This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9297.05 296.93 1
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 186
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 95
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 48
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 158
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11981.53 492.15 8488.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 178
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 180
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11195.46 1287.89 49
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 125
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 75
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 130
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 105
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 167
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13172.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 210
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 110
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 132
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 86
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 124
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 151
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14274.27 5495.73 880.98 206
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 175
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 159
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15774.08 2487.16 3291.97 2184.80 276.97 20264.98 12393.61 6372.28 315
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14475.34 1979.80 11994.91 269.79 8880.25 14672.63 6694.46 3988.78 42
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10168.80 5880.92 10888.52 11372.00 6882.39 10574.80 4793.04 7081.14 200
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 142
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10464.82 12596.10 587.21 58
DVP-MVScopyleft81.15 4183.12 3675.24 10786.16 5260.78 14983.77 4480.58 13372.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 239
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 200
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 34
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8874.03 5693.57 6584.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11391.24 9787.61 53
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9276.01 4193.77 6184.81 102
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 14172.51 6893.37 6683.48 144
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23584.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PEN-MVS80.46 5082.91 3873.11 13789.83 939.02 33377.06 11782.61 9380.04 590.60 792.85 1074.93 4785.21 6063.15 14595.15 2195.09 2
PS-CasMVS80.41 5182.86 4073.07 13889.93 739.21 33077.15 11581.28 11579.74 690.87 592.73 1275.03 4684.93 6563.83 13795.19 1995.07 3
DTE-MVSNet80.35 5282.89 3972.74 15289.84 837.34 35077.16 11481.81 10580.45 490.92 492.95 874.57 5086.12 3163.65 13894.68 3594.76 6
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13377.70 3292.32 8280.62 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H80.22 5482.17 4574.39 11589.46 1542.69 30378.24 10182.24 9778.21 1389.57 1092.10 1968.05 10185.59 5066.04 11695.62 1094.88 5
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14164.71 9578.11 14088.39 11665.46 13183.14 9377.64 3391.20 9878.94 243
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18374.73 4985.79 20682.35 180
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 18174.80 4790.76 11882.40 179
CP-MVSNet79.48 5881.65 4972.98 14189.66 1339.06 33276.76 11880.46 13578.91 990.32 891.70 2968.49 9684.89 6663.40 14295.12 2295.01 4
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9692.44 7889.60 24
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9570.72 4987.54 2592.44 1568.00 10381.34 12172.84 6491.72 8691.69 11
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11351.71 23277.15 15191.42 3665.49 13087.20 779.44 1787.17 18984.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19851.98 23087.40 2791.86 2676.09 3678.53 17368.58 8790.20 12486.69 66
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20552.27 22587.37 3092.25 1768.04 10280.56 13972.28 7191.15 10090.32 21
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7490.94 10784.82 100
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 20050.51 24989.19 1190.88 4571.45 7277.78 19573.38 6090.60 12090.90 17
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 10061.89 12188.77 1693.32 557.15 21582.60 10370.08 8092.80 7389.25 28
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 20051.33 24087.19 3191.51 3373.79 5778.44 17768.27 9090.13 12886.49 68
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10963.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 184
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16980.27 11685.31 18268.56 9587.03 1267.39 10391.26 9683.50 141
DP-MVS78.44 7079.29 6475.90 9781.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8962.45 14992.40 7978.92 244
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12465.77 7675.55 18586.25 16567.42 10685.42 5270.10 7990.88 11381.81 191
test_040278.17 7279.48 6374.24 11783.50 9459.15 16372.52 17074.60 21575.34 1988.69 1791.81 2775.06 4582.37 10665.10 12188.68 15881.20 198
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16771.22 4572.40 23588.70 10760.51 17987.70 477.40 3689.13 15285.48 85
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15153.48 21686.29 3992.43 1662.39 15680.25 14667.90 9790.61 11987.77 50
ACMH63.62 1477.50 7680.11 5869.68 19779.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24467.58 9894.44 4279.44 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20477.68 14787.18 13269.98 8585.37 5368.01 9492.72 7685.08 92
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16874.88 19585.32 18165.54 12987.79 365.61 12091.14 10183.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet77.08 7977.39 8176.14 9576.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19369.87 8784.94 6469.76 8289.59 13986.60 67
MVSMamba_PlusPlus76.88 8078.21 7472.88 14880.83 13248.71 23983.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7886.15 20185.99 74
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 42073.86 5586.31 2178.84 2394.03 5684.64 105
UniMVSNet_ETH3D76.74 8279.02 6569.92 19589.27 2043.81 29074.47 15471.70 23772.33 4085.50 5393.65 477.98 2376.88 20554.60 22191.64 8889.08 32
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9260.39 13274.15 20883.30 21569.65 8982.07 11269.27 8586.75 19687.36 56
train_agg76.38 8476.55 8875.86 9885.47 6769.32 7476.42 12378.69 16854.00 20976.97 15386.74 14666.60 11881.10 12772.50 6991.56 9177.15 267
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 17084.61 8142.57 30570.98 20078.29 17768.67 6183.04 7989.26 9072.99 6180.75 13855.58 21295.47 1191.35 12
tt080576.12 8678.43 7269.20 20581.32 12841.37 31176.72 11977.64 18663.78 10382.06 9187.88 12679.78 1179.05 16364.33 12992.40 7987.17 61
SixPastTwentyTwo75.77 8776.34 8974.06 12081.69 12454.84 19276.47 12075.49 20764.10 9987.73 2192.24 1850.45 25581.30 12367.41 10191.46 9386.04 73
RPSCF75.76 8874.37 10979.93 4474.81 21977.53 1877.53 10979.30 15659.44 13978.88 12989.80 8271.26 7473.09 24657.45 19180.89 26789.17 31
v1075.69 8976.20 9174.16 11874.44 22848.69 24075.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 10170.73 7689.14 15191.05 14
