.57 64 |
|
HPM-MVS |  | | 77.28 33 | 76.85 35 | 78.54 32 | 85.00 55 | 60.81 41 | 82.91 64 | 85.08 34 | 62.57 61 | 73.09 76 | 89.97 44 | 50.90 98 | 87.48 51 | 75.30 28 | 86.85 54 | 87.33 46 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 17 | 86.15 35 | 60.86 40 | 84.71 31 | 84.85 41 | 61.98 75 | 73.06 77 | 88.88 62 | 53.72 64 | 89.06 21 | 68.27 75 | 88.04 40 | 87.42 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 77.17 35 | 76.56 39 | 79.00 21 | 86.32 29 | 62.62 14 | 85.83 20 | 83.92 55 | 64.55 24 | 72.17 89 | 90.01 43 | 47.95 125 | 88.01 39 | 71.55 57 | 86.74 56 | 86.37 69 |
|
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 33 | 86.05 39 | 63.18 7 | 87.55 8 | 83.45 69 | 62.44 65 | 72.68 82 | 90.50 22 | 48.18 123 | 87.34 52 | 73.59 44 | 85.71 63 | 84.76 133 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 50 | 83.96 67 | 59.60 57 | 82.95 61 | 86.50 15 | 60.78 88 | 75.27 38 | 84.83 122 | 60.76 13 | 86.56 77 | 67.86 82 | 87.87 44 | 86.06 82 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 203 | 80.97 128 | 65.13 18 | 75.77 35 | 90.88 13 | 48.63 117 | 86.66 72 | 77.23 17 | 88.17 36 | 84.81 129 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 60 | 84.20 65 | 57.27 97 | 81.75 83 | 84.88 39 | 60.37 98 | 75.01 41 | 89.06 57 | 56.22 36 | 86.43 82 | 72.19 51 | 88.96 26 | 86.38 66 |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 25 | 86.14 36 | 62.73 12 | 82.55 72 | 83.74 62 | 61.71 77 | 72.45 88 | 90.34 29 | 48.48 121 | 88.13 35 | 72.32 50 | 86.85 54 | 85.78 90 |
|
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 37 | 86.47 25 | 63.50 4 | 85.74 23 | 82.28 92 | 62.90 53 | 71.77 92 | 90.26 32 | 46.61 148 | 86.55 78 | 71.71 55 | 85.66 64 | 84.97 125 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 40 | 81.29 100 | 57.53 94 | 82.35 74 | 83.31 75 | 67.78 3 | 70.09 106 | 86.34 97 | 54.92 49 | 88.90 23 | 72.68 49 | 84.55 69 | 87.76 29 |
|
CDPH-MVS | | | 76.31 43 | 75.67 48 | 78.22 38 | 85.35 51 | 59.14 66 | 81.31 92 | 84.02 52 | 56.32 172 | 74.05 57 | 88.98 60 | 53.34 69 | 87.92 43 | 69.23 71 | 88.42 31 | 87.59 35 |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 63 | 85.58 45 | 61.59 27 | 81.62 86 | 81.26 119 | 55.86 182 | 74.93 43 | 88.81 63 | 53.70 65 | 84.68 122 | 75.24 30 | 88.33 33 | 83.65 171 |
|
SR-MVS | | | 76.13 45 | 75.70 47 | 77.40 52 | 85.87 41 | 61.20 33 | 85.52 26 | 82.19 93 | 59.99 109 | 75.10 39 | 90.35 27 | 47.66 129 | 86.52 79 | 71.64 56 | 82.99 79 | 84.47 139 |
|
ACMMP |  | | 76.02 46 | 75.33 50 | 78.07 39 | 85.20 52 | 61.91 23 | 85.49 28 | 84.44 44 | 63.04 50 | 69.80 117 | 89.74 50 | 45.43 161 | 87.16 57 | 72.01 53 | 82.87 84 | 85.14 118 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 77 | 85.04 53 | 59.96 52 | 81.44 90 | 81.04 125 | 56.14 178 | 74.68 49 | 88.90 61 | 53.91 61 | 84.04 134 | 75.01 31 | 87.92 43 | 83.16 187 |
|
PHI-MVS | | | 75.87 48 | 75.36 49 | 77.41 50 | 80.62 112 | 55.91 123 | 84.28 37 | 85.78 24 | 56.08 180 | 73.41 69 | 86.58 92 | 50.94 97 | 88.54 27 | 70.79 61 | 89.71 19 | 87.79 27 |
|
DROMVSNet | | | 75.84 49 | 75.87 46 | 75.74 76 | 78.86 146 | 52.65 162 | 83.73 51 | 86.08 21 | 63.47 43 | 72.77 81 | 87.25 79 | 53.13 72 | 87.93 42 | 71.97 54 | 85.57 65 | 86.66 62 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 7 | 82.40 83 | 59.92 54 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 154 | 89.24 56 | 42.03 192 | 89.38 16 | 64.07 113 | 86.50 59 | 89.69 1 |
|
Regformer-2 | | | 75.63 51 | 74.99 52 | 77.54 48 | 80.43 114 | 58.32 83 | 79.50 118 | 82.92 83 | 67.84 1 | 75.94 34 | 80.75 211 | 55.73 41 | 86.80 67 | 71.44 59 | 80.38 109 | 87.50 38 |
|
DPM-MVS | | | 75.47 52 | 75.00 51 | 76.88 57 | 81.38 99 | 59.16 64 | 79.94 108 | 85.71 26 | 56.59 167 | 72.46 86 | 86.76 82 | 56.89 30 | 87.86 45 | 66.36 94 | 88.91 28 | 83.64 172 |
|
Regformer-1 | | | 75.47 52 | 74.93 54 | 77.09 55 | 80.43 114 | 57.70 92 | 79.50 118 | 82.13 94 | 67.84 1 | 75.73 37 | 80.75 211 | 56.50 33 | 86.07 86 | 71.07 60 | 80.38 109 | 87.50 38 |
|
test1172 | | | 75.36 54 | 74.81 57 | 77.02 56 | 85.47 47 | 60.79 43 | 83.94 49 | 81.63 105 | 59.52 120 | 74.66 52 | 90.18 34 | 44.74 168 | 85.84 95 | 70.63 63 | 82.52 88 | 84.42 140 |
|
CS-MVS-test | | | 74.96 55 | 74.82 56 | 75.40 85 | 79.45 135 | 52.03 177 | 82.95 61 | 86.18 19 | 63.24 46 | 70.07 107 | 84.50 132 | 55.21 45 | 88.77 25 | 67.89 81 | 83.85 74 | 85.40 112 |
|
APD-MVS_3200maxsize | | | 74.96 55 | 74.39 62 | 76.67 62 | 82.20 84 | 58.24 84 | 83.67 52 | 83.29 76 | 58.41 137 | 73.71 65 | 90.14 35 | 45.62 154 | 85.99 90 | 69.64 67 | 82.85 85 | 85.78 90 |
|
TSAR-MVS + GP. | | | 74.90 57 | 74.15 65 | 77.17 54 | 82.00 87 | 58.77 76 | 81.80 82 | 78.57 168 | 58.58 133 | 74.32 55 | 84.51 131 | 55.94 39 | 87.22 54 | 67.11 89 | 84.48 71 | 85.52 103 |
|
casdiffmvs | | | 74.80 58 | 74.89 55 | 74.53 106 | 75.59 222 | 50.37 197 | 78.17 137 | 85.06 35 | 62.80 59 | 74.40 54 | 87.86 71 | 57.88 25 | 83.61 145 | 69.46 70 | 82.79 86 | 89.59 2 |
|
DELS-MVS | | | 74.76 59 | 74.46 60 | 75.65 81 | 77.84 175 | 52.25 171 | 75.59 188 | 84.17 50 | 63.76 39 | 73.15 72 | 82.79 161 | 59.58 17 | 86.80 67 | 67.24 88 | 86.04 62 | 87.89 20 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test_part1 | | | 74.74 60 | 74.42 61 | 75.70 79 | 81.69 92 | 51.26 182 | 83.98 46 | 87.05 7 | 65.31 16 | 73.10 75 | 86.20 99 | 53.94 60 | 88.06 37 | 65.32 104 | 73.17 192 | 87.77 28 |
|
OPM-MVS | | | 74.73 61 | 74.25 63 | 76.19 69 | 80.81 108 | 59.01 71 | 82.60 71 | 83.64 64 | 63.74 40 | 72.52 85 | 87.49 74 | 47.18 139 | 85.88 94 | 69.47 69 | 80.78 101 | 83.66 170 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
canonicalmvs | | | 74.67 62 | 74.98 53 | 73.71 125 | 78.94 145 | 50.56 195 | 80.23 103 | 83.87 59 | 60.30 104 | 77.15 30 | 86.56 93 | 59.65 15 | 82.00 181 | 66.01 97 | 82.12 91 | 88.58 6 |
|
baseline | | | 74.61 63 | 74.70 58 | 74.34 110 | 75.70 218 | 49.99 204 | 77.54 148 | 84.63 43 | 62.73 60 | 73.98 58 | 87.79 73 | 57.67 28 | 83.82 141 | 69.49 68 | 82.74 87 | 89.20 3 |
|
SR-MVS-dyc-post | | | 74.57 64 | 73.90 67 | 76.58 64 | 83.49 70 | 59.87 55 | 84.29 35 | 81.36 112 | 58.07 143 | 73.14 73 | 90.07 36 | 44.74 168 | 85.84 95 | 68.20 76 | 81.76 95 | 84.03 150 |
|
ETV-MVS | | | 74.46 65 | 73.84 69 | 76.33 68 | 79.27 138 | 55.24 135 | 79.22 121 | 85.00 38 | 64.97 22 | 72.65 83 | 79.46 238 | 53.65 68 | 87.87 44 | 67.45 87 | 82.91 82 | 85.89 87 |
|
abl_6 | | | 74.34 66 | 73.50 72 | 76.86 58 | 82.43 82 | 60.16 50 | 83.48 55 | 81.86 99 | 58.81 130 | 73.95 61 | 89.86 46 | 41.87 195 | 86.62 74 | 67.98 80 | 81.23 100 | 83.80 163 |
|
HQP_MVS | | | 74.31 67 | 73.73 70 | 76.06 70 | 81.41 97 | 56.31 112 | 84.22 38 | 84.01 53 | 64.52 26 | 69.27 125 | 86.10 102 | 45.26 165 | 87.21 55 | 68.16 78 | 80.58 105 | 84.65 134 |
|
HPM-MVS_fast | | | 74.30 68 | 73.46 75 | 76.80 59 | 84.45 64 | 59.04 70 | 83.65 53 | 81.05 124 | 60.15 106 | 70.43 101 | 89.84 47 | 41.09 210 | 85.59 100 | 67.61 85 | 82.90 83 | 85.77 93 |
|
Regformer-4 | | | 74.25 69 | 73.48 73 | 76.57 65 | 79.75 127 | 56.54 111 | 78.54 132 | 81.49 109 | 66.93 7 | 73.90 62 | 80.30 219 | 53.84 63 | 85.98 91 | 69.76 66 | 76.84 156 | 87.17 48 |
|
MVS_111021_HR | | | 74.02 70 | 73.46 75 | 75.69 80 | 83.01 78 | 60.63 45 | 77.29 155 | 78.40 179 | 61.18 84 | 70.58 100 | 85.97 106 | 54.18 57 | 84.00 138 | 67.52 86 | 82.98 81 | 82.45 199 |
|
CS-MVS | | | 74.01 71 | 74.24 64 | 73.32 141 | 76.47 207 | 48.51 223 | 79.19 122 | 86.17 20 | 60.56 92 | 71.62 95 | 83.71 148 | 55.16 46 | 87.94 41 | 69.21 72 | 86.11 61 | 83.51 175 |
|
MG-MVS | | | 73.96 72 | 73.89 68 | 74.16 113 | 85.65 43 | 49.69 209 | 81.59 88 | 81.29 118 | 61.45 80 | 71.05 98 | 88.11 68 | 51.77 86 | 87.73 47 | 61.05 141 | 83.09 77 | 85.05 122 |
|
Regformer-3 | | | 73.89 73 | 73.28 77 | 75.71 78 | 79.75 127 | 55.48 132 | 78.54 132 | 79.93 144 | 66.58 11 | 73.62 66 | 80.30 219 | 54.87 50 | 84.54 125 | 69.09 73 | 76.84 156 | 87.10 51 |
|
alignmvs | | | 73.86 74 | 73.99 66 | 73.45 135 | 78.20 164 | 50.50 196 | 78.57 130 | 82.43 90 | 59.40 121 | 76.57 31 | 86.71 86 | 56.42 35 | 81.23 197 | 65.84 99 | 81.79 93 | 88.62 4 |
|
MSLP-MVS++ | | | 73.77 75 | 73.47 74 | 74.66 99 | 83.02 77 | 59.29 63 | 82.30 79 | 81.88 98 | 59.34 123 | 71.59 96 | 86.83 81 | 45.94 152 | 83.65 144 | 65.09 107 | 85.22 66 | 81.06 223 |
|
HQP-MVS | | | 73.45 76 | 72.80 80 | 75.40 85 | 80.66 109 | 54.94 136 | 82.31 76 | 83.90 57 | 62.10 70 | 67.85 149 | 85.54 116 | 45.46 159 | 86.93 64 | 67.04 90 | 80.35 111 | 84.32 142 |
|
CLD-MVS | | | 73.33 77 | 72.68 81 | 75.29 90 | 78.82 148 | 53.33 154 | 78.23 136 | 84.79 42 | 61.30 83 | 70.41 102 | 81.04 201 | 52.41 78 | 87.12 58 | 64.61 112 | 82.49 90 | 85.41 111 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 73.31 78 | 72.54 82 | 75.62 82 | 77.87 174 | 53.64 147 | 79.62 116 | 79.61 149 | 61.63 78 | 72.02 91 | 82.61 166 | 56.44 34 | 85.97 92 | 63.99 116 | 79.07 131 | 87.25 47 |
