This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
gg-mvs-nofinetune98.40 17998.26 17298.57 19699.83 8998.86 17298.77 19799.97 199.57 2599.99 199.99 193.81 19793.50 21798.91 15598.20 17299.33 17198.52 183
v7n99.89 299.86 499.93 199.97 299.83 499.93 199.96 1299.77 499.89 1799.99 199.86 7999.84 599.89 1199.81 1299.97 199.88 7
new-patchmatchnet98.49 17597.60 18499.53 9999.90 4099.55 5699.77 3399.48 18299.67 1199.86 3599.98 399.98 599.50 6896.90 20891.52 21298.67 19495.62 212
anonymousdsp99.87 699.86 499.88 1299.95 1199.75 2899.90 499.96 1299.69 899.83 5299.96 499.99 399.74 2199.95 299.83 899.91 2499.88 7
v124099.58 4899.38 6699.82 2799.89 4399.49 7599.82 2499.83 8399.63 1899.86 3599.96 498.92 16499.75 1899.15 12798.96 11099.76 7399.56 84
v192192099.59 4599.40 6299.82 2799.88 4999.45 8099.81 2699.83 8399.65 1499.86 3599.95 699.29 15299.75 1898.98 14698.86 12199.78 6799.59 69
v119299.60 4399.41 5999.82 2799.89 4399.43 8599.81 2699.84 7799.63 1899.85 4299.95 699.35 14799.72 2699.01 14098.90 11699.82 5599.58 77
FC-MVSNet-test99.84 799.80 799.89 999.96 799.83 499.84 1699.95 2399.37 4899.77 6999.95 699.96 1499.85 399.93 399.83 899.95 899.72 40
v114499.61 3899.43 5599.82 2799.88 4999.41 9099.76 3699.86 6099.64 1699.84 4699.95 699.49 13599.74 2199.00 14298.93 11399.84 4799.58 77
v2v48299.56 5399.35 6999.81 3299.87 5599.35 10699.75 4099.85 6799.56 2699.87 2899.95 699.44 13999.66 3698.91 15598.76 13199.86 4199.45 110
v1099.65 3399.51 4299.81 3299.83 8999.61 4599.75 4099.94 2499.56 2699.76 7299.94 1199.60 12699.73 2499.11 13199.01 10199.85 4499.74 35
SixPastTwentyTwo99.89 299.85 699.93 199.97 299.88 399.92 299.97 199.66 1399.94 499.94 1199.74 10899.81 799.97 199.89 199.96 399.89 5
HyFIR lowres test99.50 6099.26 8299.80 3799.95 1199.62 4399.76 3699.97 199.67 1199.56 13099.94 1198.40 17399.78 1298.84 17198.59 15199.76 7399.72 40
v14419299.58 4899.39 6399.80 3799.87 5599.44 8299.77 3399.84 7799.64 1699.86 3599.93 1499.35 14799.72 2698.92 15298.82 12599.74 8199.66 54
CHOSEN 1792x268899.65 3399.55 3699.77 4799.93 2899.60 4699.79 3099.92 3899.73 699.74 8299.93 1499.98 599.80 1098.83 17299.01 10199.45 15499.76 31
IterMVS-SCA-FT99.15 13098.96 13399.38 12699.87 5599.54 5999.53 8999.79 10998.94 10399.82 5599.92 1697.65 18398.82 14198.95 14998.26 16898.45 19799.47 108
pmmvs699.88 499.87 299.89 999.97 299.76 2299.89 599.96 1299.82 399.90 1599.92 1699.95 2699.68 3299.93 399.88 399.95 899.86 11
pmmvs599.58 4899.47 5099.70 6599.84 8399.50 7499.58 8099.80 10698.98 9899.73 8899.92 1699.81 9499.49 7399.28 10199.05 9599.77 7199.73 37
gm-plane-assit96.82 20694.84 21499.13 16399.95 1199.78 1899.69 5699.92 3899.19 6999.84 4699.92 1672.93 22896.44 20598.21 19397.01 19898.92 18996.87 208
pm-mvs199.77 1299.69 1399.86 1799.94 2599.68 3799.84 1699.93 2799.59 2299.87 2899.92 1699.21 15599.65 3899.88 1599.77 1699.93 2099.78 27
test20.0399.68 3099.60 2899.76 4899.91 3699.70 3699.68 5799.87 5699.05 9099.88 2299.92 1699.88 7199.50 6899.77 3499.42 5499.75 7699.49 102