testf175.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD_test275.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
Anonymous2023121175.54 9277.19 8370.59 17977.67 17645.70 27874.73 14880.19 14068.80 5882.95 8292.91 966.26 12276.76 20758.41 18692.77 7489.30 27
MVS_030475.45 9374.66 10577.83 7475.58 20961.53 13678.29 9977.18 19363.15 11469.97 26887.20 13157.54 21387.05 1074.05 5588.96 15584.89 95
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18557.68 15574.89 19478.13 29164.80 13884.26 7756.46 20185.32 21486.88 63
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23684.00 20064.56 14083.07 9651.48 24387.19 18882.56 177
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15772.87 25849.47 23472.94 16884.71 5459.49 13880.90 11088.81 10670.07 8479.71 15467.40 10288.39 16188.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS75.24 9775.01 10275.94 9682.37 11358.80 16877.32 11184.12 6959.08 14071.58 24585.96 17558.09 20485.30 5567.38 10589.16 14883.73 137
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21868.08 8177.89 10584.04 7255.15 18476.19 18083.39 20966.91 11180.11 15060.04 17290.14 12785.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IS-MVSNet75.10 9975.42 10074.15 11979.23 15048.05 24979.43 8678.04 18170.09 5479.17 12688.02 12553.04 24083.60 8358.05 18893.76 6290.79 18
v875.07 10075.64 9773.35 13173.42 24347.46 26075.20 13881.45 11160.05 13485.64 4889.26 9058.08 20681.80 11669.71 8487.97 16990.79 18
APD_test175.04 10175.38 10174.02 12169.89 29370.15 6676.46 12179.71 14765.50 7982.99 8188.60 11266.94 11072.35 25759.77 17588.54 15979.56 233
UniMVSNet (Re)75.00 10275.48 9973.56 12983.14 9947.92 25170.41 20981.04 12363.67 10479.54 12186.37 16162.83 15081.82 11557.10 19595.25 1590.94 16
PHI-MVS74.92 10374.36 11076.61 8676.40 19662.32 12980.38 7583.15 8254.16 20673.23 22580.75 24762.19 15983.86 8068.02 9390.92 11083.65 138
DU-MVS74.91 10475.57 9872.93 14583.50 9445.79 27569.47 21980.14 14265.22 8681.74 9787.08 13461.82 16281.07 12956.21 20394.98 2491.93 9
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15583.04 10445.79 27569.26 22378.81 16366.66 7181.74 9786.88 14163.26 14681.07 12956.21 20394.98 2491.05 14
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26580.80 24666.74 11781.96 11361.74 15289.40 14685.69 82
nrg03074.87 10775.99 9471.52 17174.90 21749.88 23374.10 16082.58 9454.55 19683.50 7789.21 9271.51 7075.74 21561.24 15692.34 8188.94 37
Vis-MVSNetpermissive74.85 10874.56 10675.72 9981.63 12564.64 11376.35 12579.06 15962.85 11573.33 22388.41 11562.54 15479.59 15763.94 13682.92 24582.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MSLP-MVS++74.48 10975.78 9570.59 17984.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 23163.12 14777.64 19762.95 14688.14 16471.73 320
AdaColmapbinary74.22 11074.56 10673.20 13481.95 12060.97 14579.43 8680.90 12565.57 7872.54 23381.76 23570.98 7885.26 5747.88 28090.00 12973.37 301
CSCG74.12 11174.39 10873.33 13279.35 14761.66 13577.45 11081.98 10262.47 11979.06 12880.19 25761.83 16178.79 16959.83 17487.35 17979.54 236
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10869.79 29766.25 9775.90 13379.90 14546.03 28976.48 17485.02 18567.96 10473.97 23974.47 5287.22 18683.90 131
PAPM_NR73.91 11274.16 11373.16 13581.90 12153.50 20381.28 6681.40 11266.17 7473.30 22483.31 21459.96 18483.10 9558.45 18581.66 26282.87 165
EPP-MVSNet73.86 11473.38 12775.31 10578.19 16653.35 20580.45 7377.32 19065.11 8976.47 17586.80 14249.47 26083.77 8153.89 23092.72 7688.81 41
K. test v373.67 11573.61 12473.87 12379.78 14155.62 18974.69 15062.04 31766.16 7584.76 6393.23 649.47 26080.97 13365.66 11986.67 19785.02 94
NR-MVSNet73.62 11674.05 11572.33 16283.50 9443.71 29165.65 27777.32 19064.32 9775.59 18487.08 13462.45 15581.34 12154.90 21695.63 991.93 9
balanced_conf0373.59 11774.06 11472.17 16577.48 17947.72 25681.43 6582.20 9854.38 19779.19 12587.68 12854.41 23383.57 8463.98 13385.78 20785.22 87
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15582.96 8557.75 15470.35 26181.98 23164.34 14284.41 7649.69 25889.95 13180.89 208
CNLPA73.44 11973.03 13874.66 10978.27 16575.29 3075.99 13278.49 17265.39 8275.67 18383.22 22061.23 17066.77 31353.70 23285.33 21381.92 190
MCST-MVS73.42 12073.34 13073.63 12781.28 12959.17 16274.80 14683.13 8345.50 29372.84 22883.78 20565.15 13580.99 13164.54 12689.09 15480.73 214
v119273.40 12173.42 12573.32 13374.65 22548.67 24172.21 17481.73 10652.76 22181.85 9384.56 19157.12 21682.24 11068.58 8787.33 18189.06 33
114514_t73.40 12173.33 13173.64 12684.15 8957.11 17678.20 10280.02 14343.76 31072.55 23286.07 17364.00 14383.35 9160.14 17091.03 10680.45 221
FC-MVSNet-test73.32 12374.78 10468.93 21579.21 15136.57 35271.82 18779.54 15357.63 15982.57 8890.38 6759.38 19178.99 16557.91 18994.56 3791.23 13
v114473.29 12473.39 12673.01 13974.12 23448.11 24772.01 17981.08 12253.83 21381.77 9584.68 18758.07 20781.91 11468.10 9186.86 19288.99 36
test_fmvsmconf0.1_n73.26 12572.82 14274.56 11069.10 30366.18 9974.65 15279.34 15545.58 29275.54 18683.91 20167.19 10873.88 24273.26 6186.86 19283.63 139
GeoE73.14 12673.77 12171.26 17478.09 16852.64 20874.32 15579.56 15256.32 17276.35 17883.36 21370.76 7977.96 19163.32 14381.84 25683.18 156
baseline73.10 12773.96 11770.51 18171.46 26946.39 27272.08 17684.40 6255.95 17676.62 16686.46 15967.20 10778.03 19064.22 13087.27 18587.11 62
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20771.12 25454.28 20077.89 14183.41 20849.04 26480.98 13263.62 13990.77 11778.58 247
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26760.73 13074.39 20578.44 28557.72 21182.78 10060.16 16889.60 13879.11 241
v124073.06 13073.14 13372.84 14974.74 22147.27 26471.88 18681.11 11951.80 23182.28 9084.21 19756.22 22682.34 10768.82 8687.17 18988.91 38
casdiffmvspermissive73.06 13073.84 11870.72 17771.32 27046.71 26870.93 20184.26 6555.62 17977.46 14987.10 13367.09 10977.81 19363.95 13486.83 19487.64 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS73.01 13273.12 13572.66 15473.79 23949.90 22971.63 18978.44 17358.22 14980.51 11386.63 15358.15 20279.62 15562.51 14788.20 16388.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet73.00 13371.84 15576.48 8975.82 20661.28 13974.81 14480.37 13863.17 11262.43 33880.50 25161.10 17485.16 6364.00 13284.34 23183.01 162
v14419272.99 13473.06 13772.77 15074.58 22647.48 25971.90 18580.44 13651.57 23481.46 10184.11 19958.04 20882.12 11167.98 9587.47 17688.70 43
MVS_111021_HR72.98 13572.97 14072.99 14080.82 13365.47 10468.81 23072.77 22957.67 15675.76 18282.38 22771.01 7777.17 20061.38 15586.15 20176.32 275
v192192072.96 13672.98 13972.89 14774.67 22247.58 25871.92 18480.69 12851.70 23381.69 9983.89 20256.58 22282.25 10968.34 8987.36 17888.82 40
test_fmvsmconf_n72.91 13772.40 14974.46 11168.62 30766.12 10074.21 15978.80 16545.64 29174.62 20183.25 21766.80 11673.86 24372.97 6386.66 19883.39 148
CLD-MVS72.88 13872.36 15074.43 11477.03 18254.30 19668.77 23383.43 7952.12 22776.79 16274.44 32269.54 9083.91 7955.88 20693.25 6985.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10374.77 22059.02 16672.24 17371.56 24063.92 10078.59 13271.59 34466.22 12378.60 17267.58 9880.32 27589.00 35
ETV-MVS72.72 14072.16 15374.38 11676.90 18955.95 18273.34 16584.67 5562.04 12072.19 23970.81 34965.90 12685.24 5958.64 18384.96 22181.95 189
PCF-MVS63.80 1372.70 14171.69 15775.72 9978.10 16760.01 15673.04 16781.50 10945.34 29879.66 12084.35 19665.15 13582.65 10248.70 26989.38 14784.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 14271.68 15875.47 10474.67 22258.64 17172.02 17871.50 24163.53 10678.58 13471.39 34865.98 12478.53 17367.30 10880.18 27889.23 29