|
UA-Net | | | 73.13 79 | 72.93 79 | 73.76 121 | 83.58 69 | 51.66 180 | 78.75 125 | 77.66 189 | 67.75 4 | 72.61 84 | 89.42 52 | 49.82 103 | 83.29 150 | 53.61 192 | 83.14 76 | 86.32 74 |
|
EPNet | | | 73.09 80 | 72.16 84 | 75.90 72 | 75.95 214 | 56.28 114 | 83.05 59 | 72.39 254 | 66.53 12 | 65.27 195 | 87.00 80 | 50.40 100 | 85.47 107 | 62.48 129 | 86.32 60 | 85.94 84 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
nrg030 | | | 72.96 81 | 73.01 78 | 72.84 149 | 75.41 225 | 50.24 198 | 80.02 106 | 82.89 86 | 58.36 139 | 74.44 53 | 86.73 84 | 58.90 20 | 80.83 206 | 65.84 99 | 74.46 171 | 87.44 41 |
|
CPTT-MVS | | | 72.78 82 | 72.08 86 | 74.87 95 | 84.88 61 | 61.41 29 | 84.15 41 | 77.86 185 | 55.27 195 | 67.51 159 | 88.08 70 | 41.93 194 | 81.85 183 | 69.04 74 | 80.01 115 | 81.35 216 |
|
LPG-MVS_test | | | 72.74 83 | 71.74 88 | 75.76 74 | 80.22 118 | 57.51 95 | 82.55 72 | 83.40 71 | 61.32 81 | 66.67 170 | 87.33 77 | 39.15 223 | 86.59 75 | 67.70 83 | 77.30 151 | 83.19 184 |
|
hse-mvs3 | | | 72.71 84 | 71.49 91 | 76.40 66 | 81.99 88 | 59.58 58 | 76.92 164 | 76.74 205 | 60.40 95 | 74.81 46 | 85.95 107 | 45.54 157 | 85.76 98 | 70.41 64 | 70.61 222 | 83.86 158 |
|
PAPM_NR | | | 72.63 85 | 71.80 87 | 75.13 91 | 81.72 91 | 53.42 153 | 79.91 110 | 83.28 77 | 59.14 125 | 66.31 178 | 85.90 108 | 51.86 85 | 86.06 87 | 57.45 161 | 80.62 103 | 85.91 86 |
|
VDD-MVS | | | 72.50 86 | 72.09 85 | 73.75 123 | 81.58 93 | 49.69 209 | 77.76 143 | 77.63 190 | 63.21 48 | 73.21 71 | 89.02 59 | 42.14 191 | 83.32 149 | 61.72 136 | 82.50 89 | 88.25 10 |
|
3Dnovator | | 64.47 5 | 72.49 87 | 71.39 94 | 75.79 73 | 77.70 177 | 58.99 72 | 80.66 99 | 83.15 80 | 62.24 67 | 65.46 192 | 86.59 91 | 42.38 190 | 85.52 103 | 59.59 153 | 84.72 68 | 82.85 193 |
|
MVS_Test | | | 72.45 88 | 72.46 83 | 72.42 160 | 74.88 230 | 48.50 224 | 76.28 176 | 83.14 81 | 59.40 121 | 72.46 86 | 84.68 124 | 55.66 42 | 81.12 198 | 65.98 98 | 79.66 119 | 87.63 33 |
|
EI-MVSNet-Vis-set | | | 72.42 89 | 71.59 89 | 74.91 93 | 78.47 157 | 54.02 143 | 77.05 160 | 79.33 155 | 65.03 21 | 71.68 94 | 79.35 241 | 52.75 73 | 84.89 118 | 66.46 93 | 74.23 174 | 85.83 89 |
|
ACMP | | 63.53 6 | 72.30 90 | 71.20 99 | 75.59 84 | 80.28 116 | 57.54 93 | 82.74 67 | 82.84 87 | 60.58 91 | 65.24 199 | 86.18 100 | 39.25 221 | 86.03 89 | 66.95 92 | 76.79 158 | 83.22 182 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PS-MVSNAJss | | | 72.24 91 | 71.21 98 | 75.31 88 | 78.50 155 | 55.93 122 | 81.63 85 | 82.12 95 | 56.24 175 | 70.02 111 | 85.68 113 | 47.05 141 | 84.34 129 | 65.27 105 | 74.41 173 | 85.67 97 |
|
Vis-MVSNet |  | | 72.18 92 | 71.37 95 | 74.61 102 | 81.29 100 | 55.41 133 | 80.90 95 | 78.28 181 | 60.73 89 | 69.23 128 | 88.09 69 | 44.36 174 | 82.65 170 | 57.68 160 | 81.75 97 | 85.77 93 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 72.17 93 | 71.41 93 | 74.45 108 | 81.95 89 | 57.22 99 | 84.03 44 | 80.38 138 | 59.89 113 | 68.40 137 | 82.33 173 | 49.64 105 | 87.83 46 | 51.87 203 | 84.16 73 | 78.30 256 |
|
EPP-MVSNet | | | 72.16 94 | 71.31 97 | 74.71 96 | 78.68 152 | 49.70 207 | 82.10 80 | 81.65 104 | 60.40 95 | 65.94 183 | 85.84 109 | 51.74 87 | 86.37 84 | 55.93 169 | 79.55 122 | 88.07 18 |
|
DP-MVS Recon | | | 72.15 95 | 70.73 104 | 76.40 66 | 86.57 23 | 57.99 87 | 81.15 94 | 82.96 82 | 57.03 156 | 66.78 167 | 85.56 114 | 44.50 172 | 88.11 36 | 51.77 205 | 80.23 114 | 83.10 188 |
|
EI-MVSNet-UG-set | | | 71.92 96 | 71.06 100 | 74.52 107 | 77.98 172 | 53.56 149 | 76.62 168 | 79.16 156 | 64.40 28 | 71.18 97 | 78.95 245 | 52.19 81 | 84.66 124 | 65.47 103 | 73.57 182 | 85.32 114 |
|
VDDNet | | | 71.81 97 | 71.33 96 | 73.26 143 | 82.80 81 | 47.60 236 | 78.74 126 | 75.27 222 | 59.59 119 | 72.94 78 | 89.40 53 | 41.51 204 | 83.91 139 | 58.75 157 | 82.99 79 | 88.26 9 |
|
EIA-MVS | | | 71.78 98 | 70.60 105 | 75.30 89 | 79.85 126 | 53.54 150 | 77.27 156 | 83.26 78 | 57.92 147 | 66.49 173 | 79.39 239 | 52.07 83 | 86.69 71 | 60.05 148 | 79.14 130 | 85.66 98 |
|
LFMVS | | | 71.78 98 | 71.59 89 | 72.32 161 | 83.40 72 | 46.38 245 | 79.75 113 | 71.08 261 | 64.18 33 | 72.80 80 | 88.64 66 | 42.58 187 | 83.72 142 | 57.41 162 | 84.49 70 | 86.86 55 |
|
PAPR | | | 71.72 100 | 70.82 103 | 74.41 109 | 81.20 104 | 51.17 183 | 79.55 117 | 83.33 74 | 55.81 185 | 66.93 166 | 84.61 127 | 50.95 96 | 86.06 87 | 55.79 172 | 79.20 128 | 86.00 83 |
|
IS-MVSNet | | | 71.57 101 | 71.00 101 | 73.27 142 | 78.86 146 | 45.63 258 | 80.22 104 | 78.69 165 | 64.14 36 | 66.46 174 | 87.36 76 | 49.30 108 | 85.60 99 | 50.26 214 | 83.71 75 | 88.59 5 |
|
MAR-MVS | | | 71.51 102 | 70.15 113 | 75.60 83 | 81.84 90 | 59.39 61 | 81.38 91 | 82.90 85 | 54.90 207 | 68.08 146 | 78.70 246 | 47.73 127 | 85.51 104 | 51.68 207 | 84.17 72 | 81.88 208 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 71.50 103 | 70.38 110 | 74.88 94 | 78.76 149 | 57.15 104 | 82.79 65 | 78.48 172 | 51.26 245 | 69.49 120 | 83.22 156 | 43.99 177 | 83.24 151 | 66.06 95 | 79.37 123 | 84.23 145 |
|
PVSNet_Blended_VisFu | | | 71.45 104 | 70.39 109 | 74.65 100 | 82.01 86 | 58.82 75 | 79.93 109 | 80.35 139 | 55.09 200 | 65.82 188 | 82.16 179 | 49.17 111 | 82.64 171 | 60.34 146 | 78.62 139 | 82.50 198 |
|
OMC-MVS | | | 71.40 105 | 70.60 105 | 73.78 119 | 76.60 203 | 53.15 156 | 79.74 114 | 79.78 145 | 58.37 138 | 68.75 132 | 86.45 95 | 45.43 161 | 80.60 211 | 62.58 127 | 77.73 145 | 87.58 36 |
|
UniMVSNet_NR-MVSNet | | | 71.11 106 | 71.00 101 | 71.44 175 | 79.20 139 | 44.13 269 | 76.02 184 | 82.60 89 | 66.48 13 | 68.20 140 | 84.60 128 | 56.82 31 | 82.82 166 | 54.62 182 | 70.43 224 | 87.36 45 |
|
hse-mvs2 | | | 71.04 107 | 69.86 116 | 74.60 103 | 79.58 132 | 57.12 106 | 73.96 217 | 75.25 223 | 60.40 95 | 74.81 46 | 81.95 183 | 45.54 157 | 82.90 159 | 70.41 64 | 66.83 272 | 83.77 164 |
|
GeoE | | | 71.01 108 | 70.15 113 | 73.60 131 | 79.57 133 | 52.17 172 | 78.93 124 | 78.12 182 | 58.02 145 | 67.76 157 | 83.87 143 | 52.36 79 | 82.72 168 | 56.90 164 | 75.79 164 | 85.92 85 |
|
PCF-MVS | | 61.88 8 | 70.95 109 | 69.49 122 | 75.35 87 | 77.63 180 | 55.71 125 | 76.04 183 | 81.81 101 | 50.30 253 | 69.66 118 | 85.40 119 | 52.51 75 | 84.89 118 | 51.82 204 | 80.24 113 | 85.45 107 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 70.83 110 | 69.56 120 | 74.64 101 | 86.21 31 | 54.63 140 | 82.34 75 | 81.81 101 | 48.22 272 | 63.01 225 | 85.83 110 | 40.92 211 | 87.10 59 | 57.91 159 | 79.79 116 | 82.18 202 |
|
FIs | | | 70.82 111 | 71.43 92 | 68.98 223 | 78.33 161 | 38.14 314 | 76.96 162 | 83.59 65 | 61.02 85 | 67.33 161 | 86.73 84 | 55.07 47 | 81.64 187 | 54.61 184 | 79.22 127 | 87.14 50 |
|
ACMM | | 61.98 7 | 70.80 112 | 69.73 118 | 74.02 114 | 80.59 113 | 58.59 79 | 82.68 69 | 82.02 97 | 55.46 193 | 67.18 163 | 84.39 134 | 38.51 228 | 83.17 153 | 60.65 143 | 76.10 162 | 80.30 233 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
diffmvs | | | 70.69 113 | 70.43 108 | 71.46 174 | 69.45 305 | 48.95 219 | 72.93 233 | 78.46 174 | 57.27 153 | 71.69 93 | 83.97 142 | 51.48 89 | 77.92 251 | 70.70 62 | 77.95 144 | 87.53 37 |
|
UniMVSNet (Re) | | | 70.63 114 | 70.20 111 | 71.89 164 | 78.55 154 | 45.29 260 | 75.94 185 | 82.92 83 | 63.68 41 | 68.16 143 | 83.59 151 | 53.89 62 | 83.49 148 | 53.97 187 | 71.12 217 | 86.89 54 |
|
xiu_mvs_v2_base | | | 70.52 115 | 69.75 117 | 72.84 149 | 81.21 103 | 55.63 128 | 75.11 197 | 78.92 159 | 54.92 206 | 69.96 114 | 79.68 233 | 47.00 145 | 82.09 180 | 61.60 138 | 79.37 123 | 80.81 227 |
|
PS-MVSNAJ | | | 70.51 116 | 69.70 119 | 72.93 147 | 81.52 94 | 55.79 124 | 74.92 203 | 79.00 158 | 55.04 205 | 69.88 115 | 78.66 247 | 47.05 141 | 82.19 178 | 61.61 137 | 79.58 120 | 80.83 226 |
|
v2v482 | | | 70.50 117 | 69.45 124 | 73.66 127 | 72.62 261 | 50.03 203 | 77.58 145 | 80.51 136 | 59.90 110 | 69.52 119 | 82.14 180 | 47.53 132 | 84.88 120 | 65.07 108 | 70.17 230 | 86.09 81 |
|
mvs-test1 | | | 70.44 118 | 68.19 144 | 77.18 53 | 76.10 211 | 63.22 6 | 80.59 100 | 76.06 212 | 59.83 114 | 66.32 177 | 79.87 227 | 41.56 201 | 85.53 102 | 60.60 144 | 72.77 197 | 82.80 194 |
|
v1144 | | | 70.42 119 | 69.31 125 | 73.76 121 | 73.22 249 | 50.64 192 | 77.83 141 | 81.43 110 | 58.58 133 | 69.40 123 | 81.16 198 | 47.53 132 | 85.29 112 | 64.01 115 | 70.64 220 | 85.34 113 |
|
TranMVSNet+NR-MVSNet | | | 70.36 120 | 70.10 115 | 71.17 186 | 78.64 153 | 42.97 280 | 76.53 170 | 81.16 123 | 66.95 6 | 68.53 136 | 85.42 118 | 51.61 88 | 83.07 154 | 52.32 200 | 69.70 241 | 87.46 40 |
|
v8 | | | 70.33 121 | 69.28 126 | 73.49 133 | 73.15 251 | 50.22 199 | 78.62 129 | 80.78 132 | 60.79 87 | 66.45 175 | 82.11 181 | 49.35 107 | 84.98 115 | 63.58 121 | 68.71 256 | 85.28 115 |