MIMVSNet199.79 1099.75 1199.84 2299.89 4399.83 499.84 1699.89 5199.31 5499.93 599.92 1699.97 999.68 3299.89 1199.64 2899.82 5599.66 54
test_part199.88 499.89 199.88 1299.96 799.90 299.83 1999.97 199.84 299.93 599.91 2399.83 8999.63 4499.89 1199.88 399.96 399.95 1
EU-MVSNet99.76 1499.74 1299.78 4299.82 9499.81 1299.88 799.87 5699.31 5499.75 7699.91 2399.76 10799.78 1299.84 2299.74 1999.56 13599.81 20
PMMVS299.23 11699.22 9199.24 14899.80 10099.14 14499.50 10099.82 9099.12 8198.41 21699.91 2399.98 598.51 15799.48 6398.76 13199.38 16598.14 194
Baseline_NR-MVSNet99.62 3799.48 4799.78 4299.85 7799.76 2299.59 7699.82 9098.84 11799.88 2299.91 2399.04 15899.61 4799.46 6799.78 1499.94 1699.60 67
IterMVS99.08 13698.90 14099.29 14199.87 5599.53 6299.52 9399.77 12198.94 10399.75 7699.91 2397.52 18798.72 14998.86 16498.14 17598.09 20099.43 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.61 3899.45 5399.79 4199.80 10099.59 4999.73 4899.93 2799.48 3599.77 6999.90 2899.48 13699.67 3599.11 13198.89 11799.84 4799.73 37
casdiffmvs99.61 3899.55 3699.68 6899.89 4399.53 6299.64 6599.68 14899.51 3299.62 11699.90 2899.96 1499.37 8499.28 10199.25 6399.88 3399.44 113
TransMVSNet (Re)99.72 2499.59 3099.88 1299.95 1199.76 2299.88 799.94 2499.58 2499.92 1099.90 2898.55 17099.65 3899.89 1199.76 1799.95 899.70 48
test111199.21 11998.67 15799.84 2299.96 799.82 899.72 5299.94 2499.54 3099.78 6799.89 3191.89 21099.69 3199.93 399.89 199.95 899.75 33
V4299.57 5299.41 5999.75 5299.84 8399.37 10099.73 4899.83 8399.41 4299.75 7699.89 3199.42 14199.60 4999.15 12798.96 11099.76 7399.65 57
CVMVSNet99.06 13998.88 14499.28 14599.52 17999.53 6299.42 11699.69 14298.74 12898.27 21899.89 3195.48 19599.44 8099.46 6799.33 5999.32 17299.75 33
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 299.82 899.91 399.92 3899.75 599.93 599.89 31100.00 199.87 299.93 399.82 1199.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs-eth3d99.61 3899.48 4799.75 5299.87 5599.30 11699.75 4099.89 5199.23 6299.85 4299.88 3599.97 999.49 7399.46 6799.01 10199.68 9599.52 99
WR-MVS99.79 1099.68 1499.91 599.95 1199.83 499.87 999.96 1299.39 4699.93 599.87 3699.29 15299.77 1499.83 2399.72 2099.97 199.82 16
TAMVS99.05 14099.02 12699.08 17099.69 14499.22 13499.33 13299.32 20099.16 7698.97 19299.87 3697.36 18897.76 18199.21 11499.00 10599.44 15699.33 134
DeepC-MVS99.05 599.74 1899.64 2099.84 2299.90 4099.39 9399.79 3099.81 9899.69 899.90 1599.87 3699.98 599.81 799.62 5599.32 6099.83 5299.65 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft99.24 11498.74 15399.82 2799.95 1199.78 1899.67 6199.93 2799.45 3899.80 5999.86 3992.58 20799.65 3899.93 399.88 399.94 1699.71 46
MDTV_nov1_ep13_2view98.73 16798.31 17199.22 15299.75 12699.24 13199.75 4099.93 2799.31 5499.84 4699.86 3999.81 9499.31 9697.40 20694.77 20596.73 21097.81 199