Anonymous2024052972.56 14373.79 12068.86 21776.89 19045.21 28168.80 23277.25 19267.16 6676.89 15790.44 5965.95 12574.19 23750.75 25090.00 12987.18 60
FIs72.56 14373.80 11968.84 21878.74 16237.74 34671.02 19979.83 14656.12 17380.88 11189.45 8758.18 20078.28 18456.63 19793.36 6790.51 20
v2v48272.55 14572.58 14572.43 15972.92 25746.72 26771.41 19279.13 15855.27 18281.17 10585.25 18355.41 22881.13 12667.25 10985.46 20989.43 26
test_fmvsmvis_n_192072.36 14672.49 14671.96 16671.29 27164.06 11772.79 16981.82 10440.23 34181.25 10481.04 24370.62 8068.69 28969.74 8383.60 24183.14 157
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22571.45 24354.28 20077.89 14178.26 28749.04 26479.23 16063.62 13989.13 15280.92 207
sasdasda72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
canonicalmvs72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
Effi-MVS+72.10 15072.28 15171.58 16974.21 23250.33 22274.72 14982.73 9062.62 11670.77 25776.83 30269.96 8680.97 13360.20 16678.43 29983.45 147
MVS_111021_LR72.10 15071.82 15672.95 14279.53 14573.90 4070.45 20866.64 28256.87 16476.81 16181.76 23568.78 9371.76 26561.81 15083.74 23773.18 303
pmmvs671.82 15273.66 12266.31 24875.94 20542.01 30766.99 25972.53 23263.45 10876.43 17692.78 1172.95 6269.69 28251.41 24590.46 12187.22 57
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11654.57 19567.09 30580.63 24959.44 18981.74 11846.91 28784.17 23278.63 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net71.70 15473.10 13667.49 23473.23 24743.08 29972.06 17782.43 9654.58 19475.97 18182.00 22972.42 6375.22 22157.84 19087.34 18084.18 125
BP-MVS171.60 15570.06 17776.20 9474.07 23555.22 19074.29 15773.44 22257.29 16173.87 21684.65 18832.57 35483.49 8772.43 7087.94 17089.89 23
VDDNet71.60 15573.13 13467.02 24186.29 4841.11 31369.97 21366.50 28368.72 6074.74 19691.70 2959.90 18575.81 21348.58 27191.72 8684.15 127
3Dnovator65.95 1171.50 15771.22 16672.34 16173.16 24863.09 12478.37 9878.32 17557.67 15672.22 23884.61 19054.77 22978.47 17560.82 16281.07 26675.45 281
FA-MVS(test-final)71.27 15871.06 16771.92 16773.96 23652.32 21076.45 12276.12 20059.07 14374.04 21386.18 16652.18 24479.43 15959.75 17681.76 25784.03 128
WR-MVS71.20 15972.48 14767.36 23684.98 7435.70 36064.43 29268.66 27365.05 9081.49 10086.43 16057.57 21276.48 20950.36 25493.32 6889.90 22
V4271.06 16070.83 17071.72 16867.25 32347.14 26565.94 27180.35 13951.35 23983.40 7883.23 21859.25 19278.80 16865.91 11780.81 27089.23 29
FMVSNet171.06 16072.48 14766.81 24277.65 17740.68 32071.96 18173.03 22461.14 12579.45 12390.36 7060.44 18075.20 22350.20 25588.05 16684.54 112
dcpmvs_271.02 16272.65 14466.16 24976.06 20450.49 22071.97 18079.36 15450.34 25082.81 8583.63 20664.38 14167.27 30461.54 15483.71 23980.71 216
API-MVS70.97 16371.51 16369.37 20075.20 21255.94 18380.99 6776.84 19562.48 11871.24 25377.51 29761.51 16680.96 13652.04 23985.76 20871.22 326
GDP-MVS70.84 16469.24 18575.62 10176.44 19555.65 18774.62 15382.78 8949.63 25972.10 24083.79 20431.86 36282.84 9964.93 12487.01 19188.39 47
VDD-MVS70.81 16571.44 16468.91 21679.07 15746.51 26967.82 24670.83 25861.23 12474.07 21188.69 10859.86 18675.62 21651.11 24790.28 12384.61 108
EG-PatchMatch MVS70.70 16670.88 16970.16 18982.64 11258.80 16871.48 19073.64 22054.98 18576.55 17081.77 23461.10 17478.94 16654.87 21780.84 26972.74 310
Baseline_NR-MVSNet70.62 16773.19 13262.92 28076.97 18534.44 36868.84 22870.88 25760.25 13379.50 12290.53 5661.82 16269.11 28654.67 22095.27 1485.22 87
alignmvs70.54 16871.00 16869.15 20773.50 24148.04 25069.85 21679.62 14853.94 21276.54 17182.00 22959.00 19474.68 23057.32 19287.21 18784.72 103
MG-MVS70.47 16971.34 16567.85 23079.26 14940.42 32474.67 15175.15 21158.41 14868.74 28988.14 12456.08 22783.69 8259.90 17381.71 26179.43 238
RRT-MVS70.33 17070.73 17169.14 20871.93 26545.24 28075.10 13975.08 21260.85 12978.62 13187.36 13049.54 25978.64 17160.16 16877.90 30683.55 140
AUN-MVS70.22 17167.88 20977.22 8282.96 10771.61 5269.08 22671.39 24449.17 26571.70 24378.07 29237.62 33379.21 16161.81 15089.15 15080.82 210
UGNet70.20 17269.05 18873.65 12576.24 19863.64 11975.87 13472.53 23261.48 12360.93 34886.14 16952.37 24377.12 20150.67 25185.21 21580.17 227
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu70.04 17368.88 19173.53 13082.71 11063.62 12074.81 14481.95 10348.53 27067.16 30479.18 27651.42 25078.38 18054.39 22579.72 28778.60 246
Fast-Effi-MVS+-dtu70.00 17468.74 19573.77 12473.47 24264.53 11471.36 19378.14 18055.81 17868.84 28774.71 31965.36 13275.75 21452.00 24079.00 29281.03 203
DPM-MVS69.98 17569.22 18772.26 16382.69 11158.82 16770.53 20681.23 11747.79 27764.16 32280.21 25551.32 25183.12 9460.14 17084.95 22274.83 287
MVSFormer69.93 17669.03 18972.63 15674.93 21559.19 16083.98 4075.72 20552.27 22563.53 33276.74 30343.19 29680.56 13972.28 7178.67 29678.14 254
MVS_Test69.84 17770.71 17267.24 23767.49 32143.25 29869.87 21581.22 11852.69 22271.57 24886.68 14962.09 16074.51 23266.05 11578.74 29483.96 129
c3_l69.82 17869.89 17969.61 19866.24 33443.48 29468.12 24379.61 15051.43 23677.72 14580.18 25854.61 23278.15 18963.62 13987.50 17587.20 59
test_fmvsm_n_192069.63 17968.45 19873.16 13570.56 28065.86 10270.26 21078.35 17437.69 35874.29 20678.89 28161.10 17468.10 29565.87 11879.07 29185.53 84
TransMVSNet (Re)69.62 18071.63 15963.57 26976.51 19435.93 35865.75 27671.29 24861.05 12675.02 19289.90 8165.88 12770.41 27949.79 25789.48 14284.38 120
EI-MVSNet69.61 18169.01 19071.41 17373.94 23749.90 22971.31 19571.32 24658.22 14975.40 18970.44 35158.16 20175.85 21162.51 14779.81 28488.48 44
Gipumacopyleft69.55 18272.83 14159.70 30863.63 35553.97 19980.08 8275.93 20364.24 9873.49 22088.93 10457.89 21062.46 33459.75 17691.55 9262.67 382
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tttt051769.46 18367.79 21174.46 11175.34 21052.72 20775.05 14063.27 31054.69 19178.87 13084.37 19526.63 38981.15 12563.95 13487.93 17189.51 25
eth_miper_zixun_eth69.42 18468.73 19671.50 17267.99 31546.42 27067.58 24878.81 16350.72 24778.13 13980.34 25450.15 25780.34 14460.18 16784.65 22587.74 51
BH-untuned69.39 18569.46 18169.18 20677.96 17156.88 17768.47 24077.53 18756.77 16677.79 14479.63 26660.30 18280.20 14946.04 29580.65 27270.47 333
v14869.38 18669.39 18269.36 20169.14 30244.56 28568.83 22972.70 23054.79 18978.59 13284.12 19854.69 23076.74 20859.40 17982.20 25086.79 64
PAPR69.20 18768.66 19770.82 17675.15 21447.77 25475.31 13781.11 11949.62 26166.33 30779.27 27361.53 16582.96 9748.12 27781.50 26481.74 194
QAPM69.18 18869.26 18468.94 21471.61 26752.58 20980.37 7678.79 16649.63 25973.51 21985.14 18453.66 23779.12 16255.11 21475.54 32275.11 286
LCM-MVSNet-Re69.10 18971.57 16261.70 28970.37 28534.30 37061.45 31279.62 14856.81 16589.59 988.16 12368.44 9772.94 24742.30 31587.33 18177.85 260
EPNet69.10 18967.32 21674.46 11168.33 31161.27 14077.56 10763.57 30760.95 12756.62 37282.75 22151.53 24981.24 12454.36 22690.20 12480.88 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsmamba68.87 19167.30 21873.57 12876.58 19353.70 20284.43 3774.25 21745.38 29776.63 16584.55 19235.85 34085.27 5649.54 26178.49 29881.75 193
DELS-MVS68.83 19268.31 19970.38 18270.55 28248.31 24363.78 29882.13 9954.00 20968.96 28075.17 31558.95 19580.06 15158.55 18482.74 24782.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 19368.30 20070.35 18474.66 22448.61 24266.06 27078.32 17550.62 24871.48 25175.54 31068.75 9479.59 15750.55 25378.73 29582.86 166