|
Fast-Effi-MVS+ | | | 70.28 122 | 69.12 129 | 73.73 124 | 78.50 155 | 51.50 181 | 75.01 200 | 79.46 153 | 56.16 177 | 68.59 133 | 79.55 236 | 53.97 58 | 84.05 133 | 53.34 194 | 77.53 147 | 85.65 99 |
|
X-MVStestdata | | | 70.21 123 | 67.28 164 | 79.00 21 | 86.32 29 | 62.62 14 | 85.83 20 | 83.92 55 | 64.55 24 | 72.17 89 | 6.49 365 | 47.95 125 | 88.01 39 | 71.55 57 | 86.74 56 | 86.37 69 |
|
v10 | | | 70.21 123 | 69.02 130 | 73.81 118 | 73.51 248 | 50.92 187 | 78.74 126 | 81.39 111 | 60.05 108 | 66.39 176 | 81.83 186 | 47.58 131 | 85.41 110 | 62.80 126 | 68.86 255 | 85.09 121 |
|
QAPM | | | 70.05 125 | 68.81 133 | 73.78 119 | 76.54 205 | 53.43 152 | 83.23 57 | 83.48 67 | 52.89 226 | 65.90 185 | 86.29 98 | 41.55 203 | 86.49 81 | 51.01 209 | 78.40 141 | 81.42 212 |
|
DU-MVS | | | 70.01 126 | 69.53 121 | 71.44 175 | 78.05 170 | 44.13 269 | 75.01 200 | 81.51 108 | 64.37 29 | 68.20 140 | 84.52 129 | 49.12 114 | 82.82 166 | 54.62 182 | 70.43 224 | 87.37 43 |
|
AdaColmap |  | | 69.99 127 | 68.66 136 | 73.97 116 | 84.94 58 | 57.83 89 | 82.63 70 | 78.71 164 | 56.28 174 | 64.34 212 | 84.14 136 | 41.57 200 | 87.06 62 | 46.45 241 | 78.88 132 | 77.02 273 |
|
v1192 | | | 69.97 128 | 68.68 135 | 73.85 117 | 73.19 250 | 50.94 185 | 77.68 144 | 81.36 112 | 57.51 151 | 68.95 131 | 80.85 208 | 45.28 164 | 85.33 111 | 62.97 125 | 70.37 226 | 85.27 116 |
|
Anonymous20240529 | | | 69.91 129 | 69.02 130 | 72.56 155 | 80.19 121 | 47.65 234 | 77.56 147 | 80.99 127 | 55.45 194 | 69.88 115 | 86.76 82 | 39.24 222 | 82.18 179 | 54.04 186 | 77.10 153 | 87.85 24 |
|
FC-MVSNet-test | | | 69.80 130 | 70.58 107 | 67.46 237 | 77.61 185 | 34.73 337 | 76.05 182 | 83.19 79 | 60.84 86 | 65.88 186 | 86.46 94 | 54.52 54 | 80.76 210 | 52.52 199 | 78.12 142 | 86.91 53 |
|
v144192 | | | 69.71 131 | 68.51 137 | 73.33 140 | 73.10 252 | 50.13 201 | 77.54 148 | 80.64 133 | 56.65 161 | 68.57 135 | 80.55 213 | 46.87 146 | 84.96 117 | 62.98 124 | 69.66 242 | 84.89 127 |
|
test_yl | | | 69.69 132 | 69.13 127 | 71.36 179 | 78.37 159 | 45.74 254 | 74.71 206 | 80.20 140 | 57.91 148 | 70.01 112 | 83.83 144 | 42.44 188 | 82.87 162 | 54.97 178 | 79.72 117 | 85.48 105 |
|
DCV-MVSNet | | | 69.69 132 | 69.13 127 | 71.36 179 | 78.37 159 | 45.74 254 | 74.71 206 | 80.20 140 | 57.91 148 | 70.01 112 | 83.83 144 | 42.44 188 | 82.87 162 | 54.97 178 | 79.72 117 | 85.48 105 |
|
VNet | | | 69.68 134 | 70.19 112 | 68.16 232 | 79.73 130 | 41.63 293 | 70.53 268 | 77.38 195 | 60.37 98 | 70.69 99 | 86.63 89 | 51.08 94 | 77.09 262 | 53.61 192 | 81.69 99 | 85.75 95 |
|
jason | | | 69.65 135 | 68.39 142 | 73.43 137 | 78.27 163 | 56.88 108 | 77.12 158 | 73.71 245 | 46.53 290 | 69.34 124 | 83.22 156 | 43.37 181 | 79.18 230 | 64.77 109 | 79.20 128 | 84.23 145 |
jason: jason. |
Effi-MVS+-dtu | | | 69.64 136 | 67.53 155 | 75.95 71 | 76.10 211 | 62.29 18 | 80.20 105 | 76.06 212 | 59.83 114 | 65.26 198 | 77.09 267 | 41.56 201 | 84.02 137 | 60.60 144 | 71.09 218 | 81.53 211 |
|
lupinMVS | | | 69.57 137 | 68.28 143 | 73.44 136 | 78.76 149 | 57.15 104 | 76.57 169 | 73.29 248 | 46.19 293 | 69.49 120 | 82.18 176 | 43.99 177 | 79.23 229 | 64.66 110 | 79.37 123 | 83.93 153 |
|
NR-MVSNet | | | 69.54 138 | 68.85 132 | 71.59 173 | 78.05 170 | 43.81 273 | 74.20 213 | 80.86 131 | 65.18 17 | 62.76 227 | 84.52 129 | 52.35 80 | 83.59 146 | 50.96 210 | 70.78 219 | 87.37 43 |
|
MVS_111021_LR | | | 69.50 139 | 68.78 134 | 71.65 171 | 78.38 158 | 59.33 62 | 74.82 205 | 70.11 269 | 58.08 142 | 67.83 153 | 84.68 124 | 41.96 193 | 76.34 270 | 65.62 102 | 77.54 146 | 79.30 250 |
|
v1921920 | | | 69.47 140 | 68.17 145 | 73.36 139 | 73.06 253 | 50.10 202 | 77.39 151 | 80.56 134 | 56.58 168 | 68.59 133 | 80.37 215 | 44.72 170 | 84.98 115 | 62.47 130 | 69.82 237 | 85.00 123 |
|
test_djsdf | | | 69.45 141 | 67.74 148 | 74.58 104 | 74.57 237 | 54.92 138 | 82.79 65 | 78.48 172 | 51.26 245 | 65.41 193 | 83.49 154 | 38.37 230 | 83.24 151 | 66.06 95 | 69.25 248 | 85.56 102 |
|
Anonymous20231211 | | | 69.28 142 | 68.47 139 | 71.73 168 | 80.28 116 | 47.18 240 | 79.98 107 | 82.37 91 | 54.61 209 | 67.24 162 | 84.01 140 | 39.43 219 | 82.41 176 | 55.45 176 | 72.83 196 | 85.62 101 |
|
EI-MVSNet | | | 69.27 143 | 68.44 141 | 71.73 168 | 74.47 238 | 49.39 214 | 75.20 195 | 78.45 175 | 59.60 116 | 69.16 129 | 76.51 277 | 51.29 90 | 82.50 173 | 59.86 152 | 71.45 215 | 83.30 179 |
|
v1240 | | | 69.24 144 | 67.91 147 | 73.25 144 | 73.02 255 | 49.82 205 | 77.21 157 | 80.54 135 | 56.43 170 | 68.34 139 | 80.51 214 | 43.33 182 | 84.99 113 | 62.03 134 | 69.77 240 | 84.95 126 |
|
IterMVS-LS | | | 69.22 145 | 68.48 138 | 71.43 177 | 74.44 240 | 49.40 213 | 76.23 177 | 77.55 191 | 59.60 116 | 65.85 187 | 81.59 192 | 51.28 91 | 81.58 190 | 59.87 151 | 69.90 236 | 83.30 179 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 69.02 146 | 69.47 123 | 67.69 236 | 77.42 188 | 41.00 297 | 74.04 215 | 79.68 147 | 60.06 107 | 69.26 127 | 84.81 123 | 51.06 95 | 77.58 256 | 54.44 185 | 74.43 172 | 84.48 138 |
|
v7n | | | 69.01 147 | 67.36 161 | 73.98 115 | 72.51 264 | 52.65 162 | 78.54 132 | 81.30 117 | 60.26 105 | 62.67 229 | 81.62 189 | 43.61 179 | 84.49 126 | 57.01 163 | 68.70 257 | 84.79 131 |
|
OpenMVS |  | 61.03 9 | 68.85 148 | 67.56 152 | 72.70 153 | 74.26 243 | 53.99 144 | 81.21 93 | 81.34 116 | 52.70 227 | 62.75 228 | 85.55 115 | 38.86 226 | 84.14 132 | 48.41 229 | 83.01 78 | 79.97 239 |
|
XVG-OURS-SEG-HR | | | 68.81 149 | 67.47 157 | 72.82 151 | 74.40 241 | 56.87 109 | 70.59 267 | 79.04 157 | 54.77 208 | 66.99 165 | 86.01 105 | 39.57 218 | 78.21 247 | 62.54 128 | 73.33 187 | 83.37 177 |
|
BH-RMVSNet | | | 68.81 149 | 67.42 158 | 72.97 146 | 80.11 123 | 52.53 166 | 74.26 212 | 76.29 208 | 58.48 136 | 68.38 138 | 84.20 135 | 42.59 186 | 83.83 140 | 46.53 240 | 75.91 163 | 82.56 195 |
|
UGNet | | | 68.81 149 | 67.39 159 | 73.06 145 | 78.33 161 | 54.47 141 | 79.77 112 | 75.40 221 | 60.45 94 | 63.22 222 | 84.40 133 | 32.71 286 | 80.91 205 | 51.71 206 | 80.56 107 | 83.81 159 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RRT_MVS | | | 68.77 152 | 66.71 174 | 74.95 92 | 75.93 215 | 58.55 80 | 80.50 101 | 75.84 214 | 56.09 179 | 68.17 142 | 83.74 147 | 28.50 314 | 82.98 156 | 65.67 101 | 65.91 278 | 83.33 178 |
|
XVG-OURS | | | 68.76 153 | 67.37 160 | 72.90 148 | 74.32 242 | 57.22 99 | 70.09 273 | 78.81 161 | 55.24 196 | 67.79 155 | 85.81 112 | 36.54 251 | 78.28 246 | 62.04 133 | 75.74 165 | 83.19 184 |
|
V42 | | | 68.65 154 | 67.35 162 | 72.56 155 | 68.93 310 | 50.18 200 | 72.90 234 | 79.47 152 | 56.92 158 | 69.45 122 | 80.26 221 | 46.29 150 | 82.99 155 | 64.07 113 | 67.82 265 | 84.53 136 |
|
PVSNet_Blended | | | 68.59 155 | 67.72 149 | 71.19 184 | 77.03 195 | 50.57 193 | 72.51 240 | 81.52 106 | 51.91 234 | 64.22 217 | 77.77 263 | 49.13 112 | 82.87 162 | 55.82 170 | 79.58 120 | 80.14 236 |
|
xiu_mvs_v1_base_debu | | | 68.58 156 | 67.28 164 | 72.48 157 | 78.19 165 | 57.19 101 | 75.28 192 | 75.09 228 | 51.61 236 | 70.04 108 | 81.41 194 | 32.79 282 | 79.02 237 | 63.81 117 | 77.31 148 | 81.22 218 |
|
xiu_mvs_v1_base | | | 68.58 156 | 67.28 164 | 72.48 157 | 78.19 165 | 57.19 101 | 75.28 192 | 75.09 228 | 51.61 236 | 70.04 108 | 81.41 194 | 32.79 282 | 79.02 237 | 63.81 117 | 77.31 148 | 81.22 218 |
|
xiu_mvs_v1_base_debi | | | 68.58 156 | 67.28 164 | 72.48 157 | 78.19 165 | 57.19 101 | 75.28 192 | 75.09 228 | 51.61 236 | 70.04 108 | 81.41 194 | 32.79 282 | 79.02 237 | 63.81 117 | 77.31 148 | 81.22 218 |
|
PVSNet_BlendedMVS | | | 68.56 159 | 67.72 149 | 71.07 189 | 77.03 195 | 50.57 193 | 74.50 210 | 81.52 106 | 53.66 220 | 64.22 217 | 79.72 232 | 49.13 112 | 82.87 162 | 55.82 170 | 73.92 177 | 79.77 245 |
|
1121 | | | 68.53 160 | 67.16 170 | 72.63 154 | 85.64 44 | 61.14 34 | 73.95 218 | 66.46 294 | 44.61 305 | 70.28 104 | 86.68 87 | 41.42 205 | 80.78 208 | 53.62 190 | 81.79 93 | 75.97 281 |
|
WR-MVS | | | 68.47 161 | 68.47 139 | 68.44 230 | 80.20 120 | 39.84 300 | 73.75 225 | 76.07 211 | 64.68 23 | 68.11 145 | 83.63 150 | 50.39 101 | 79.14 235 | 49.78 215 | 69.66 242 | 86.34 71 |
|
AUN-MVS | | | 68.45 162 | 66.41 182 | 74.57 105 | 79.53 134 | 57.08 107 | 73.93 221 | 75.23 224 | 54.44 214 | 66.69 169 | 81.85 185 | 37.10 246 | 82.89 160 | 62.07 132 | 66.84 271 | 83.75 165 |
|
cl_fuxian | | | 68.33 163 | 67.56 152 | 70.62 196 | 70.87 284 | 46.21 249 | 74.47 211 | 78.80 162 | 56.22 176 | 66.19 179 | 78.53 252 | 51.88 84 | 81.40 192 | 62.08 131 | 69.04 251 | 84.25 144 |
|
BH-untuned | | | 68.27 164 | 67.29 163 | 71.21 183 | 79.74 129 | 53.22 155 | 76.06 181 | 77.46 194 | 57.19 154 | 66.10 180 | 81.61 190 | 45.37 163 | 83.50 147 | 45.42 255 | 76.68 160 | 76.91 277 |
|