diffmvs99.38 9199.33 7199.45 11499.87 5599.39 9399.28 14399.58 16699.55 2899.50 14499.85 4199.85 8598.94 13598.58 18498.68 14299.51 14699.39 127
PVSNet_Blended_VisFu99.66 3299.64 2099.67 7099.91 3699.71 3399.61 7199.79 10999.41 4299.91 1399.85 4199.61 12499.00 12799.67 4699.42 5499.81 5899.81 20
baseline99.24 11499.30 7699.17 16099.78 10999.14 14499.10 16399.69 14298.97 9999.49 14699.84 4399.88 7197.99 17798.85 16698.73 13798.98 18899.72 40
CDS-MVSNet99.15 13099.10 11599.21 15599.59 17299.22 13499.48 10899.47 18398.89 11099.41 16199.84 4398.11 17997.76 18199.26 10699.01 10199.57 13299.38 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive99.76 1499.78 999.75 5299.92 3199.77 2199.83 1999.85 6799.43 4099.85 4299.84 43100.00 199.13 11799.83 2399.66 2599.90 2899.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet199.50 6099.57 3399.42 11799.67 15199.65 4099.60 7599.91 4399.40 4499.39 16499.83 4699.27 15498.14 16699.68 4399.50 4299.81 5899.68 50
TDRefinement99.81 899.76 1099.86 1799.83 8999.53 6299.89 599.91 4399.73 699.88 2299.83 4699.96 1499.76 1699.91 999.81 1299.86 4199.59 69
pmnet_mix0298.28 18197.48 18799.22 15299.78 10999.12 15199.68 5799.39 19499.49 3499.86 3599.82 4899.89 6599.23 10395.54 21192.36 20997.38 20596.14 210
v14899.58 4899.43 5599.76 4899.87 5599.40 9299.76 3699.85 6799.48 3599.83 5299.82 4899.83 8999.51 6499.20 11798.82 12599.75 7699.45 110
DELS-MVS99.42 8099.53 4099.29 14199.52 17999.43 8599.42 11699.28 20199.16 7699.72 9199.82 4899.97 998.17 16399.56 5899.16 7199.65 10199.59 69
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++99.46 7199.57 3399.33 13899.75 12699.57 5299.44 11399.81 9899.38 4798.56 21199.81 5199.99 398.79 14499.33 8799.13 8299.62 11999.81 20
new_pmnet98.91 15598.89 14198.94 17999.51 18598.27 20399.15 15698.66 21299.17 7299.48 14899.79 5299.80 10098.49 15899.23 10998.20 17298.34 19897.74 202
N_pmnet98.64 17098.23 17799.11 16899.78 10999.25 12699.75 4099.39 19499.65 1499.70 9999.78 5399.89 6598.81 14397.60 20194.28 20697.24 20797.15 206
pmmvs398.85 15998.60 15999.13 16399.66 15298.72 18299.37 12699.06 20798.44 15599.76 7299.74 5499.55 13199.15 11399.04 13696.00 20397.80 20298.72 180
MVS_Test99.09 13598.92 13799.29 14199.61 16499.07 15599.04 16899.81 9898.58 14699.37 16899.74 5498.87 16598.41 16098.61 18398.01 18299.50 14899.57 83
thisisatest051599.73 2199.67 1599.81 3299.93 2899.74 3099.68 5799.91 4399.59 2299.88 2299.73 5699.81 9499.55 5799.59 5699.53 3999.89 3199.70 48
PS-CasMVS99.73 2199.59 3099.90 899.95 1199.80 1699.85 1399.97 198.95 10199.86 3599.73 5699.36 14499.81 799.83 2399.67 2499.95 899.83 15
IterMVS-LS99.16 12898.82 14999.57 9199.87 5599.71 3399.58 8099.92 3899.24 6199.71 9799.73 5695.79 19298.91 13698.82 17398.66 14499.43 15999.77 28
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CSCG99.61 3899.52 4199.71 6299.89 4399.62 4399.52 9399.76 12999.61 2099.69 10099.73 5699.96 1499.57 5599.27 10498.62 14899.81 5899.85 13