mmtdpeth68.76 19470.55 17463.40 27367.06 32956.26 18168.73 23571.22 25255.47 18170.09 26688.64 11165.29 13456.89 35758.94 18289.50 14177.04 272
OpenMVScopyleft62.51 1568.76 19468.75 19468.78 21970.56 28053.91 20078.29 9977.35 18948.85 26870.22 26383.52 20752.65 24276.93 20355.31 21381.99 25275.49 280
VPA-MVSNet68.71 19670.37 17563.72 26776.13 20038.06 34464.10 29471.48 24256.60 17174.10 21088.31 11864.78 13969.72 28147.69 28290.15 12683.37 150
BH-RMVSNet68.69 19768.20 20470.14 19076.40 19653.90 20164.62 28973.48 22158.01 15173.91 21581.78 23359.09 19378.22 18548.59 27077.96 30578.31 250
EIA-MVS68.59 19867.16 21972.90 14675.18 21355.64 18869.39 22081.29 11452.44 22464.53 31870.69 35060.33 18182.30 10854.27 22776.31 31680.75 213
pm-mvs168.40 19969.85 18064.04 26573.10 25239.94 32764.61 29070.50 26055.52 18073.97 21489.33 8863.91 14468.38 29249.68 25988.02 16783.81 133
miper_ehance_all_eth68.36 20068.16 20568.98 21265.14 34643.34 29667.07 25878.92 16249.11 26676.21 17977.72 29453.48 23877.92 19261.16 15884.59 22785.68 83
GBi-Net68.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
test168.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
FE-MVS68.29 20366.96 22372.26 16374.16 23354.24 19777.55 10873.42 22357.65 15872.66 23084.91 18632.02 36181.49 12048.43 27381.85 25581.04 202
DIV-MVS_self_test68.27 20468.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.43 22548.74 26875.38 21760.94 16089.81 13485.81 77
cl____68.26 20568.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.42 22648.74 26875.38 21760.92 16189.81 13485.80 81
TinyColmap67.98 20669.28 18364.08 26367.98 31646.82 26670.04 21175.26 20953.05 21877.36 15086.79 14359.39 19072.59 25445.64 29888.01 16872.83 308
xiu_mvs_v1_base_debu67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base_debi67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
MAR-MVS67.72 21066.16 22972.40 16074.45 22764.99 11174.87 14277.50 18848.67 26965.78 31168.58 37457.01 21977.79 19446.68 29081.92 25374.42 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IterMVS-SCA-FT67.68 21166.07 23172.49 15873.34 24558.20 17363.80 29765.55 29148.10 27276.91 15682.64 22445.20 28378.84 16761.20 15777.89 30780.44 222
LF4IMVS67.50 21267.31 21768.08 22858.86 38361.93 13171.43 19175.90 20444.67 30472.42 23480.20 25657.16 21470.44 27758.99 18186.12 20371.88 318
fmvsm_l_conf0.5_n67.48 21366.88 22569.28 20467.41 32262.04 13070.69 20569.85 26439.46 34469.59 27381.09 24258.15 20268.73 28867.51 10078.16 30477.07 271
FMVSNet267.48 21368.21 20365.29 25473.14 24938.94 33468.81 23071.21 25354.81 18676.73 16386.48 15848.63 27074.60 23147.98 27986.11 20482.35 180
MSDG67.47 21567.48 21567.46 23570.70 27654.69 19466.90 26278.17 17860.88 12870.41 26074.76 31761.22 17273.18 24547.38 28376.87 31274.49 292
diffmvspermissive67.42 21667.50 21467.20 23862.26 36145.21 28164.87 28677.04 19448.21 27171.74 24279.70 26558.40 19971.17 27164.99 12280.27 27685.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a67.37 21766.36 22770.37 18370.86 27361.17 14174.00 16157.18 33640.77 33668.83 28880.88 24563.11 14867.61 30066.94 11074.72 32982.33 183
cl2267.14 21866.51 22669.03 21163.20 35643.46 29566.88 26376.25 19949.22 26474.48 20377.88 29345.49 28277.40 19960.64 16384.59 22786.24 69
ANet_high67.08 21969.94 17858.51 31857.55 38927.09 40158.43 33876.80 19663.56 10582.40 8991.93 2359.82 18764.98 32550.10 25688.86 15783.46 146
LFMVS67.06 22067.89 20864.56 25978.02 16938.25 34170.81 20459.60 32465.18 8771.06 25586.56 15643.85 29275.22 22146.35 29289.63 13780.21 226
thisisatest053067.05 22165.16 24172.73 15373.10 25250.55 21971.26 19763.91 30550.22 25374.46 20480.75 24726.81 38880.25 14659.43 17886.50 19987.37 55
fmvsm_s_conf0.5_n_a67.00 22265.95 23470.17 18869.72 29861.16 14273.34 16556.83 33940.96 33368.36 29180.08 26062.84 14967.57 30166.90 11274.50 33381.78 192
fmvsm_l_conf0.5_n_a66.66 22365.97 23368.72 22067.09 32561.38 13870.03 21269.15 27038.59 35268.41 29080.36 25356.56 22368.32 29366.10 11477.45 30976.46 273
fmvsm_s_conf0.1_n66.60 22465.54 23569.77 19668.99 30459.15 16372.12 17556.74 34140.72 33868.25 29480.14 25961.18 17366.92 30767.34 10774.40 33483.23 155
MIMVSNet166.57 22569.23 18658.59 31781.26 13037.73 34764.06 29557.62 32957.02 16378.40 13690.75 4962.65 15158.10 35441.77 32189.58 14079.95 228
tfpnnormal66.48 22667.93 20762.16 28673.40 24436.65 35163.45 30064.99 29555.97 17572.82 22987.80 12757.06 21869.10 28748.31 27587.54 17380.72 215
KD-MVS_self_test66.38 22767.51 21362.97 27861.76 36334.39 36958.11 34175.30 20850.84 24677.12 15285.42 18056.84 22069.44 28351.07 24891.16 9985.08 92
SDMVSNet66.36 22867.85 21061.88 28873.04 25546.14 27458.54 33671.36 24551.42 23768.93 28382.72 22265.62 12862.22 33754.41 22484.67 22377.28 263
mvs5depth66.35 22967.98 20661.47 29362.43 35951.05 21569.38 22169.24 26956.74 16773.62 21789.06 10046.96 27758.63 35055.87 20788.49 16074.73 288
fmvsm_s_conf0.5_n66.34 23065.27 23869.57 19968.20 31259.14 16571.66 18856.48 34240.92 33467.78 29679.46 26861.23 17066.90 30867.39 10374.32 33782.66 174
Anonymous20240521166.02 23166.89 22463.43 27274.22 23138.14 34259.00 33166.13 28563.33 11169.76 27285.95 17651.88 24570.50 27644.23 30687.52 17481.64 195
miper_enhance_ethall65.86 23265.05 24868.28 22761.62 36542.62 30464.74 28777.97 18242.52 32073.42 22272.79 33749.66 25877.68 19658.12 18784.59 22784.54 112
RPMNet65.77 23365.08 24767.84 23166.37 33148.24 24570.93 20186.27 2054.66 19261.35 34286.77 14533.29 34885.67 4955.93 20570.17 36769.62 342
VPNet65.58 23467.56 21259.65 30979.72 14230.17 39060.27 32362.14 31354.19 20571.24 25386.63 15358.80 19667.62 29944.17 30790.87 11481.18 199
PVSNet_BlendedMVS65.38 23564.30 24968.61 22169.81 29449.36 23565.60 27978.96 16045.50 29359.98 35178.61 28351.82 24678.20 18644.30 30484.11 23378.27 251
TAMVS65.31 23663.75 25569.97 19482.23 11759.76 15866.78 26463.37 30945.20 29969.79 27179.37 27247.42 27672.17 25834.48 37085.15 21777.99 258
test_yl65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
DCV-MVSNet65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
mvs_anonymous65.08 23965.49 23663.83 26663.79 35337.60 34866.52 26769.82 26543.44 31573.46 22186.08 17258.79 19771.75 26651.90 24175.63 32182.15 185
FMVSNet365.00 24065.16 24164.52 26069.47 29937.56 34966.63 26570.38 26151.55 23574.72 19783.27 21637.89 33174.44 23347.12 28485.37 21081.57 196
ECVR-MVScopyleft64.82 24165.22 23963.60 26878.80 16031.14 38566.97 26056.47 34354.23 20269.94 26988.68 10937.23 33474.81 22945.28 30389.41 14484.86 98
BH-w/o64.81 24264.29 25066.36 24776.08 20354.71 19365.61 27875.23 21050.10 25571.05 25671.86 34354.33 23479.02 16438.20 34476.14 31765.36 368
EGC-MVSNET64.77 24361.17 27775.60 10286.90 4374.47 3484.04 3968.62 2740.60 4221.13 42491.61 3265.32 13374.15 23864.01 13188.28 16278.17 253
test111164.62 24465.19 24062.93 27979.01 15829.91 39165.45 28054.41 35354.09 20771.47 25288.48 11437.02 33574.29 23646.83 28989.94 13284.58 111
cascas64.59 24562.77 26770.05 19275.27 21150.02 22661.79 31171.61 23842.46 32163.68 32968.89 37049.33 26280.35 14347.82 28184.05 23479.78 231
TR-MVS64.59 24563.54 25867.73 23375.75 20850.83 21863.39 30170.29 26249.33 26371.55 24974.55 32050.94 25278.46 17640.43 32975.69 32073.89 298
PM-MVS64.49 24763.61 25767.14 24076.68 19275.15 3168.49 23942.85 40251.17 24377.85 14380.51 25045.76 27966.31 31652.83 23876.35 31559.96 391
jason64.47 24862.84 26669.34 20376.91 18759.20 15967.15 25765.67 28835.29 37165.16 31576.74 30344.67 28770.68 27354.74 21979.28 29078.14 254
jason: jason.