jajsoiax | | | 68.25 165 | 66.45 178 | 73.66 127 | 75.62 220 | 55.49 131 | 80.82 96 | 78.51 171 | 52.33 231 | 64.33 213 | 84.11 137 | 28.28 316 | 81.81 185 | 63.48 122 | 70.62 221 | 83.67 168 |
|
v148 | | | 68.24 166 | 67.19 169 | 71.40 178 | 70.43 290 | 47.77 233 | 75.76 187 | 77.03 200 | 58.91 128 | 67.36 160 | 80.10 224 | 48.60 120 | 81.89 182 | 60.01 149 | 66.52 275 | 84.53 136 |
|
CANet_DTU | | | 68.18 167 | 67.71 151 | 69.59 214 | 74.83 231 | 46.24 248 | 78.66 128 | 76.85 202 | 59.60 116 | 63.45 221 | 82.09 182 | 35.25 256 | 77.41 258 | 59.88 150 | 78.76 136 | 85.14 118 |
|
mvs_tets | | | 68.18 167 | 66.36 184 | 73.63 130 | 75.61 221 | 55.35 134 | 80.77 97 | 78.56 169 | 52.48 230 | 64.27 215 | 84.10 138 | 27.45 322 | 81.84 184 | 63.45 123 | 70.56 223 | 83.69 167 |
|
RRT_test8_iter05 | | | 68.17 169 | 66.86 173 | 72.07 163 | 75.81 216 | 46.33 246 | 76.41 173 | 81.81 101 | 56.43 170 | 66.52 172 | 81.30 197 | 31.90 294 | 84.25 130 | 63.77 120 | 67.83 264 | 85.64 100 |
|
miper_ehance_all_eth | | | 68.03 170 | 67.24 168 | 70.40 200 | 70.54 288 | 46.21 249 | 73.98 216 | 78.68 166 | 55.07 203 | 66.05 181 | 77.80 261 | 52.16 82 | 81.31 194 | 61.53 140 | 69.32 245 | 83.67 168 |
|
mvs_anonymous | | | 68.03 170 | 67.51 156 | 69.59 214 | 72.08 269 | 44.57 267 | 71.99 247 | 75.23 224 | 51.67 235 | 67.06 164 | 82.57 167 | 54.68 52 | 77.94 250 | 56.56 165 | 75.71 166 | 86.26 78 |
|
ET-MVSNet_ETH3D | | | 67.96 172 | 65.72 196 | 74.68 98 | 76.67 201 | 55.62 129 | 75.11 197 | 74.74 232 | 52.91 225 | 60.03 254 | 80.12 223 | 33.68 272 | 82.64 171 | 61.86 135 | 76.34 161 | 85.78 90 |
|
thisisatest0530 | | | 67.92 173 | 65.78 195 | 74.33 111 | 76.29 208 | 51.03 184 | 76.89 165 | 74.25 239 | 53.67 219 | 65.59 190 | 81.76 187 | 35.15 257 | 85.50 105 | 55.94 168 | 72.47 202 | 86.47 65 |
|
PAPM | | | 67.92 173 | 66.69 175 | 71.63 172 | 78.09 168 | 49.02 217 | 77.09 159 | 81.24 121 | 51.04 247 | 60.91 249 | 83.98 141 | 47.71 128 | 84.99 113 | 40.81 287 | 79.32 126 | 80.90 225 |
|
tttt0517 | | | 67.83 175 | 65.66 197 | 74.33 111 | 76.69 200 | 50.82 189 | 77.86 140 | 73.99 242 | 54.54 212 | 64.64 210 | 82.53 169 | 35.06 258 | 85.50 105 | 55.71 173 | 69.91 235 | 86.67 61 |
|
eth_miper_zixun_eth | | | 67.63 176 | 66.28 188 | 71.67 170 | 71.60 276 | 48.33 226 | 73.68 226 | 77.88 184 | 55.80 186 | 65.91 184 | 78.62 250 | 47.35 138 | 82.88 161 | 59.45 154 | 66.25 276 | 83.81 159 |
|
UniMVSNet_ETH3D | | | 67.60 177 | 67.07 171 | 69.18 222 | 77.39 189 | 42.29 284 | 74.18 214 | 75.59 218 | 60.37 98 | 66.77 168 | 86.06 104 | 37.64 237 | 78.93 242 | 52.16 202 | 73.49 184 | 86.32 74 |
|
VPNet | | | 67.52 178 | 68.11 146 | 65.74 260 | 79.18 140 | 36.80 325 | 72.17 245 | 72.83 251 | 62.04 73 | 67.79 155 | 85.83 110 | 48.88 116 | 76.60 267 | 51.30 208 | 72.97 195 | 83.81 159 |
|
cl-mvsnet2 | | | 67.47 179 | 66.45 178 | 70.54 198 | 69.85 301 | 46.49 244 | 73.85 223 | 77.35 196 | 55.07 203 | 65.51 191 | 77.92 257 | 47.64 130 | 81.10 199 | 61.58 139 | 69.32 245 | 84.01 152 |
|
Fast-Effi-MVS+-dtu | | | 67.37 180 | 65.33 202 | 73.48 134 | 72.94 256 | 57.78 91 | 77.47 150 | 76.88 201 | 57.60 150 | 61.97 240 | 76.85 271 | 39.31 220 | 80.49 214 | 54.72 181 | 70.28 229 | 82.17 204 |
|
MVS | | | 67.37 180 | 66.33 185 | 70.51 199 | 75.46 224 | 50.94 185 | 73.95 218 | 81.85 100 | 41.57 329 | 62.54 233 | 78.57 251 | 47.98 124 | 85.47 107 | 52.97 197 | 82.05 92 | 75.14 290 |
|
GBi-Net | | | 67.21 182 | 66.55 176 | 69.19 219 | 77.63 180 | 43.33 276 | 77.31 152 | 77.83 186 | 56.62 164 | 65.04 203 | 82.70 162 | 41.85 196 | 80.33 216 | 47.18 235 | 72.76 198 | 83.92 154 |
|
test1 | | | 67.21 182 | 66.55 176 | 69.19 219 | 77.63 180 | 43.33 276 | 77.31 152 | 77.83 186 | 56.62 164 | 65.04 203 | 82.70 162 | 41.85 196 | 80.33 216 | 47.18 235 | 72.76 198 | 83.92 154 |
|
cl-mvsnet____ | | | 67.18 184 | 66.26 189 | 69.94 207 | 70.20 293 | 45.74 254 | 73.30 228 | 76.83 203 | 55.10 198 | 65.27 195 | 79.57 235 | 47.39 136 | 80.53 212 | 59.41 156 | 69.22 249 | 83.53 174 |
|
cl-mvsnet1 | | | 67.18 184 | 66.26 189 | 69.94 207 | 70.20 293 | 45.74 254 | 73.29 229 | 76.83 203 | 55.10 198 | 65.27 195 | 79.58 234 | 47.38 137 | 80.53 212 | 59.43 155 | 69.22 249 | 83.54 173 |
|
MVSTER | | | 67.16 186 | 65.58 199 | 71.88 165 | 70.37 292 | 49.70 207 | 70.25 272 | 78.45 175 | 51.52 239 | 69.16 129 | 80.37 215 | 38.45 229 | 82.50 173 | 60.19 147 | 71.46 214 | 83.44 176 |
|
miper_enhance_ethall | | | 67.11 187 | 66.09 191 | 70.17 204 | 69.21 307 | 45.98 252 | 72.85 235 | 78.41 178 | 51.38 242 | 65.65 189 | 75.98 286 | 51.17 93 | 81.25 195 | 60.82 142 | 69.32 245 | 83.29 181 |
|
Baseline_NR-MVSNet | | | 67.05 188 | 67.56 152 | 65.50 262 | 75.65 219 | 37.70 318 | 75.42 190 | 74.65 234 | 59.90 110 | 68.14 144 | 83.15 159 | 49.12 114 | 77.20 260 | 52.23 201 | 69.78 238 | 81.60 210 |
|
WR-MVS_H | | | 67.02 189 | 66.92 172 | 67.33 240 | 77.95 173 | 37.75 317 | 77.57 146 | 82.11 96 | 62.03 74 | 62.65 230 | 82.48 170 | 50.57 99 | 79.46 225 | 42.91 274 | 64.01 291 | 84.79 131 |
|
anonymousdsp | | | 67.00 190 | 64.82 207 | 73.57 132 | 70.09 296 | 56.13 117 | 76.35 174 | 77.35 196 | 48.43 270 | 64.99 206 | 80.84 209 | 33.01 279 | 80.34 215 | 64.66 110 | 67.64 267 | 84.23 145 |
|
FMVSNet2 | | | 66.93 191 | 66.31 187 | 68.79 226 | 77.63 180 | 42.98 279 | 76.11 179 | 77.47 192 | 56.62 164 | 65.22 201 | 82.17 178 | 41.85 196 | 80.18 219 | 47.05 238 | 72.72 201 | 83.20 183 |
|
BH-w/o | | | 66.85 192 | 65.83 194 | 69.90 210 | 79.29 136 | 52.46 168 | 74.66 208 | 76.65 206 | 54.51 213 | 64.85 207 | 78.12 253 | 45.59 156 | 82.95 158 | 43.26 270 | 75.54 167 | 74.27 303 |
|
Anonymous202405211 | | | 66.84 193 | 65.99 192 | 69.40 218 | 80.19 121 | 42.21 285 | 71.11 261 | 71.31 260 | 58.80 131 | 67.90 147 | 86.39 96 | 29.83 306 | 79.65 222 | 49.60 221 | 78.78 135 | 86.33 72 |
|
CDS-MVSNet | | | 66.80 194 | 65.37 200 | 71.10 188 | 78.98 144 | 53.13 158 | 73.27 230 | 71.07 262 | 52.15 233 | 64.72 208 | 80.23 222 | 43.56 180 | 77.10 261 | 45.48 253 | 78.88 132 | 83.05 189 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 66.78 195 | 65.27 203 | 71.33 182 | 79.16 142 | 53.67 146 | 73.84 224 | 69.59 274 | 52.32 232 | 65.28 194 | 81.72 188 | 44.49 173 | 77.40 259 | 42.32 278 | 78.66 138 | 82.92 190 |
|
FMVSNet1 | | | 66.70 196 | 65.87 193 | 69.19 219 | 77.49 187 | 43.33 276 | 77.31 152 | 77.83 186 | 56.45 169 | 64.60 211 | 82.70 162 | 38.08 235 | 80.33 216 | 46.08 244 | 72.31 206 | 83.92 154 |
|
ab-mvs | | | 66.65 197 | 66.42 181 | 67.37 238 | 76.17 210 | 41.73 290 | 70.41 271 | 76.14 210 | 53.99 216 | 65.98 182 | 83.51 153 | 49.48 106 | 76.24 271 | 48.60 227 | 73.46 185 | 84.14 148 |
|
PEN-MVS | | | 66.60 198 | 66.45 178 | 67.04 241 | 77.11 193 | 36.56 327 | 77.03 161 | 80.42 137 | 62.95 51 | 62.51 235 | 84.03 139 | 46.69 147 | 79.07 236 | 44.22 259 | 63.08 300 | 85.51 104 |
|
TAPA-MVS | | 59.36 10 | 66.60 198 | 65.20 204 | 70.81 192 | 76.63 202 | 48.75 221 | 76.52 171 | 80.04 142 | 50.64 251 | 65.24 199 | 84.93 121 | 39.15 223 | 78.54 243 | 36.77 306 | 76.88 155 | 85.14 118 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 66.59 200 | 65.07 205 | 71.17 186 | 79.18 140 | 49.63 211 | 73.48 227 | 75.20 226 | 52.95 224 | 67.90 147 | 80.33 218 | 39.81 216 | 83.68 143 | 43.20 271 | 73.56 183 | 80.20 234 |
|
CP-MVSNet | | | 66.49 201 | 66.41 182 | 66.72 243 | 77.67 179 | 36.33 330 | 76.83 167 | 79.52 151 | 62.45 64 | 62.54 233 | 83.47 155 | 46.32 149 | 78.37 244 | 45.47 254 | 63.43 297 | 85.45 107 |
|
PS-CasMVS | | | 66.42 202 | 66.32 186 | 66.70 245 | 77.60 186 | 36.30 332 | 76.94 163 | 79.61 149 | 62.36 66 | 62.43 237 | 83.66 149 | 45.69 153 | 78.37 244 | 45.35 256 | 63.26 298 | 85.42 110 |
|
FMVSNet3 | | | 66.32 203 | 65.61 198 | 68.46 229 | 76.48 206 | 42.34 283 | 74.98 202 | 77.15 199 | 55.83 184 | 65.04 203 | 81.16 198 | 39.91 214 | 80.14 220 | 47.18 235 | 72.76 198 | 82.90 192 |
|
ACMH+ | | 57.40 11 | 66.12 204 | 64.06 209 | 72.30 162 | 77.79 176 | 52.83 160 | 80.39 102 | 78.03 183 | 57.30 152 | 57.47 280 | 82.55 168 | 27.68 320 | 84.17 131 | 45.54 251 | 69.78 238 | 79.90 240 |
|
cascas | | | 65.98 205 | 63.42 220 | 73.64 129 | 77.26 191 | 52.58 165 | 72.26 244 | 77.21 198 | 48.56 267 | 61.21 248 | 74.60 298 | 32.57 290 | 85.82 97 | 50.38 213 | 76.75 159 | 82.52 197 |
|
thisisatest0515 | | | 65.83 206 | 63.50 219 | 72.82 151 | 73.75 246 | 49.50 212 | 71.32 255 | 73.12 250 | 49.39 260 | 63.82 219 | 76.50 279 | 34.95 260 | 84.84 121 | 53.20 196 | 75.49 168 | 84.13 149 |
|
DP-MVS | | | 65.68 207 | 63.66 217 | 71.75 167 | 84.93 59 | 56.87 109 | 80.74 98 | 73.16 249 | 53.06 223 | 59.09 266 | 82.35 172 | 36.79 250 | 85.94 93 | 32.82 326 | 69.96 234 | 72.45 318 |
|
HyFIR lowres test | | | 65.67 208 | 63.01 224 | 73.67 126 | 79.97 125 | 55.65 127 | 69.07 281 | 75.52 219 | 42.68 323 | 63.53 220 | 77.95 255 | 40.43 212 | 81.64 187 | 46.01 245 | 71.91 209 | 83.73 166 |