GeoE99.63 3699.51 4299.78 4299.91 3699.57 5299.78 3299.97 199.23 6299.72 9199.72 6099.80 10099.50 6899.45 7499.10 8899.79 6599.71 46
Anonymous2023120699.48 6499.31 7599.69 6799.79 10499.57 5299.63 6999.79 10998.88 11199.91 1399.72 6099.93 4599.59 5099.24 10798.63 14799.43 15999.18 147
pmmvs499.34 9799.15 10799.57 9199.77 11798.90 16599.51 9699.77 12199.07 8599.73 8899.72 6099.84 8799.07 12198.85 16698.39 16299.55 13899.27 141
TranMVSNet+NR-MVSNet99.59 4599.42 5899.80 3799.87 5599.55 5699.64 6599.86 6099.05 9099.88 2299.72 6099.33 15099.64 4299.47 6699.14 7499.91 2499.67 53
WR-MVS_H99.73 2199.61 2599.88 1299.95 1199.82 899.83 1999.96 1299.01 9399.84 4699.71 6499.41 14399.74 2199.77 3499.70 2399.95 899.82 16
DVP-MVScopyleft99.53 5699.51 4299.55 9699.82 9499.58 5199.54 8899.78 11499.28 6099.21 18199.70 6599.97 999.32 9399.32 8999.14 7499.64 11099.58 77
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
FC-MVSNet-train99.70 2699.67 1599.74 5899.94 2599.71 3399.82 2499.91 4399.14 7999.53 13499.70 6599.88 7199.33 9099.88 1599.61 3399.94 1699.77 28
PEN-MVS99.77 1299.65 1999.91 599.95 1199.80 1699.86 1099.97 199.08 8399.89 1799.69 6799.68 11899.84 599.81 2799.64 2899.95 899.81 20
DPE-MVScopyleft99.41 8299.36 6799.47 11099.66 15299.48 7699.46 11199.75 13498.65 13599.41 16199.67 6899.95 2698.82 14199.21 11499.14 7499.72 8899.40 125
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
GA-MVS98.59 17398.15 17999.09 16999.59 17299.13 14898.84 19199.52 17998.61 14399.35 17199.67 6893.03 19997.73 18398.90 15998.26 16899.51 14699.48 105
SED-MVS99.45 7499.46 5299.42 11799.77 11799.57 5299.42 11699.80 10699.06 8799.38 16599.66 7099.96 1498.65 15299.31 9199.14 7499.53 14099.55 89
DTE-MVSNet99.75 1699.61 2599.92 499.95 1199.81 1299.86 1099.96 1299.18 7199.92 1099.66 7099.45 13799.85 399.80 2899.56 3499.96 399.79 26
ACMH99.11 499.72 2499.63 2299.84 2299.87 5599.59 4999.83 1999.88 5599.46 3799.87 2899.66 7099.95 2699.76 1699.73 3999.47 4799.84 4799.52 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.68 3099.51 4299.89 999.95 1199.76 2299.83 1999.96 1298.83 11999.84 4699.65 7399.09 15799.80 1099.78 3299.62 3299.95 899.82 16
UniMVSNet (Re)99.50 6099.29 7899.75 5299.86 6999.47 7899.51 9699.82 9098.90 10999.89 1799.64 7499.00 15999.55 5799.32 8999.08 9099.90 2899.59 69
FMVSNet299.07 13899.19 9898.93 18199.02 21699.53 6299.31 13599.84 7798.86 11498.88 19799.64 7498.44 17296.92 19899.35 8399.00 10599.61 12199.53 94
COLMAP_ROBcopyleft99.18 299.70 2699.60 2899.81 3299.84 8399.37 10099.76 3699.84 7799.54 3099.82 5599.64 7499.95 2699.75 1899.79 3099.56 3499.83 5299.37 130
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS99.74 1899.66 1799.83 2699.92 3199.81 1299.81 2699.85 6798.81 12299.87 2899.62 7799.95 2699.62 4599.79 3099.78 1499.92 2199.84 14
CHOSEN 280x42098.99 14698.91 13999.07 17199.77 11799.26 12399.55 8499.92 3898.62 14098.67 20899.62 7797.20 18998.44 15999.50 6199.18 6898.08 20198.99 171