xiu_mvs_v2_base64.43 24963.96 25365.85 25377.72 17551.32 21463.63 29972.31 23545.06 30261.70 33969.66 36262.56 15273.93 24149.06 26673.91 33972.31 314
pmmvs-eth3d64.41 25063.27 26267.82 23275.81 20760.18 15569.49 21862.05 31638.81 35174.13 20982.23 22843.76 29368.65 29042.53 31480.63 27474.63 289
CDS-MVSNet64.33 25162.66 26869.35 20280.44 13758.28 17265.26 28265.66 28944.36 30567.30 30375.54 31043.27 29571.77 26437.68 34784.44 23078.01 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ64.27 25263.73 25665.90 25277.82 17351.42 21363.33 30272.33 23445.09 30161.60 34068.04 37662.39 15673.95 24049.07 26573.87 34072.34 313
ab-mvs64.11 25365.13 24461.05 29871.99 26438.03 34567.59 24768.79 27249.08 26765.32 31486.26 16458.02 20966.85 31139.33 33379.79 28678.27 251
CANet_DTU64.04 25463.83 25464.66 25868.39 30842.97 30173.45 16474.50 21652.05 22954.78 38175.44 31343.99 29170.42 27853.49 23478.41 30080.59 219
VNet64.01 25565.15 24360.57 30373.28 24635.61 36157.60 34367.08 28054.61 19366.76 30683.37 21156.28 22566.87 30942.19 31785.20 21679.23 240
sd_testset63.55 25665.38 23758.07 32073.04 25538.83 33657.41 34465.44 29251.42 23768.93 28382.72 22263.76 14558.11 35341.05 32584.67 22377.28 263
Anonymous2024052163.55 25666.07 23155.99 33166.18 33644.04 28968.77 23368.80 27146.99 28272.57 23185.84 17739.87 31750.22 37253.40 23792.23 8373.71 300
lupinMVS63.36 25861.49 27568.97 21374.93 21559.19 16065.80 27564.52 30134.68 37763.53 33274.25 32543.19 29670.62 27453.88 23178.67 29677.10 268
ET-MVSNet_ETH3D63.32 25960.69 28371.20 17570.15 29155.66 18665.02 28564.32 30243.28 31968.99 27972.05 34225.46 39578.19 18854.16 22982.80 24679.74 232
MVSTER63.29 26061.60 27468.36 22359.77 37846.21 27360.62 32071.32 24641.83 32475.40 18979.12 27730.25 37775.85 21156.30 20279.81 28483.03 161
OpenMVS_ROBcopyleft54.93 1763.23 26163.28 26163.07 27669.81 29445.34 27968.52 23867.14 27943.74 31170.61 25979.22 27447.90 27472.66 25048.75 26873.84 34171.21 327
IterMVS63.12 26262.48 26965.02 25766.34 33352.86 20663.81 29662.25 31246.57 28571.51 25080.40 25244.60 28866.82 31251.38 24675.47 32375.38 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 26360.47 28470.61 17883.04 10454.10 19859.93 32672.24 23633.67 38269.00 27875.63 30938.69 32576.93 20336.60 35775.45 32480.81 212
GA-MVS62.91 26461.66 27166.66 24667.09 32544.49 28661.18 31669.36 26851.33 24069.33 27674.47 32136.83 33674.94 22650.60 25274.72 32980.57 220
PVSNet_Blended62.90 26561.64 27266.69 24569.81 29449.36 23561.23 31578.96 16042.04 32259.98 35168.86 37151.82 24678.20 18644.30 30477.77 30872.52 311
USDC62.80 26663.10 26461.89 28765.19 34343.30 29767.42 25174.20 21835.80 37072.25 23784.48 19445.67 28071.95 26337.95 34684.97 21870.42 335
MonoMVSNet62.75 26763.42 25960.73 30265.60 34040.77 31872.49 17170.56 25952.49 22375.07 19179.42 27039.52 32169.97 28046.59 29169.06 37371.44 322
Vis-MVSNet (Re-imp)62.74 26863.21 26361.34 29672.19 26231.56 38267.31 25653.87 35553.60 21569.88 27083.37 21140.52 31370.98 27241.40 32386.78 19581.48 197
patch_mono-262.73 26964.08 25258.68 31670.36 28655.87 18460.84 31864.11 30441.23 32964.04 32378.22 28860.00 18348.80 37654.17 22883.71 23971.37 323
D2MVS62.58 27061.05 27967.20 23863.85 35247.92 25156.29 35069.58 26639.32 34570.07 26778.19 28934.93 34372.68 24953.44 23583.74 23781.00 205
CL-MVSNet_self_test62.44 27163.40 26059.55 31072.34 26132.38 37756.39 34964.84 29751.21 24267.46 30181.01 24450.75 25363.51 33238.47 34288.12 16582.75 169
MDA-MVSNet-bldmvs62.34 27261.73 27064.16 26161.64 36449.90 22948.11 38757.24 33553.31 21780.95 10779.39 27149.00 26661.55 33945.92 29680.05 27981.03 203
miper_lstm_enhance61.97 27361.63 27362.98 27760.04 37245.74 27747.53 38970.95 25544.04 30673.06 22678.84 28239.72 31860.33 34255.82 20884.64 22682.88 164
wuyk23d61.97 27366.25 22849.12 36758.19 38860.77 15166.32 26852.97 36355.93 17790.62 686.91 14073.07 6035.98 41420.63 41791.63 8950.62 403
thres600view761.82 27561.38 27663.12 27571.81 26634.93 36564.64 28856.99 33754.78 19070.33 26279.74 26432.07 35972.42 25638.61 34083.46 24282.02 187
SSC-MVS61.79 27666.08 23048.89 36976.91 18710.00 42653.56 36947.37 38768.20 6376.56 16989.21 9254.13 23557.59 35554.75 21874.07 33879.08 242
PAPM61.79 27660.37 28566.05 25076.09 20141.87 30869.30 22276.79 19740.64 33953.80 38679.62 26744.38 28982.92 9829.64 39173.11 34573.36 302
MVP-Stereo61.56 27859.22 29168.58 22279.28 14860.44 15369.20 22471.57 23943.58 31356.42 37378.37 28639.57 32076.46 21034.86 36960.16 39968.86 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary48.73 2061.54 27960.89 28063.52 27061.08 36751.55 21268.07 24468.00 27733.88 37965.87 30981.25 24037.91 33067.71 29749.32 26482.60 24871.31 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 28060.85 28162.38 28478.80 16027.88 39967.33 25537.42 41554.23 20267.55 30088.68 10917.87 41874.39 23446.33 29389.41 14484.86 98
thres100view90061.17 28161.09 27861.39 29472.14 26335.01 36465.42 28156.99 33755.23 18370.71 25879.90 26232.07 35972.09 25935.61 36581.73 25877.08 269
Patchmtry60.91 28263.01 26554.62 33866.10 33726.27 40767.47 25056.40 34454.05 20872.04 24186.66 15033.19 34960.17 34343.69 30887.45 17777.42 261
EU-MVSNet60.82 28360.80 28260.86 30168.37 30941.16 31272.27 17268.27 27626.96 40269.08 27775.71 30832.09 35867.44 30255.59 21178.90 29373.97 296
pmmvs460.78 28459.04 29366.00 25173.06 25457.67 17564.53 29160.22 32236.91 36465.96 30877.27 29839.66 31968.54 29138.87 33774.89 32871.80 319
thres40060.77 28559.97 28763.15 27470.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25882.02 187
MVS60.62 28659.97 28762.58 28268.13 31447.28 26368.59 23673.96 21932.19 38659.94 35368.86 37150.48 25477.64 19741.85 32075.74 31962.83 380
thisisatest051560.48 28757.86 30468.34 22467.25 32346.42 27060.58 32162.14 31340.82 33563.58 33169.12 36526.28 39178.34 18248.83 26782.13 25180.26 225
tfpn200view960.35 28859.97 28761.51 29170.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25877.08 269
ppachtmachnet_test60.26 28959.61 29062.20 28567.70 31944.33 28758.18 34060.96 32040.75 33765.80 31072.57 33841.23 30663.92 32946.87 28882.42 24978.33 249
WB-MVS60.04 29064.19 25147.59 37276.09 20110.22 42552.44 37446.74 38965.17 8874.07 21187.48 12953.48 23855.28 36149.36 26372.84 34677.28 263