|
DTE-MVSNet | | | 65.58 209 | 65.34 201 | 66.31 248 | 76.06 213 | 34.79 335 | 76.43 172 | 79.38 154 | 62.55 62 | 61.66 244 | 83.83 144 | 45.60 155 | 79.15 234 | 41.64 286 | 60.88 314 | 85.00 123 |
|
bset_n11_16_dypcd | | | 65.57 210 | 63.69 216 | 71.19 184 | 70.84 286 | 51.79 179 | 71.37 253 | 70.48 267 | 53.33 222 | 65.19 202 | 76.41 280 | 31.46 296 | 81.76 186 | 65.12 106 | 69.04 251 | 80.01 238 |
|
GA-MVS | | | 65.53 211 | 63.70 215 | 71.02 190 | 70.87 284 | 48.10 228 | 70.48 269 | 74.40 236 | 56.69 160 | 64.70 209 | 76.77 272 | 33.66 273 | 81.10 199 | 55.42 177 | 70.32 228 | 83.87 157 |
|
CNLPA | | | 65.43 212 | 64.02 210 | 69.68 212 | 78.73 151 | 58.07 86 | 77.82 142 | 70.71 265 | 51.49 240 | 61.57 246 | 83.58 152 | 38.23 233 | 70.82 291 | 43.90 264 | 70.10 232 | 80.16 235 |
|
MVP-Stereo | | | 65.41 213 | 63.80 214 | 70.22 201 | 77.62 184 | 55.53 130 | 76.30 175 | 78.53 170 | 50.59 252 | 56.47 286 | 78.65 248 | 39.84 215 | 82.68 169 | 44.10 263 | 72.12 208 | 72.44 319 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 56.42 12 | 65.40 214 | 62.73 228 | 73.40 138 | 74.89 229 | 52.78 161 | 73.09 232 | 75.13 227 | 55.69 188 | 58.48 274 | 73.73 304 | 32.86 281 | 86.32 85 | 50.63 211 | 70.11 231 | 81.10 222 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pm-mvs1 | | | 65.24 215 | 64.97 206 | 66.04 255 | 72.38 265 | 39.40 305 | 72.62 238 | 75.63 217 | 55.53 192 | 62.35 239 | 83.18 158 | 47.45 134 | 76.47 268 | 49.06 224 | 66.54 274 | 82.24 201 |
|
ACMH | | 55.70 15 | 65.20 216 | 63.57 218 | 70.07 205 | 78.07 169 | 52.01 178 | 79.48 120 | 79.69 146 | 55.75 187 | 56.59 285 | 80.98 203 | 27.12 324 | 80.94 203 | 42.90 275 | 71.58 213 | 77.25 271 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC |  | 56.13 14 | 65.09 217 | 63.21 222 | 70.72 195 | 81.04 106 | 54.87 139 | 78.57 130 | 77.47 192 | 48.51 268 | 55.71 289 | 81.89 184 | 33.71 271 | 79.71 221 | 41.66 284 | 70.37 226 | 77.58 265 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 1792x2688 | | | 65.08 218 | 62.84 226 | 71.82 166 | 81.49 96 | 56.26 115 | 66.32 292 | 74.20 240 | 40.53 334 | 63.16 224 | 78.65 248 | 41.30 206 | 77.80 253 | 45.80 247 | 74.09 175 | 81.40 213 |
|
TransMVSNet (Re) | | | 64.72 219 | 64.33 208 | 65.87 259 | 75.22 227 | 38.56 311 | 74.66 208 | 75.08 231 | 58.90 129 | 61.79 243 | 82.63 165 | 51.18 92 | 78.07 249 | 43.63 267 | 55.87 330 | 80.99 224 |
|
EG-PatchMatch MVS | | | 64.71 220 | 62.87 225 | 70.22 201 | 77.68 178 | 53.48 151 | 77.99 139 | 78.82 160 | 53.37 221 | 56.03 288 | 77.41 266 | 24.75 338 | 84.04 134 | 46.37 242 | 73.42 186 | 73.14 310 |
|
LS3D | | | 64.71 220 | 62.50 230 | 71.34 181 | 79.72 131 | 55.71 125 | 79.82 111 | 74.72 233 | 48.50 269 | 56.62 284 | 84.62 126 | 33.59 274 | 82.34 177 | 29.65 344 | 75.23 169 | 75.97 281 |
|
1314 | | | 64.61 222 | 63.21 222 | 68.80 225 | 71.87 274 | 47.46 237 | 73.95 218 | 78.39 180 | 42.88 322 | 59.97 255 | 76.60 276 | 38.11 234 | 79.39 227 | 54.84 180 | 72.32 205 | 79.55 246 |
|
HY-MVS | | 56.14 13 | 64.55 223 | 63.89 211 | 66.55 246 | 74.73 234 | 41.02 295 | 69.96 274 | 74.43 235 | 49.29 261 | 61.66 244 | 80.92 205 | 47.43 135 | 76.68 266 | 44.91 258 | 71.69 211 | 81.94 206 |
|
XVG-ACMP-BASELINE | | | 64.36 224 | 62.23 233 | 70.74 194 | 72.35 266 | 52.45 169 | 70.80 266 | 78.45 175 | 53.84 218 | 59.87 257 | 81.10 200 | 16.24 352 | 79.32 228 | 55.64 175 | 71.76 210 | 80.47 230 |
|
CostFormer | | | 64.04 225 | 62.51 229 | 68.61 228 | 71.88 273 | 45.77 253 | 71.30 256 | 70.60 266 | 47.55 280 | 64.31 214 | 76.61 275 | 41.63 199 | 79.62 224 | 49.74 217 | 69.00 253 | 80.42 231 |
|
1112_ss | | | 64.00 226 | 63.36 221 | 65.93 257 | 79.28 137 | 42.58 282 | 71.35 254 | 72.36 255 | 46.41 291 | 60.55 251 | 77.89 259 | 46.27 151 | 73.28 281 | 46.18 243 | 69.97 233 | 81.92 207 |
|
baseline1 | | | 63.81 227 | 63.87 213 | 63.62 274 | 76.29 208 | 36.36 328 | 71.78 250 | 67.29 289 | 56.05 181 | 64.23 216 | 82.95 160 | 47.11 140 | 74.41 278 | 47.30 234 | 61.85 308 | 80.10 237 |
|
pmmvs6 | | | 63.69 228 | 62.82 227 | 66.27 250 | 70.63 287 | 39.27 306 | 73.13 231 | 75.47 220 | 52.69 228 | 59.75 260 | 82.30 174 | 39.71 217 | 77.03 263 | 47.40 233 | 64.35 290 | 82.53 196 |
|
Vis-MVSNet (Re-imp) | | | 63.69 228 | 63.88 212 | 63.14 279 | 74.75 233 | 31.04 350 | 71.16 259 | 63.64 310 | 56.32 172 | 59.80 259 | 84.99 120 | 44.51 171 | 75.46 273 | 39.12 295 | 80.62 103 | 82.92 190 |
|
baseline2 | | | 63.42 230 | 61.26 244 | 69.89 211 | 72.55 263 | 47.62 235 | 71.54 251 | 68.38 284 | 50.11 254 | 54.82 300 | 75.55 290 | 43.06 184 | 80.96 202 | 48.13 230 | 67.16 270 | 81.11 221 |
|
thres400 | | | 63.31 231 | 62.18 234 | 66.72 243 | 76.85 198 | 39.62 302 | 71.96 248 | 69.44 276 | 56.63 162 | 62.61 231 | 79.83 228 | 37.18 242 | 79.17 231 | 31.84 330 | 73.25 189 | 81.36 214 |
|
thres600view7 | | | 63.30 232 | 62.27 232 | 66.41 247 | 77.18 192 | 38.87 308 | 72.35 242 | 69.11 280 | 56.98 157 | 62.37 238 | 80.96 204 | 37.01 248 | 79.00 240 | 31.43 337 | 73.05 194 | 81.36 214 |
|
thres100view900 | | | 63.28 233 | 62.41 231 | 65.89 258 | 77.31 190 | 38.66 310 | 72.65 236 | 69.11 280 | 57.07 155 | 62.45 236 | 81.03 202 | 37.01 248 | 79.17 231 | 31.84 330 | 73.25 189 | 79.83 242 |
|
test_0402 | | | 63.25 234 | 61.01 247 | 69.96 206 | 80.00 124 | 54.37 142 | 76.86 166 | 72.02 256 | 54.58 211 | 58.71 269 | 80.79 210 | 35.00 259 | 84.36 128 | 26.41 352 | 64.71 287 | 71.15 330 |
|
tfpn200view9 | | | 63.18 235 | 62.18 234 | 66.21 251 | 76.85 198 | 39.62 302 | 71.96 248 | 69.44 276 | 56.63 162 | 62.61 231 | 79.83 228 | 37.18 242 | 79.17 231 | 31.84 330 | 73.25 189 | 79.83 242 |
|
LTVRE_ROB | | 55.42 16 | 63.15 236 | 61.23 245 | 68.92 224 | 76.57 204 | 47.80 231 | 59.92 323 | 76.39 207 | 54.35 215 | 58.67 270 | 82.46 171 | 29.44 309 | 81.49 191 | 42.12 280 | 71.14 216 | 77.46 266 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 63.05 237 | 60.87 250 | 69.58 216 | 76.99 197 | 53.63 148 | 78.12 138 | 76.16 209 | 47.97 276 | 52.41 319 | 81.61 190 | 27.87 318 | 78.11 248 | 40.07 290 | 66.66 273 | 77.00 274 |
|
IterMVS | | | 62.79 238 | 61.27 243 | 67.35 239 | 69.37 306 | 52.04 176 | 71.17 258 | 68.24 285 | 52.63 229 | 59.82 258 | 76.91 270 | 37.32 241 | 72.36 284 | 52.80 198 | 63.19 299 | 77.66 264 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 62.49 239 | 61.52 240 | 65.40 264 | 71.99 271 | 50.80 190 | 71.15 260 | 69.63 273 | 45.71 299 | 60.61 250 | 77.93 256 | 37.45 239 | 65.99 315 | 55.67 174 | 63.50 296 | 79.42 248 |
|
tfpnnormal | | | 62.47 240 | 61.63 239 | 64.99 268 | 74.81 232 | 39.01 307 | 71.22 257 | 73.72 244 | 55.22 197 | 60.21 252 | 80.09 225 | 41.26 209 | 76.98 264 | 30.02 342 | 68.09 261 | 78.97 253 |
|
MS-PatchMatch | | | 62.42 241 | 61.46 241 | 65.31 266 | 75.21 228 | 52.10 173 | 72.05 246 | 74.05 241 | 46.41 291 | 57.42 281 | 74.36 299 | 34.35 266 | 77.57 257 | 45.62 250 | 73.67 179 | 66.26 343 |
|
Test_1112_low_res | | | 62.32 242 | 61.77 237 | 64.00 273 | 79.08 143 | 39.53 304 | 68.17 283 | 70.17 268 | 43.25 318 | 59.03 267 | 79.90 226 | 44.08 175 | 71.24 290 | 43.79 266 | 68.42 259 | 81.25 217 |
|
D2MVS | | | 62.30 243 | 60.29 252 | 68.34 231 | 66.46 325 | 48.42 225 | 65.70 295 | 73.42 246 | 47.71 278 | 58.16 276 | 75.02 294 | 30.51 299 | 77.71 254 | 53.96 188 | 71.68 212 | 78.90 254 |
|
thres200 | | | 62.20 244 | 61.16 246 | 65.34 265 | 75.38 226 | 39.99 299 | 69.60 276 | 69.29 278 | 55.64 191 | 61.87 242 | 76.99 268 | 37.07 247 | 78.96 241 | 31.28 338 | 73.28 188 | 77.06 272 |
|
tpm2 | | | 62.07 245 | 60.10 253 | 67.99 233 | 72.79 258 | 43.86 272 | 71.05 263 | 66.85 292 | 43.14 320 | 62.77 226 | 75.39 292 | 38.32 231 | 80.80 207 | 41.69 283 | 68.88 254 | 79.32 249 |
|
miper_lstm_enhance | | | 62.03 246 | 60.88 249 | 65.49 263 | 66.71 323 | 46.25 247 | 56.29 335 | 75.70 216 | 50.68 249 | 61.27 247 | 75.48 291 | 40.21 213 | 68.03 305 | 56.31 167 | 65.25 284 | 82.18 202 |
|
DWT-MVSNet_test | | | 61.90 247 | 59.93 254 | 67.83 234 | 71.98 272 | 46.09 251 | 71.03 264 | 69.71 270 | 50.09 255 | 58.51 273 | 70.62 320 | 30.21 303 | 77.63 255 | 49.28 222 | 67.91 262 | 79.78 244 |
|
EPNet_dtu | | | 61.90 247 | 61.97 236 | 61.68 288 | 72.89 257 | 39.78 301 | 75.85 186 | 65.62 298 | 55.09 200 | 54.56 304 | 79.36 240 | 37.59 238 | 67.02 310 | 39.80 293 | 76.95 154 | 78.25 257 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LCM-MVSNet-Re | | | 61.88 249 | 61.35 242 | 63.46 275 | 74.58 236 | 31.48 349 | 61.42 317 | 58.14 331 | 58.71 132 | 53.02 318 | 79.55 236 | 43.07 183 | 76.80 265 | 45.69 248 | 77.96 143 | 82.11 205 |
|