Patchmatch-RL test59.95 29159.12 29262.44 28372.46 26054.61 19559.63 32747.51 38641.05 33274.58 20274.30 32431.06 37165.31 32251.61 24279.85 28367.39 355
131459.83 29258.86 29562.74 28165.71 33944.78 28468.59 23672.63 23133.54 38461.05 34667.29 38243.62 29471.26 27049.49 26267.84 38172.19 316
IB-MVS49.67 1859.69 29356.96 31067.90 22968.19 31350.30 22361.42 31365.18 29447.57 27955.83 37667.15 38323.77 40179.60 15643.56 31079.97 28073.79 299
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss59.48 29458.99 29460.96 30077.84 17242.39 30661.42 31368.45 27537.96 35659.93 35467.46 37945.11 28565.07 32440.89 32771.81 35575.41 282
FPMVS59.43 29560.07 28657.51 32377.62 17871.52 5362.33 30950.92 37157.40 16069.40 27580.00 26139.14 32361.92 33837.47 35066.36 38439.09 414
CVMVSNet59.21 29658.44 29961.51 29173.94 23747.76 25571.31 19564.56 30026.91 40460.34 35070.44 35136.24 33967.65 29853.57 23368.66 37669.12 347
CR-MVSNet58.96 29758.49 29860.36 30566.37 33148.24 24570.93 20156.40 34432.87 38561.35 34286.66 15033.19 34963.22 33348.50 27270.17 36769.62 342
reproduce_monomvs58.94 29858.14 30261.35 29559.70 37940.98 31560.24 32463.51 30845.85 29068.95 28175.31 31418.27 41665.82 31851.47 24479.97 28077.26 266
EPNet_dtu58.93 29958.52 29760.16 30767.91 31747.70 25769.97 21358.02 32849.73 25847.28 40573.02 33638.14 32762.34 33536.57 35885.99 20570.43 334
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res58.78 30058.69 29659.04 31579.41 14638.13 34357.62 34266.98 28134.74 37559.62 35777.56 29642.92 29863.65 33138.66 33970.73 36375.35 284
PatchMatch-RL58.68 30157.72 30561.57 29076.21 19973.59 4361.83 31049.00 38147.30 28161.08 34468.97 36750.16 25659.01 34736.06 36468.84 37552.10 401
SCA58.57 30258.04 30360.17 30670.17 28941.07 31465.19 28353.38 36143.34 31861.00 34773.48 33145.20 28369.38 28440.34 33070.31 36670.05 336
testing358.28 30358.38 30058.00 32177.45 18026.12 40860.78 31943.00 40156.02 17470.18 26475.76 30713.27 42667.24 30548.02 27880.89 26780.65 217
CHOSEN 1792x268858.09 30456.30 31563.45 27179.95 14050.93 21754.07 36765.59 29028.56 39861.53 34174.33 32341.09 30966.52 31533.91 37367.69 38272.92 306
HY-MVS49.31 1957.96 30557.59 30659.10 31466.85 33036.17 35565.13 28465.39 29339.24 34854.69 38378.14 29044.28 29067.18 30633.75 37570.79 36273.95 297
baseline157.82 30658.36 30156.19 33069.17 30130.76 38862.94 30755.21 34846.04 28863.83 32778.47 28441.20 30763.68 33039.44 33268.99 37474.13 295
thres20057.55 30757.02 30959.17 31267.89 31834.93 36558.91 33457.25 33450.24 25264.01 32471.46 34632.49 35571.39 26931.31 38379.57 28871.19 328
CostFormer57.35 30856.14 31660.97 29963.76 35438.43 33867.50 24960.22 32237.14 36359.12 35976.34 30532.78 35271.99 26239.12 33669.27 37272.47 312
test_fmvs356.78 30955.99 31859.12 31353.96 40848.09 24858.76 33566.22 28427.54 40076.66 16468.69 37325.32 39751.31 36953.42 23673.38 34377.97 259
our_test_356.46 31056.51 31356.30 32967.70 31939.66 32955.36 35852.34 36740.57 34063.85 32669.91 36140.04 31658.22 35243.49 31175.29 32771.03 331
ttmdpeth56.40 31155.45 32259.25 31155.63 39940.69 31958.94 33349.72 37736.22 36665.39 31286.97 13823.16 40456.69 35842.30 31580.74 27180.36 223
tpm256.12 31254.64 32960.55 30466.24 33436.01 35668.14 24256.77 34033.60 38358.25 36275.52 31230.25 37774.33 23533.27 37669.76 37171.32 324
tpmvs55.84 31355.45 32257.01 32560.33 37133.20 37565.89 27259.29 32647.52 28056.04 37473.60 33031.05 37268.06 29640.64 32864.64 38769.77 340
gg-mvs-nofinetune55.75 31456.75 31252.72 34762.87 35728.04 39868.92 22741.36 41071.09 4650.80 39692.63 1320.74 40966.86 31029.97 38972.41 34963.25 379
testing9155.74 31555.29 32557.08 32470.63 27730.85 38754.94 36256.31 34650.34 25057.08 36670.10 35824.50 39965.86 31736.98 35576.75 31374.53 291
test20.0355.74 31557.51 30750.42 35859.89 37732.09 37950.63 37949.01 38050.11 25465.07 31683.23 21845.61 28148.11 38130.22 38783.82 23671.07 330
MS-PatchMatch55.59 31754.89 32757.68 32269.18 30049.05 23861.00 31762.93 31135.98 36858.36 36168.93 36936.71 33766.59 31437.62 34963.30 39157.39 397
baseline255.57 31852.74 33964.05 26465.26 34244.11 28862.38 30854.43 35239.03 34951.21 39467.35 38133.66 34772.45 25537.14 35264.22 38975.60 279
MVStest155.38 31954.97 32656.58 32843.72 42140.07 32659.13 32947.09 38834.83 37376.53 17284.65 18813.55 42553.30 36755.04 21580.23 27776.38 274
XXY-MVS55.19 32057.40 30848.56 37164.45 35034.84 36751.54 37753.59 35738.99 35063.79 32879.43 26956.59 22145.57 38736.92 35671.29 35965.25 369
testing9955.16 32154.56 33056.98 32670.13 29230.58 38954.55 36554.11 35449.53 26256.76 37070.14 35722.76 40665.79 31936.99 35476.04 31874.57 290
FMVSNet555.08 32255.54 32153.71 34065.80 33833.50 37456.22 35152.50 36543.72 31261.06 34583.38 21025.46 39554.87 36230.11 38881.64 26372.75 309
test_fmvs254.80 32354.11 33356.88 32751.76 41249.95 22856.70 34865.80 28726.22 40569.42 27465.25 38731.82 36349.98 37349.63 26070.36 36570.71 332
PatchmatchNetpermissive54.60 32454.27 33155.59 33465.17 34539.08 33166.92 26151.80 36939.89 34258.39 36073.12 33531.69 36558.33 35143.01 31358.38 40569.38 345
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet54.39 32556.12 31749.20 36572.57 25930.91 38659.98 32548.43 38341.66 32555.94 37583.86 20341.19 30850.42 37126.05 40275.38 32566.27 363
Syy-MVS54.13 32655.45 32250.18 35968.77 30523.59 41255.02 35944.55 39543.80 30858.05 36364.07 38946.22 27858.83 34846.16 29472.36 35068.12 351
Anonymous2023120654.13 32655.82 31949.04 36870.89 27235.96 35751.73 37650.87 37234.86 37262.49 33779.22 27442.52 30244.29 39727.95 39881.88 25466.88 359
JIA-IIPM54.03 32851.62 34761.25 29759.14 38255.21 19159.10 33047.72 38450.85 24550.31 40085.81 17820.10 41163.97 32836.16 36255.41 41064.55 376
tpm cat154.02 32952.63 34158.19 31964.85 34939.86 32866.26 26957.28 33332.16 38756.90 36870.39 35332.75 35365.30 32334.29 37158.79 40269.41 344
testgi54.00 33056.86 31145.45 38158.20 38725.81 40949.05 38349.50 37945.43 29667.84 29581.17 24151.81 24843.20 40129.30 39279.41 28967.34 357
WB-MVSnew53.94 33154.76 32851.49 35371.53 26828.05 39758.22 33950.36 37437.94 35759.16 35870.17 35649.21 26351.94 36824.49 40971.80 35674.47 293
WBMVS53.38 33254.14 33251.11 35570.16 29026.66 40350.52 38151.64 37039.32 34563.08 33577.16 29923.53 40255.56 35931.99 38079.88 28271.11 329