MSDG | | | 61.81 250 | 59.23 256 | 69.55 217 | 72.64 260 | 52.63 164 | 70.45 270 | 75.81 215 | 51.38 242 | 53.70 311 | 76.11 282 | 29.52 307 | 81.08 201 | 37.70 301 | 65.79 281 | 74.93 295 |
|
SixPastTwentyTwo | | | 61.65 251 | 58.80 259 | 70.20 203 | 75.80 217 | 47.22 239 | 75.59 188 | 69.68 272 | 54.61 209 | 54.11 308 | 79.26 242 | 27.07 325 | 82.96 157 | 43.27 269 | 49.79 344 | 80.41 232 |
|
CL-MVSNet_2432*1600 | | | 61.53 252 | 60.94 248 | 63.30 277 | 68.95 309 | 36.93 324 | 67.60 287 | 72.80 252 | 55.67 189 | 59.95 256 | 76.63 273 | 45.01 167 | 72.22 287 | 39.74 294 | 62.09 307 | 80.74 228 |
|
RPMNet | | | 61.53 252 | 58.42 262 | 70.86 191 | 69.96 299 | 52.07 174 | 65.31 301 | 81.36 112 | 43.20 319 | 59.36 262 | 70.15 326 | 35.37 255 | 85.47 107 | 36.42 313 | 64.65 288 | 75.06 291 |
|
pmmvs4 | | | 61.48 254 | 59.39 255 | 67.76 235 | 71.57 277 | 53.86 145 | 71.42 252 | 65.34 300 | 44.20 310 | 59.46 261 | 77.92 257 | 35.90 252 | 74.71 276 | 43.87 265 | 64.87 286 | 74.71 299 |
|
OurMVSNet-221017-0 | | | 61.37 255 | 58.63 261 | 69.61 213 | 72.05 270 | 48.06 229 | 73.93 221 | 72.51 253 | 47.23 286 | 54.74 301 | 80.92 205 | 21.49 347 | 81.24 196 | 48.57 228 | 56.22 329 | 79.53 247 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 256 | 58.81 258 | 68.64 227 | 74.63 235 | 52.51 167 | 78.42 135 | 73.30 247 | 49.92 258 | 50.96 324 | 81.51 193 | 23.06 340 | 79.40 226 | 31.63 334 | 65.85 279 | 74.01 306 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XXY-MVS | | | 60.68 257 | 61.67 238 | 57.70 310 | 70.43 290 | 38.45 312 | 64.19 307 | 66.47 293 | 48.05 275 | 63.22 222 | 80.86 207 | 49.28 109 | 60.47 330 | 45.25 257 | 67.28 269 | 74.19 304 |
|
SCA | | | 60.49 258 | 58.38 263 | 66.80 242 | 74.14 245 | 48.06 229 | 63.35 309 | 63.23 313 | 49.13 263 | 59.33 265 | 72.10 311 | 37.45 239 | 74.27 279 | 44.17 260 | 62.57 303 | 78.05 260 |
|
K. test v3 | | | 60.47 259 | 57.11 271 | 70.56 197 | 73.74 247 | 48.22 227 | 75.10 199 | 62.55 317 | 58.27 141 | 53.62 313 | 76.31 281 | 27.81 319 | 81.59 189 | 47.42 232 | 39.18 355 | 81.88 208 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 260 | 58.14 266 | 65.69 261 | 70.47 289 | 44.82 262 | 75.33 191 | 70.86 264 | 45.04 301 | 56.06 287 | 76.00 283 | 26.89 327 | 79.65 222 | 35.36 318 | 67.29 268 | 72.60 315 |
|
CR-MVSNet | | | 59.91 261 | 57.90 268 | 65.96 256 | 69.96 299 | 52.07 174 | 65.31 301 | 63.15 314 | 42.48 324 | 59.36 262 | 74.84 295 | 35.83 253 | 70.75 292 | 45.50 252 | 64.65 288 | 75.06 291 |
|
PatchmatchNet |  | | 59.84 262 | 58.24 264 | 64.65 270 | 73.05 254 | 46.70 243 | 69.42 278 | 62.18 319 | 47.55 280 | 58.88 268 | 71.96 313 | 34.49 264 | 69.16 300 | 42.99 273 | 63.60 295 | 78.07 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WTY-MVS | | | 59.75 263 | 60.39 251 | 57.85 308 | 72.32 267 | 37.83 316 | 61.05 321 | 64.18 308 | 45.95 298 | 61.91 241 | 79.11 244 | 47.01 144 | 60.88 329 | 42.50 277 | 69.49 244 | 74.83 296 |
|
CVMVSNet | | | 59.63 264 | 59.14 257 | 61.08 293 | 74.47 238 | 38.84 309 | 75.20 195 | 68.74 282 | 31.15 349 | 58.24 275 | 76.51 277 | 32.39 291 | 68.58 303 | 49.77 216 | 65.84 280 | 75.81 284 |
|
tpm cat1 | | | 59.25 265 | 56.95 274 | 66.15 252 | 72.19 268 | 46.96 241 | 68.09 284 | 65.76 297 | 40.03 337 | 57.81 278 | 70.56 321 | 38.32 231 | 74.51 277 | 38.26 299 | 61.50 311 | 77.00 274 |
|
pmmvs-eth3d | | | 58.81 266 | 56.31 279 | 66.30 249 | 67.61 317 | 52.42 170 | 72.30 243 | 64.76 304 | 43.55 316 | 54.94 299 | 74.19 301 | 28.95 311 | 72.60 283 | 43.31 268 | 57.21 325 | 73.88 307 |
|
MVS_0304 | | | 58.51 267 | 57.36 270 | 61.96 287 | 70.04 297 | 41.83 288 | 69.40 279 | 65.46 299 | 50.73 248 | 53.30 317 | 74.06 302 | 22.65 341 | 70.18 298 | 42.16 279 | 68.44 258 | 73.86 308 |
|
tpmvs | | | 58.47 268 | 56.95 274 | 63.03 281 | 70.20 293 | 41.21 294 | 67.90 286 | 67.23 290 | 49.62 259 | 54.73 302 | 70.84 318 | 34.14 267 | 76.24 271 | 36.64 310 | 61.29 312 | 71.64 326 |
|
PVSNet | | 50.76 19 | 58.40 269 | 57.39 269 | 61.42 290 | 75.53 223 | 44.04 271 | 61.43 316 | 63.45 311 | 47.04 288 | 56.91 282 | 73.61 305 | 27.00 326 | 64.76 318 | 39.12 295 | 72.40 203 | 75.47 288 |
|
tpmrst | | | 58.24 270 | 58.70 260 | 56.84 311 | 66.97 320 | 34.32 339 | 69.57 277 | 61.14 323 | 47.17 287 | 58.58 272 | 71.60 314 | 41.28 208 | 60.41 331 | 49.20 223 | 62.84 301 | 75.78 285 |
|
Patchmatch-RL test | | | 58.16 271 | 55.49 283 | 66.15 252 | 67.92 316 | 48.89 220 | 60.66 322 | 51.07 348 | 47.86 277 | 59.36 262 | 62.71 347 | 34.02 269 | 72.27 286 | 56.41 166 | 59.40 319 | 77.30 268 |
|
test-LLR | | | 58.15 272 | 58.13 267 | 58.22 304 | 68.57 311 | 44.80 263 | 65.46 298 | 57.92 332 | 50.08 256 | 55.44 292 | 69.82 328 | 32.62 287 | 57.44 340 | 49.66 219 | 73.62 180 | 72.41 320 |
|
ppachtmachnet_test | | | 58.06 273 | 55.38 284 | 66.10 254 | 69.51 303 | 48.99 218 | 68.01 285 | 66.13 296 | 44.50 307 | 54.05 309 | 70.74 319 | 32.09 293 | 72.34 285 | 36.68 309 | 56.71 328 | 76.99 276 |
|
gg-mvs-nofinetune | | | 57.86 274 | 56.43 278 | 62.18 285 | 72.62 261 | 35.35 334 | 66.57 289 | 56.33 338 | 50.65 250 | 57.64 279 | 57.10 350 | 30.65 298 | 76.36 269 | 37.38 303 | 78.88 132 | 74.82 297 |
|
CMPMVS |  | 42.80 21 | 57.81 275 | 55.97 280 | 63.32 276 | 60.98 349 | 47.38 238 | 64.66 305 | 69.50 275 | 32.06 348 | 46.83 339 | 77.80 261 | 29.50 308 | 71.36 289 | 48.68 226 | 73.75 178 | 71.21 329 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet | | | 57.35 276 | 57.07 272 | 58.22 304 | 74.21 244 | 37.18 319 | 62.46 312 | 60.88 324 | 48.88 265 | 55.29 295 | 75.99 285 | 31.68 295 | 62.04 326 | 31.87 329 | 72.35 204 | 75.43 289 |
|
tpm | | | 57.34 277 | 58.16 265 | 54.86 318 | 71.80 275 | 34.77 336 | 67.47 288 | 56.04 341 | 48.20 273 | 60.10 253 | 76.92 269 | 37.17 244 | 53.41 353 | 40.76 288 | 65.01 285 | 76.40 280 |
|
Patchmtry | | | 57.16 278 | 56.47 277 | 59.23 297 | 69.17 308 | 34.58 338 | 62.98 310 | 63.15 314 | 44.53 306 | 56.83 283 | 74.84 295 | 35.83 253 | 68.71 302 | 40.03 291 | 60.91 313 | 74.39 302 |
|
AllTest | | | 57.08 279 | 54.65 288 | 64.39 271 | 71.44 278 | 49.03 215 | 69.92 275 | 67.30 287 | 45.97 296 | 47.16 337 | 79.77 230 | 17.47 349 | 67.56 307 | 33.65 323 | 59.16 320 | 76.57 278 |
|
our_test_3 | | | 56.49 280 | 54.42 290 | 62.68 283 | 69.51 303 | 45.48 259 | 66.08 293 | 61.49 322 | 44.11 313 | 50.73 328 | 69.60 330 | 33.05 278 | 68.15 304 | 38.38 298 | 56.86 326 | 74.40 301 |
|
pmmvs5 | | | 56.47 281 | 55.68 282 | 58.86 301 | 61.41 346 | 36.71 326 | 66.37 291 | 62.75 316 | 40.38 335 | 53.70 311 | 76.62 274 | 34.56 262 | 67.05 309 | 40.02 292 | 65.27 283 | 72.83 313 |
|
test-mter | | | 56.42 282 | 55.82 281 | 58.22 304 | 68.57 311 | 44.80 263 | 65.46 298 | 57.92 332 | 39.94 338 | 55.44 292 | 69.82 328 | 21.92 344 | 57.44 340 | 49.66 219 | 73.62 180 | 72.41 320 |
|
USDC | | | 56.35 283 | 54.24 294 | 62.69 282 | 64.74 333 | 40.31 298 | 65.05 303 | 73.83 243 | 43.93 314 | 47.58 335 | 77.71 264 | 15.36 354 | 75.05 275 | 38.19 300 | 61.81 309 | 72.70 314 |
|
PatchMatch-RL | | | 56.25 284 | 54.55 289 | 61.32 292 | 77.06 194 | 56.07 119 | 65.57 297 | 54.10 346 | 44.13 312 | 53.49 316 | 71.27 317 | 25.20 335 | 66.78 311 | 36.52 312 | 63.66 294 | 61.12 346 |
|
sss | | | 56.17 285 | 56.57 276 | 54.96 317 | 66.93 321 | 36.32 331 | 57.94 329 | 61.69 321 | 41.67 327 | 58.64 271 | 75.32 293 | 38.72 227 | 56.25 346 | 42.04 281 | 66.19 277 | 72.31 323 |
|
FMVSNet5 | | | 55.86 286 | 54.93 286 | 58.66 303 | 71.05 283 | 36.35 329 | 64.18 308 | 62.48 318 | 46.76 289 | 50.66 329 | 74.73 297 | 25.80 332 | 64.04 320 | 33.11 325 | 65.57 282 | 75.59 287 |
|
RPSCF | | | 55.80 287 | 54.22 295 | 60.53 294 | 65.13 332 | 42.91 281 | 64.30 306 | 57.62 334 | 36.84 343 | 58.05 277 | 82.28 175 | 28.01 317 | 56.24 347 | 37.14 304 | 58.61 322 | 82.44 200 |
|
EU-MVSNet | | | 55.61 288 | 54.41 291 | 59.19 299 | 65.41 331 | 33.42 343 | 72.44 241 | 71.91 257 | 28.81 351 | 51.27 322 | 73.87 303 | 24.76 337 | 69.08 301 | 43.04 272 | 58.20 323 | 75.06 291 |
|
Anonymous20240521 | | | 55.30 289 | 54.41 291 | 57.96 307 | 60.92 351 | 41.73 290 | 71.09 262 | 71.06 263 | 41.18 330 | 48.65 333 | 73.31 306 | 16.93 351 | 59.25 335 | 42.54 276 | 64.01 291 | 72.90 312 |
|
TESTMET0.1,1 | | | 55.28 290 | 54.90 287 | 56.42 312 | 66.56 324 | 43.67 274 | 65.46 298 | 56.27 339 | 39.18 340 | 53.83 310 | 67.44 336 | 24.21 339 | 55.46 350 | 48.04 231 | 73.11 193 | 70.13 335 |
|
DIV-MVS_2432*1600 | | | 55.22 291 | 53.89 297 | 59.21 298 | 57.80 356 | 27.47 356 | 57.75 330 | 74.32 237 | 47.38 282 | 50.90 325 | 70.00 327 | 28.45 315 | 70.30 296 | 40.44 289 | 57.92 324 | 79.87 241 |
|
MIMVSNet1 | | | 55.17 292 | 54.31 293 | 57.77 309 | 70.03 298 | 32.01 347 | 65.68 296 | 64.81 303 | 49.19 262 | 46.75 340 | 76.00 283 | 25.53 334 | 64.04 320 | 28.65 346 | 62.13 306 | 77.26 270 |
|