testing22253.37 33352.50 34355.98 33270.51 28329.68 39256.20 35251.85 36846.19 28756.76 37068.94 36819.18 41465.39 32125.87 40576.98 31172.87 307
PatchT53.35 33456.47 31443.99 38864.19 35117.46 41959.15 32843.10 40052.11 22854.74 38286.95 13929.97 38049.98 37343.62 30974.40 33464.53 377
testing1153.13 33552.26 34555.75 33370.44 28431.73 38154.75 36352.40 36644.81 30352.36 39168.40 37521.83 40765.74 32032.64 37972.73 34769.78 339
test_vis1_n_192052.96 33653.50 33551.32 35459.15 38144.90 28356.13 35364.29 30330.56 39659.87 35560.68 40040.16 31547.47 38248.25 27662.46 39361.58 388
UWE-MVS52.94 33752.70 34053.65 34173.56 24027.49 40057.30 34549.57 37838.56 35362.79 33671.42 34719.49 41360.41 34124.33 41177.33 31073.06 304
new-patchmatchnet52.89 33855.76 32044.26 38759.94 3766.31 42737.36 41150.76 37341.10 33064.28 32179.82 26344.77 28648.43 38036.24 36187.61 17278.03 256
test_fmvs1_n52.70 33952.01 34654.76 33653.83 40950.36 22155.80 35565.90 28624.96 40965.39 31260.64 40127.69 38648.46 37845.88 29767.99 37965.46 367
YYNet152.58 34053.50 33549.85 36154.15 40536.45 35440.53 40446.55 39138.09 35575.52 18773.31 33441.08 31043.88 39841.10 32471.14 36169.21 346
MDA-MVSNet_test_wron52.57 34153.49 33749.81 36254.24 40436.47 35340.48 40546.58 39038.13 35475.47 18873.32 33341.05 31143.85 39940.98 32671.20 36069.10 348
pmmvs552.49 34252.58 34252.21 34954.99 40232.38 37755.45 35753.84 35632.15 38855.49 37874.81 31638.08 32857.37 35634.02 37274.40 33466.88 359
UnsupCasMVSNet_eth52.26 34353.29 33849.16 36655.08 40133.67 37350.03 38258.79 32737.67 35963.43 33474.75 31841.82 30445.83 38638.59 34159.42 40167.98 354
N_pmnet52.06 34451.11 35254.92 33559.64 38071.03 5737.42 41061.62 31933.68 38157.12 36572.10 33937.94 32931.03 41629.13 39771.35 35862.70 381
KD-MVS_2432*160052.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
miper_refine_blended52.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
test_vis3_rt51.94 34751.04 35354.65 33746.32 41950.13 22544.34 39978.17 17823.62 41368.95 28162.81 39321.41 40838.52 41241.49 32272.22 35275.30 285
PVSNet43.83 2151.56 34851.17 35152.73 34668.34 31038.27 34048.22 38653.56 35936.41 36554.29 38464.94 38834.60 34454.20 36530.34 38669.87 36965.71 366
test_fmvs151.51 34950.86 35653.48 34249.72 41549.35 23754.11 36664.96 29624.64 41163.66 33059.61 40428.33 38548.45 37945.38 30267.30 38362.66 383
test_vis1_n51.27 35050.41 36053.83 33956.99 39150.01 22756.75 34760.53 32125.68 40759.74 35657.86 40529.40 38247.41 38343.10 31263.66 39064.08 378
test_cas_vis1_n_192050.90 35150.92 35550.83 35754.12 40747.80 25351.44 37854.61 35126.95 40363.95 32560.85 39937.86 33244.97 39245.53 29962.97 39259.72 392
tpm50.60 35252.42 34445.14 38365.18 34426.29 40660.30 32243.50 39837.41 36157.01 36779.09 27830.20 37942.32 40232.77 37866.36 38466.81 361
test-LLR50.43 35350.69 35849.64 36360.76 36841.87 30853.18 37045.48 39343.41 31649.41 40160.47 40229.22 38344.73 39442.09 31872.14 35362.33 386
myMVS_eth3d50.36 35450.52 35949.88 36068.77 30522.69 41455.02 35944.55 39543.80 30858.05 36364.07 38914.16 42458.83 34833.90 37472.36 35068.12 351
ETVMVS50.32 35549.87 36351.68 35170.30 28826.66 40352.33 37543.93 39743.54 31454.91 38067.95 37720.01 41260.17 34322.47 41373.40 34268.22 350
tpmrst50.15 35651.38 35046.45 37856.05 39524.77 41064.40 29349.98 37536.14 36753.32 38869.59 36335.16 34248.69 37739.24 33458.51 40465.89 364
UnsupCasMVSNet_bld50.01 35751.03 35446.95 37458.61 38432.64 37648.31 38553.27 36234.27 37860.47 34971.53 34541.40 30547.07 38430.68 38560.78 39861.13 389
dmvs_re49.91 35850.77 35747.34 37359.98 37338.86 33553.18 37053.58 35839.75 34355.06 37961.58 39836.42 33844.40 39629.15 39668.23 37758.75 394
WTY-MVS49.39 35950.31 36146.62 37761.22 36632.00 38046.61 39249.77 37633.87 38054.12 38569.55 36441.96 30345.40 38931.28 38464.42 38862.47 384
UBG49.18 36049.35 36448.66 37070.36 28626.56 40550.53 38045.61 39237.43 36053.37 38765.97 38423.03 40554.20 36526.29 40071.54 35765.20 370
ADS-MVSNet248.76 36147.25 37053.29 34555.90 39740.54 32347.34 39054.99 35031.41 39350.48 39772.06 34031.23 36854.26 36425.93 40355.93 40765.07 371
test-mter48.56 36248.20 36749.64 36360.76 36841.87 30853.18 37045.48 39331.91 39149.41 40160.47 40218.34 41544.73 39442.09 31872.14 35362.33 386
Patchmatch-test47.93 36349.96 36241.84 39157.42 39024.26 41148.75 38441.49 40939.30 34756.79 36973.48 33130.48 37633.87 41529.29 39372.61 34867.39 355
test0.0.03 147.72 36448.31 36645.93 37955.53 40029.39 39346.40 39341.21 41143.41 31655.81 37767.65 37829.22 38343.77 40025.73 40669.87 36964.62 375
sss47.59 36548.32 36545.40 38256.73 39433.96 37145.17 39548.51 38232.11 39052.37 39065.79 38540.39 31441.91 40531.85 38161.97 39560.35 390
pmmvs346.71 36645.09 37651.55 35256.76 39348.25 24455.78 35639.53 41424.13 41250.35 39963.40 39115.90 42151.08 37029.29 39370.69 36455.33 400
test_vis1_rt46.70 36745.24 37551.06 35644.58 42051.04 21639.91 40667.56 27821.84 41751.94 39250.79 41333.83 34639.77 40935.25 36861.50 39662.38 385
EPMVS45.74 36846.53 37143.39 38954.14 40622.33 41655.02 35935.00 41834.69 37651.09 39570.20 35525.92 39342.04 40437.19 35155.50 40965.78 365
MVS-HIRNet45.53 36947.29 36940.24 39462.29 36026.82 40256.02 35437.41 41629.74 39743.69 41581.27 23933.96 34555.48 36024.46 41056.79 40638.43 415
dmvs_testset45.26 37047.51 36838.49 39759.96 37514.71 42158.50 33743.39 39941.30 32851.79 39356.48 40639.44 32249.91 37521.42 41555.35 41150.85 402
TESTMET0.1,145.17 37144.93 37745.89 38056.02 39638.31 33953.18 37041.94 40827.85 39944.86 41156.47 40717.93 41741.50 40738.08 34568.06 37857.85 395
E-PMN45.17 37145.36 37444.60 38550.07 41342.75 30238.66 40842.29 40646.39 28639.55 41651.15 41226.00 39245.37 39037.68 34776.41 31445.69 409
PMMVS44.69 37343.95 38146.92 37550.05 41453.47 20448.08 38842.40 40422.36 41544.01 41453.05 41042.60 30145.49 38831.69 38261.36 39741.79 412
ADS-MVSNet44.62 37445.58 37341.73 39255.90 39720.83 41747.34 39039.94 41331.41 39350.48 39772.06 34031.23 36839.31 41025.93 40355.93 40765.07 371
EMVS44.61 37544.45 38045.10 38448.91 41643.00 30037.92 40941.10 41246.75 28438.00 41848.43 41526.42 39046.27 38537.11 35375.38 32546.03 408
dp44.09 37644.88 37841.72 39358.53 38623.18 41354.70 36442.38 40534.80 37444.25 41365.61 38624.48 40044.80 39329.77 39049.42 41357.18 398
test_f43.79 37745.63 37238.24 39842.29 42438.58 33734.76 41347.68 38522.22 41667.34 30263.15 39231.82 36330.60 41739.19 33562.28 39445.53 410
mvsany_test343.76 37841.01 38252.01 35048.09 41757.74 17442.47 40123.85 42423.30 41464.80 31762.17 39627.12 38740.59 40829.17 39548.11 41457.69 396
DSMNet-mixed43.18 37944.66 37938.75 39654.75 40328.88 39657.06 34627.42 42113.47 41947.27 40677.67 29538.83 32439.29 41125.32 40860.12 40048.08 405
CHOSEN 280x42041.62 38039.89 38546.80 37661.81 36251.59 21133.56 41435.74 41727.48 40137.64 41953.53 40823.24 40342.09 40327.39 39958.64 40346.72 407
PVSNet_036.71 2241.12 38140.78 38442.14 39059.97 37440.13 32540.97 40342.24 40730.81 39544.86 41149.41 41440.70 31245.12 39123.15 41234.96 41741.16 413
mvsany_test137.88 38235.74 38744.28 38647.28 41849.90 22936.54 41224.37 42319.56 41845.76 40753.46 40932.99 35137.97 41326.17 40135.52 41644.99 411
PMMVS237.74 38340.87 38328.36 40042.41 4235.35 42824.61 41527.75 42032.15 38847.85 40470.27 35435.85 34029.51 41819.08 41867.85 38050.22 404
new_pmnet37.55 38439.80 38630.79 39956.83 39216.46 42039.35 40730.65 41925.59 40845.26 40961.60 39724.54 39828.02 41921.60 41452.80 41247.90 406
MVEpermissive27.91 2336.69 38535.64 38839.84 39543.37 42235.85 35919.49 41624.61 42224.68 41039.05 41762.63 39538.67 32627.10 42021.04 41647.25 41556.56 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai31.66 38632.98 38927.71 40158.58 38512.61 42345.02 39614.24 42741.90 32347.93 40343.91 41610.65 42741.81 40614.06 41920.53 42028.72 417
kuosan22.02 38723.52 39117.54 40341.56 42511.24 42441.99 40213.39 42826.13 40628.87 42030.75 4189.72 42821.94 4224.77 42314.49 42119.43 418
test_method19.26 38819.12 39219.71 4029.09 4271.91 4307.79 41853.44 3601.42 42110.27 42335.80 41717.42 41925.11 42112.44 42024.38 41932.10 416
cdsmvs_eth3d_5k17.71 38923.62 3900.00 4080.00 4310.00 4330.00 41970.17 2630.00 4260.00 42774.25 32568.16 1000.00 4270.00 4260.00 4250.00 423
tmp_tt11.98 39014.73 3933.72 4052.28 4284.62 42919.44 41714.50 4260.47 42321.55 4219.58 42125.78 3944.57 42411.61 42127.37 4181.96 420
ab-mvs-re5.62 3917.50 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42767.46 3790.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.20 3926.93 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42662.39 1560.00 4270.00 4260.00 4250.00 423
test1234.43 3935.78 3960.39 4070.97 4290.28 43146.33 3940.45 4300.31 4240.62 4251.50 4240.61 4300.11 4260.56 4240.63 4230.77 422
testmvs4.06 3945.28 3970.41 4060.64 4300.16 43242.54 4000.31 4310.26 4250.50 4261.40 4250.77 4290.17 4250.56 4240.55 4240.90 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS22.69 41436.10 363
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
PC_three_145246.98 28381.83 9486.28 16266.55 12184.47 7463.31 14490.78 11583.49 142
No_MVS79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
eth-test20.00 431
eth-test0.00 431
ZD-MVS83.91 9069.36 7381.09 12158.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 95
IU-MVS86.12 5460.90 14780.38 13745.49 29581.31 10275.64 4494.39 4484.65 104
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15389.79 13683.08 159
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 153
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11773.75 5893.78 60
save fliter87.00 4067.23 9079.24 8977.94 18356.65 170
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 122
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 153
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
GSMVS70.05 336
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36670.05 336
sam_mvs31.21 370
ambc70.10 19177.74 17450.21 22474.28 15877.93 18479.26 12488.29 11954.11 23679.77 15364.43 12791.10 10480.30 224
MTGPAbinary80.63 131
test_post166.63 2652.08 42230.66 37559.33 34640.34 330
test_post1.99 42330.91 37354.76 363
patchmatchnet-post68.99 36631.32 36769.38 284
GG-mvs-BLEND52.24 34860.64 37029.21 39569.73 21742.41 40345.47 40852.33 41120.43 41068.16 29425.52 40765.42 38659.36 393
MTMP84.83 3419.26 425
gm-plane-assit62.51 35833.91 37237.25 36262.71 39472.74 24838.70 338
test9_res72.12 7391.37 9477.40 262
TEST985.47 6769.32 7476.42 12378.69 16853.73 21476.97 15386.74 14666.84 11281.10 127
test_885.09 7367.89 8376.26 12878.66 17054.00 20976.89 15786.72 14866.60 11880.89 137
agg_prior270.70 7790.93 10978.55 248
agg_prior84.44 8566.02 10178.62 17176.95 15580.34 144
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8192.76 75
test_prior75.27 10682.15 11859.85 15784.33 6383.39 9082.58 176
旧先验271.17 19845.11 30078.54 13561.28 34059.19 180
新几何271.33 194
新几何169.99 19388.37 3571.34 5562.08 31543.85 30774.99 19386.11 17152.85 24170.57 27550.99 24983.23 24468.05 353
旧先验184.55 8260.36 15463.69 30687.05 13754.65 23183.34 24369.66 341
无先验74.82 14370.94 25647.75 27876.85 20654.47 22272.09 317
原ACMM274.78 147
原ACMM173.90 12285.90 6065.15 11081.67 10750.97 24474.25 20786.16 16861.60 16483.54 8556.75 19691.08 10573.00 305
test22287.30 3869.15 7767.85 24559.59 32541.06 33173.05 22785.72 17948.03 27380.65 27266.92 358
testdata267.30 30348.34 274
segment_acmp68.30 99
testdata64.13 26285.87 6263.34 12261.80 31847.83 27676.42 17786.60 15548.83 26762.31 33654.46 22381.26 26566.74 362
testdata168.34 24157.24 162
test1276.51 8882.28 11660.94 14681.64 10873.60 21864.88 13785.19 6290.42 12283.38 149
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7490.94 10784.82 100
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 432
nn0.00 432
door-mid55.02 349
lessismore_v072.75 15179.60 14456.83 17957.37 33283.80 7489.01 10147.45 27578.74 17064.39 12886.49 20082.69 173
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
test1182.71 91
door52.91 364
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 245
ACMP_Plane82.37 11377.32 11159.08 14071.58 245
BP-MVS67.38 105
HQP4-MVS71.59 24485.31 5483.74 136
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41853.74 36831.57 39244.89 41029.90 38132.93 37771.48 321
MDTV_nov1_ep1354.05 33465.54 34129.30 39459.00 33155.22 34735.96 36952.44 38975.98 30630.77 37459.62 34538.21 34373.33 344
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13466.87 6883.64 7686.18 16670.25 8379.90 15261.12 15988.95 15687.56 54
DeepMVS_CXcopyleft11.83 40415.51 42613.86 42211.25 4295.76 42020.85 42226.46 41917.06 4209.22 4239.69 42213.82 42212.42 419