Anonymous20231206 | | | 55.10 293 | 55.30 285 | 54.48 320 | 69.81 302 | 33.94 341 | 62.91 311 | 62.13 320 | 41.08 331 | 55.18 296 | 75.65 288 | 32.75 285 | 56.59 345 | 30.32 341 | 67.86 263 | 72.91 311 |
|
TinyColmap | | | 54.14 294 | 51.72 304 | 61.40 291 | 66.84 322 | 41.97 286 | 66.52 290 | 68.51 283 | 44.81 302 | 42.69 349 | 75.77 287 | 11.66 357 | 72.94 282 | 31.96 328 | 56.77 327 | 69.27 339 |
|
EPMVS | | | 53.96 295 | 53.69 298 | 54.79 319 | 66.12 328 | 31.96 348 | 62.34 314 | 49.05 351 | 44.42 309 | 55.54 290 | 71.33 316 | 30.22 302 | 56.70 343 | 41.65 285 | 62.54 304 | 75.71 286 |
|
PMMVS | | | 53.96 295 | 53.26 301 | 56.04 313 | 62.60 342 | 50.92 187 | 61.17 320 | 56.09 340 | 32.81 347 | 53.51 315 | 66.84 338 | 34.04 268 | 59.93 333 | 44.14 262 | 68.18 260 | 57.27 351 |
|
test20.03 | | | 53.87 297 | 54.02 296 | 53.41 324 | 61.47 345 | 28.11 355 | 61.30 318 | 59.21 327 | 51.34 244 | 52.09 320 | 77.43 265 | 33.29 277 | 58.55 337 | 29.76 343 | 60.27 317 | 73.58 309 |
|
MDA-MVSNet-bldmvs | | | 53.87 297 | 50.81 308 | 63.05 280 | 66.25 326 | 48.58 222 | 56.93 333 | 63.82 309 | 48.09 274 | 41.22 350 | 70.48 324 | 30.34 301 | 68.00 306 | 34.24 321 | 45.92 349 | 72.57 316 |
|
KD-MVS_2432*1600 | | | 53.45 299 | 51.50 306 | 59.30 295 | 62.82 339 | 37.14 320 | 55.33 336 | 71.79 258 | 47.34 284 | 55.09 297 | 70.52 322 | 21.91 345 | 70.45 294 | 35.72 316 | 42.97 352 | 70.31 333 |
|
miper_refine_blended | | | 53.45 299 | 51.50 306 | 59.30 295 | 62.82 339 | 37.14 320 | 55.33 336 | 71.79 258 | 47.34 284 | 55.09 297 | 70.52 322 | 21.91 345 | 70.45 294 | 35.72 316 | 42.97 352 | 70.31 333 |
|
TDRefinement | | | 53.44 301 | 50.72 309 | 61.60 289 | 64.31 336 | 46.96 241 | 70.89 265 | 65.27 302 | 41.78 325 | 44.61 345 | 77.98 254 | 11.52 358 | 66.36 313 | 28.57 347 | 51.59 340 | 71.49 327 |
|
test0.0.03 1 | | | 53.32 302 | 53.59 299 | 52.50 328 | 62.81 341 | 29.45 353 | 59.51 324 | 54.11 345 | 50.08 256 | 54.40 306 | 74.31 300 | 32.62 287 | 55.92 348 | 30.50 340 | 63.95 293 | 72.15 325 |
|
PatchT | | | 53.17 303 | 53.44 300 | 52.33 329 | 68.29 315 | 25.34 360 | 58.21 328 | 54.41 344 | 44.46 308 | 54.56 304 | 69.05 331 | 33.32 276 | 60.94 328 | 36.93 305 | 61.76 310 | 70.73 332 |
|
UnsupCasMVSNet_eth | | | 53.16 304 | 52.47 302 | 55.23 316 | 59.45 353 | 33.39 344 | 59.43 325 | 69.13 279 | 45.98 295 | 50.35 331 | 72.32 310 | 29.30 310 | 58.26 338 | 42.02 282 | 44.30 350 | 74.05 305 |
|
PM-MVS | | | 52.33 305 | 50.19 310 | 58.75 302 | 62.10 343 | 45.14 261 | 65.75 294 | 40.38 361 | 43.60 315 | 53.52 314 | 72.65 308 | 9.16 363 | 65.87 316 | 50.41 212 | 54.18 335 | 65.24 345 |
|
testgi | | | 51.90 306 | 52.37 303 | 50.51 333 | 60.39 352 | 23.55 362 | 58.42 327 | 58.15 330 | 49.03 264 | 51.83 321 | 79.21 243 | 22.39 342 | 55.59 349 | 29.24 345 | 62.64 302 | 72.40 322 |
|
dp | | | 51.89 307 | 51.60 305 | 52.77 327 | 68.44 314 | 32.45 346 | 62.36 313 | 54.57 343 | 44.16 311 | 49.31 332 | 67.91 333 | 28.87 313 | 56.61 344 | 33.89 322 | 54.89 332 | 69.24 340 |
|
JIA-IIPM | | | 51.56 308 | 47.68 318 | 63.21 278 | 64.61 334 | 50.73 191 | 47.71 349 | 58.77 329 | 42.90 321 | 48.46 334 | 51.72 353 | 24.97 336 | 70.24 297 | 36.06 315 | 53.89 336 | 68.64 341 |
|
ADS-MVSNet2 | | | 51.33 309 | 48.76 314 | 59.07 300 | 66.02 329 | 44.60 266 | 50.90 344 | 59.76 326 | 36.90 341 | 50.74 326 | 66.18 340 | 26.38 328 | 63.11 322 | 27.17 348 | 54.76 333 | 69.50 337 |
|
YYNet1 | | | 50.73 310 | 48.96 311 | 56.03 314 | 61.10 348 | 41.78 289 | 51.94 342 | 56.44 337 | 40.94 333 | 44.84 343 | 67.80 335 | 30.08 304 | 55.08 351 | 36.77 306 | 50.71 342 | 71.22 328 |
|
MDA-MVSNet_test_wron | | | 50.71 311 | 48.95 312 | 56.00 315 | 61.17 347 | 41.84 287 | 51.90 343 | 56.45 336 | 40.96 332 | 44.79 344 | 67.84 334 | 30.04 305 | 55.07 352 | 36.71 308 | 50.69 343 | 71.11 331 |
|
UnsupCasMVSNet_bld | | | 50.07 312 | 48.87 313 | 53.66 322 | 60.97 350 | 33.67 342 | 57.62 331 | 64.56 306 | 39.47 339 | 47.38 336 | 64.02 345 | 27.47 321 | 59.32 334 | 34.69 320 | 43.68 351 | 67.98 342 |
|
Patchmatch-test | | | 49.08 313 | 48.28 315 | 51.50 331 | 64.40 335 | 30.85 351 | 45.68 351 | 48.46 354 | 35.60 344 | 46.10 342 | 72.10 311 | 34.47 265 | 46.37 357 | 27.08 350 | 60.65 316 | 77.27 269 |
|
ADS-MVSNet | | | 48.48 314 | 47.77 316 | 50.63 332 | 66.02 329 | 29.92 352 | 50.90 344 | 50.87 350 | 36.90 341 | 50.74 326 | 66.18 340 | 26.38 328 | 52.47 354 | 27.17 348 | 54.76 333 | 69.50 337 |
|
CHOSEN 280x420 | | | 47.83 315 | 46.36 319 | 52.24 330 | 67.37 319 | 49.78 206 | 38.91 357 | 43.11 359 | 35.00 345 | 43.27 348 | 63.30 346 | 28.95 311 | 49.19 356 | 36.53 311 | 60.80 315 | 57.76 350 |
|
new-patchmatchnet | | | 47.56 316 | 47.73 317 | 47.06 335 | 58.81 354 | 9.37 368 | 48.78 348 | 59.21 327 | 43.28 317 | 44.22 346 | 68.66 332 | 25.67 333 | 57.20 342 | 31.57 336 | 49.35 345 | 74.62 300 |
|
PVSNet_0 | | 43.31 20 | 47.46 317 | 45.64 320 | 52.92 326 | 67.60 318 | 44.65 265 | 54.06 340 | 54.64 342 | 41.59 328 | 46.15 341 | 58.75 349 | 30.99 297 | 58.66 336 | 32.18 327 | 24.81 358 | 55.46 352 |
|
MVS-HIRNet | | | 45.52 318 | 44.48 321 | 48.65 334 | 68.49 313 | 34.05 340 | 59.41 326 | 44.50 358 | 27.03 353 | 37.96 354 | 50.47 356 | 26.16 331 | 64.10 319 | 26.74 351 | 59.52 318 | 47.82 354 |
|
pmmvs3 | | | 44.92 319 | 41.95 323 | 53.86 321 | 52.58 358 | 43.55 275 | 62.11 315 | 46.90 357 | 26.05 355 | 40.63 351 | 60.19 348 | 11.08 360 | 57.91 339 | 31.83 333 | 46.15 348 | 60.11 347 |
|
LF4IMVS | | | 42.95 320 | 42.26 322 | 45.04 337 | 48.30 360 | 32.50 345 | 54.80 338 | 48.49 353 | 28.03 352 | 40.51 352 | 70.16 325 | 9.24 362 | 43.89 359 | 31.63 334 | 49.18 346 | 58.72 348 |
|
FPMVS | | | 42.18 321 | 41.11 324 | 45.39 336 | 58.03 355 | 41.01 296 | 49.50 346 | 53.81 347 | 30.07 350 | 33.71 355 | 64.03 343 | 11.69 356 | 52.08 355 | 14.01 360 | 55.11 331 | 43.09 356 |
|
ANet_high | | | 41.38 322 | 37.47 327 | 53.11 325 | 39.73 365 | 24.45 361 | 56.94 332 | 69.69 271 | 47.65 279 | 26.04 358 | 52.32 352 | 12.44 355 | 62.38 325 | 21.80 355 | 10.61 365 | 72.49 317 |
|
LCM-MVSNet | | | 40.30 323 | 35.88 328 | 53.57 323 | 42.24 362 | 29.15 354 | 45.21 353 | 60.53 325 | 22.23 359 | 28.02 357 | 50.98 355 | 3.72 369 | 61.78 327 | 31.22 339 | 38.76 356 | 69.78 336 |
|
N_pmnet | | | 39.35 324 | 40.28 325 | 36.54 341 | 63.76 337 | 1.62 372 | 49.37 347 | 0.76 372 | 34.62 346 | 43.61 347 | 66.38 339 | 26.25 330 | 42.57 360 | 26.02 353 | 51.77 339 | 65.44 344 |
|
DSMNet-mixed | | | 39.30 325 | 38.72 326 | 41.03 340 | 51.22 359 | 19.66 364 | 45.53 352 | 31.35 365 | 15.83 362 | 39.80 353 | 67.42 337 | 22.19 343 | 45.13 358 | 22.43 354 | 52.69 338 | 58.31 349 |
|
PMVS |  | 28.69 22 | 36.22 326 | 33.29 330 | 45.02 338 | 36.82 367 | 35.98 333 | 54.68 339 | 48.74 352 | 26.31 354 | 21.02 359 | 51.61 354 | 2.88 371 | 60.10 332 | 9.99 364 | 47.58 347 | 38.99 359 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 34.77 327 | 31.91 331 | 43.33 339 | 62.05 344 | 37.87 315 | 20.39 360 | 67.03 291 | 23.23 357 | 18.41 361 | 25.84 361 | 4.24 367 | 62.73 323 | 14.71 359 | 51.32 341 | 29.38 360 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 34.13 328 | 34.29 329 | 33.64 342 | 52.63 357 | 18.23 366 | 44.43 354 | 33.90 364 | 22.81 358 | 30.89 356 | 53.18 351 | 10.48 361 | 35.72 364 | 20.77 356 | 39.51 354 | 46.98 355 |
|
PMMVS2 | | | 27.40 329 | 25.91 332 | 31.87 344 | 39.46 366 | 6.57 369 | 31.17 358 | 28.52 366 | 23.96 356 | 20.45 360 | 48.94 357 | 4.20 368 | 37.94 363 | 16.51 357 | 19.97 360 | 51.09 353 |
|
E-PMN | | | 23.77 330 | 22.73 334 | 26.90 345 | 42.02 363 | 20.67 363 | 42.66 355 | 35.70 362 | 17.43 360 | 10.28 366 | 25.05 362 | 6.42 365 | 42.39 361 | 10.28 363 | 14.71 362 | 17.63 361 |
|
EMVS | | | 22.97 331 | 21.84 335 | 26.36 346 | 40.20 364 | 19.53 365 | 41.95 356 | 34.64 363 | 17.09 361 | 9.73 367 | 22.83 363 | 7.29 364 | 42.22 362 | 9.18 365 | 13.66 363 | 17.32 362 |
|
MVE |  | 17.77 23 | 21.41 332 | 17.77 337 | 32.34 343 | 34.34 368 | 25.44 359 | 16.11 361 | 24.11 367 | 11.19 363 | 13.22 363 | 31.92 359 | 1.58 372 | 30.95 365 | 10.47 362 | 17.03 361 | 40.62 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.68 333 | 18.10 336 | 24.41 347 | 13.68 370 | 3.11 371 | 12.06 363 | 42.37 360 | 2.00 366 | 11.97 364 | 36.38 358 | 5.77 366 | 29.35 366 | 15.06 358 | 23.65 359 | 40.76 357 |
|
cdsmvs_eth3d_5k | | | 17.50 334 | 23.34 333 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 78.63 167 | 0.00 370 | 0.00 371 | 82.18 176 | 49.25 110 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
wuyk23d | | | 13.32 335 | 12.52 338 | 15.71 348 | 47.54 361 | 26.27 357 | 31.06 359 | 1.98 371 | 4.93 365 | 5.18 368 | 1.94 368 | 0.45 373 | 18.54 367 | 6.81 367 | 12.83 364 | 2.33 365 |
|
tmp_tt | | | 9.43 336 | 11.14 339 | 4.30 350 | 2.38 371 | 4.40 370 | 13.62 362 | 16.08 369 | 0.39 367 | 15.89 362 | 13.06 364 | 15.80 353 | 5.54 369 | 12.63 361 | 10.46 366 | 2.95 364 |
|
ab-mvs-re | | | 6.49 337 | 8.65 340 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 77.89 259 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
test123 | | | 4.73 338 | 6.30 341 | 0.02 351 | 0.01 372 | 0.01 373 | 56.36 334 | 0.00 373 | 0.01 368 | 0.04 369 | 0.21 370 | 0.01 374 | 0.00 370 | 0.03 369 | 0.00 368 | 0.04 366 |
|
testmvs | | | 4.52 339 | 6.03 342 | 0.01 352 | 0.01 372 | 0.00 374 | 53.86 341 | 0.00 373 | 0.01 368 | 0.04 369 | 0.27 369 | 0.00 375 | 0.00 370 | 0.04 368 | 0.00 368 | 0.03 367 |
|
pcd_1.5k_mvsjas | | | 3.92 340 | 5.23 343 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 47.05 141 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 374 | 0.00 364 | 0.00 373 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 375 | 0.00 370 | 0.00 370 | 0.00 368 | 0.00 368 |
|
PC_three_1452 | | | | | | | | | | 55.09 200 | 84.46 4 | 89.84 47 | 66.68 4 | 89.41 15 | 74.24 35 | 91.38 2 | 88.42 7 |
|
No_MVS | | | | | 79.95 3 | 87.24 13 | 61.04 36 | | 85.62 27 | | | | | 90.96 1 | 79.31 6 | 90.65 7 | 87.85 24 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 86.64 20 | 60.38 48 | | 82.70 88 | 57.95 146 | 78.10 25 | 90.06 38 | 56.12 38 | 88.84 24 | 74.05 38 | 87.00 53 | |
|
RE-MVS-def | | | | 73.71 71 | | 83.49 70 | 59.87 55 | 84.29 35 | 81.36 112 | 58.07 143 | 73.14 73 | 90.07 36 | 43.06 184 | | 68.20 76 | 81.76 95 | 84.03 150 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 65 | | 85.53 28 | 53.93 217 | 84.64 3 | | | | 79.07 7 | 90.87 4 | 88.37 8 |
|
OPU-MVS | | | | | 79.83 5 | 87.54 10 | 60.93 39 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 9 | 73.16 47 | 91.15 3 | 88.23 11 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 33 | 84.26 5 | 91.84 6 | 65.19 5 | 90.83 3 | 78.63 13 | 90.70 6 | 87.65 32 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 73 | | 86.78 12 | 64.20 32 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 5 | | | |
|
9.14 | | | | 78.75 15 | | 83.10 74 | | 84.15 41 | 88.26 2 | 59.90 110 | 78.57 24 | 90.36 26 | 57.51 29 | 86.86 66 | 77.39 16 | 89.52 23 | |
|
save fliter | | | | | | 86.17 33 | 61.30 31 | 83.98 46 | 79.66 148 | 59.00 126 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 7 | 92.00 3 | 64.69 9 | 90.75 6 | 79.48 4 | 90.63 8 | 88.09 16 |
|
test_0728_SECOND | | | | | 79.19 13 | 87.82 3 | 59.11 67 | 87.85 3 | 87.15 6 | | | | | 90.84 2 | 78.66 11 | 90.61 9 | 87.62 34 |
|
test0726 | | | | | | 87.75 7 | 59.07 68 | 87.86 2 | 86.83 10 | 64.26 30 | 84.19 6 | 91.92 5 | 64.82 7 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 260 |
|
test_part2 | | | | | | 87.58 9 | 60.47 47 | | | | 83.42 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 261 | | | | 78.05 260 |
|
sam_mvs | | | | | | | | | | | | | 33.43 275 | | | | |
|
ambc | | | | | 65.13 267 | 63.72 338 | 37.07 322 | 47.66 350 | 78.78 163 | | 54.37 307 | 71.42 315 | 11.24 359 | 80.94 203 | 45.64 249 | 53.85 337 | 77.38 267 |
|
MTGPA |  | | | | | | | | 80.97 128 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 282 | | | | 3.64 366 | 32.39 291 | 69.49 299 | 44.17 260 | | |
|
test_post | | | | | | | | | | | | 3.55 367 | 33.90 270 | 66.52 312 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 343 | 34.50 263 | 74.27 279 | | | |
|
GG-mvs-BLEND | | | | | 62.34 284 | 71.36 282 | 37.04 323 | 69.20 280 | 57.33 335 | | 54.73 302 | 65.48 342 | 30.37 300 | 77.82 252 | 34.82 319 | 74.93 170 | 72.17 324 |
|
MTMP | | | | | | | | 86.03 17 | 17.08 368 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 281 | 41.72 292 | | | 48.85 266 | | 73.31 306 | | 82.48 175 | 48.90 225 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 29 | 88.31 35 | 83.81 159 |
|
TEST9 | | | | | | 85.58 45 | 61.59 27 | 81.62 86 | 81.26 119 | 55.65 190 | 74.93 43 | 88.81 63 | 53.70 65 | 84.68 122 | | | |
|
test_8 | | | | | | 85.40 49 | 60.96 38 | 81.54 89 | 81.18 122 | 55.86 182 | 74.81 46 | 88.80 65 | 53.70 65 | 84.45 127 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 48 | 87.93 42 | 84.33 141 |
|
agg_prior | | | | | | 85.04 53 | 59.96 52 | | 81.04 125 | | 74.68 49 | | | 84.04 134 | | | |
|
TestCases | | | | | 64.39 271 | 71.44 278 | 49.03 215 | | 67.30 287 | 45.97 296 | 47.16 337 | 79.77 230 | 17.47 349 | 67.56 307 | 33.65 323 | 59.16 320 | 76.57 278 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 81 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 83 | | 60.37 98 | 75.01 41 | 89.06 57 | 56.22 36 | | 72.19 51 | 88.96 26 | |
|
test_prior | | | | | 76.69 60 | 84.20 65 | 57.27 97 | | 84.88 39 | | | | | 86.43 82 | | | 86.38 66 |
|
旧先验2 | | | | | | | | 76.08 180 | | 45.32 300 | 76.55 32 | | | 65.56 317 | 58.75 157 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 178 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 70.76 193 | 85.66 42 | 61.13 35 | | 66.43 295 | 44.68 304 | 70.29 103 | 86.64 88 | 41.29 207 | 75.23 274 | 49.72 218 | 81.75 97 | 75.93 283 |
|
旧先验1 | | | | | | 83.04 76 | 53.15 156 | | 67.52 286 | | | 87.85 72 | 44.08 175 | | | 80.76 102 | 78.03 263 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 115 | 74.30 238 | 48.40 271 | | | | 80.78 208 | 53.62 190 | | 79.03 252 |
|
原ACMM2 | | | | | | | | 79.02 123 | | | | | | | | | |
|
原ACMM1 | | | | | 74.69 97 | 85.39 50 | 59.40 60 | | 83.42 70 | 51.47 241 | 70.27 105 | 86.61 90 | 48.61 119 | 86.51 80 | 53.85 189 | 87.96 41 | 78.16 258 |
|
test222 | | | | | | 83.14 73 | 58.68 77 | 72.57 239 | 63.45 311 | 41.78 325 | 67.56 158 | 86.12 101 | 37.13 245 | | | 78.73 137 | 74.98 294 |
|
testdata2 | | | | | | | | | | | | | | 72.18 288 | 46.95 239 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 56 | | | | |
|
testdata | | | | | 64.66 269 | 81.52 94 | 52.93 159 | | 65.29 301 | 46.09 294 | 73.88 63 | 87.46 75 | 38.08 235 | 66.26 314 | 53.31 195 | 78.48 140 | 74.78 298 |
|
testdata1 | | | | | | | | 72.65 236 | | 60.50 93 | | | | | | | |
|
test12 | | | | | 77.76 44 | 84.52 62 | 58.41 81 | | 83.36 73 | | 72.93 79 | | 54.61 53 | 88.05 38 | | 88.12 38 | 86.81 58 |
|
plane_prior7 | | | | | | 81.41 97 | 55.96 121 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 104 | 56.24 116 | | | | | | 45.26 165 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 53 | | | | | 87.21 55 | 68.16 78 | 80.58 105 | 84.65 134 |
|
plane_prior4 | | | | | | | | | | | | 86.10 102 | | | | | |
|
plane_prior3 | | | | | | | 56.09 118 | | | 63.92 37 | 69.27 125 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 26 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 102 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 112 | 83.58 54 | | 63.19 49 | | | | | | 80.48 108 | |
|
n2 | | | | | | | | | 0.00 373 | | | | | | | | |
|
nn | | | | | | | | | 0.00 373 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 356 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 209 | 71.42 280 | 47.80 231 | | 50.90 349 | | 50.39 330 | 75.56 289 | 27.43 323 | 81.33 193 | 45.91 246 | 34.10 357 | 80.59 229 |
|
LGP-MVS_train | | | | | 75.76 74 | 80.22 118 | 57.51 95 | | 83.40 71 | 61.32 81 | 66.67 170 | 87.33 77 | 39.15 223 | 86.59 75 | 67.70 83 | 77.30 151 | 83.19 184 |
|
test11 | | | | | | | | | 83.47 68 | | | | | | | | |
|
door | | | | | | | | | 47.60 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 136 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 109 | | 82.31 76 | | 62.10 70 | 67.85 149 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 109 | | 82.31 76 | | 62.10 70 | 67.85 149 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 90 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 149 | | | 86.93 64 | | | 84.32 142 |
|
HQP3-MVS | | | | | | | | | 83.90 57 | | | | | | | 80.35 111 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 159 | | | | |
|
NP-MVS | | | | | | 80.98 107 | 56.05 120 | | | | | 85.54 116 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 358 | 61.22 319 | | 40.10 336 | 51.10 323 | | 32.97 280 | | 38.49 297 | | 78.61 255 |
|
MDTV_nov1_ep13 | | | | 57.00 273 | | 72.73 259 | 38.26 313 | 65.02 304 | 64.73 305 | 44.74 303 | 55.46 291 | 72.48 309 | 32.61 289 | 70.47 293 | 37.47 302 | 67.75 266 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 176 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 207 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 122 | | | | |
|
ITE_SJBPF | | | | | 62.09 286 | 66.16 327 | 44.55 268 | | 64.32 307 | 47.36 283 | 55.31 294 | 80.34 217 | 19.27 348 | 62.68 324 | 36.29 314 | 62.39 305 | 79.04 251 |
|
DeepMVS_CX |  | | | | 12.03 349 | 17.97 369 | 10.91 367 | | 10.60 370 | 7.46 364 | 11.07 365 | 28.36 360 | 3.28 370 | 11.29 368 | 8.01 366 | 9.74 367 | 13.89 363 |
|