MVS-HIRNet98.45 17798.25 17498.69 19199.12 21297.81 21898.55 20599.85 6798.58 14699.67 10899.61 7999.86 7997.46 18797.95 19996.37 20197.49 20497.56 203
EPP-MVSNet99.34 9799.10 11599.62 8499.94 2599.74 3099.66 6399.80 10699.07 8598.93 19499.61 7996.13 19199.49 7399.67 4699.63 3099.92 2199.86 11
DeepPCF-MVS98.38 1199.16 12899.20 9699.12 16599.20 21198.71 18398.85 19099.06 20799.17 7298.96 19399.61 7999.86 7999.29 9899.17 12598.72 13899.36 16799.15 155
TSAR-MVS + MP.99.56 5399.54 3999.58 8899.69 14499.14 14499.73 4899.45 18599.50 3399.35 17199.60 8299.93 4599.50 6899.56 5899.37 5899.77 7199.64 60
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PMVScopyleft94.32 1799.27 11299.55 3698.94 17999.60 16899.43 8599.39 12299.54 17298.99 9599.69 10099.60 8299.81 9495.68 20999.88 1599.83 899.73 8599.31 136
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UniMVSNet_ETH3D99.81 899.79 899.85 2099.98 199.76 2299.73 4899.96 1299.68 1099.87 2899.59 8499.91 5999.58 5399.90 1099.85 799.96 399.81 20
USDC99.29 11198.98 13099.65 7499.72 13998.87 17199.47 10999.66 15499.35 5199.87 2899.58 8599.87 7899.51 6498.85 16697.93 18499.65 10198.38 186
CLD-MVS99.30 10799.01 12799.63 8099.75 12698.89 16899.35 13099.60 16098.53 14999.86 3599.57 8699.94 3899.52 6398.96 14798.10 17899.70 9399.08 160
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
APDe-MVS99.60 4399.48 4799.73 6099.85 7799.51 7399.75 4099.85 6799.17 7299.81 5899.56 8799.94 3899.44 8099.42 7799.22 6499.67 9799.54 91
CANet_DTU99.03 14299.18 10098.87 18499.58 17599.03 15799.18 15399.41 19098.65 13599.74 8299.55 8899.71 11396.13 20799.19 12098.92 11499.17 18299.18 147
CANet99.36 9299.39 6399.34 13799.80 10099.35 10699.41 12099.47 18399.20 6699.74 8299.54 8999.68 11898.05 17199.23 10998.97 10899.57 13299.73 37
TSAR-MVS + ACMM99.31 10599.26 8299.37 13299.66 15298.97 16399.20 15199.56 16999.33 5299.19 18299.54 8999.91 5999.32 9399.12 13098.34 16599.29 17399.65 57
test-LLR97.74 19397.46 18898.08 20699.62 16098.37 19998.26 21199.41 19097.03 20997.38 22099.54 8992.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
TESTMET0.1,197.62 19997.46 18897.81 21299.07 21598.37 19998.26 21198.35 21597.03 20997.38 22099.54 8992.89 20195.12 21298.78 17597.68 18998.65 19597.90 196
EG-PatchMatch MVS99.59 4599.49 4699.70 6599.82 9499.26 12399.39 12299.83 8398.99 9599.93 599.54 8999.92 5399.51 6499.78 3299.50 4299.73 8599.41 120
ACMH+98.94 699.69 2999.59 3099.81 3299.88 4999.41 9099.75 4099.86 6099.43 4099.80 5999.54 8999.97 999.73 2499.82 2699.52 4199.85 4499.43 116
SMA-MVScopyleft99.43 7799.41 5999.45 11499.82 9499.31 11499.02 17399.59 16399.06 8799.34 17499.53 9599.96 1499.38 8399.29 9699.13 8299.53 14099.59 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.99.33 9999.17 10499.51 10599.71 14299.00 16098.84 19199.71 13998.23 17399.74 8299.53 9599.90 6299.35 8699.38 7998.85 12299.72 8899.31 136
test-mter97.65 19897.57 18697.75 21498.90 21998.56 19298.15 21698.45 21496.92 21396.84 22399.52 9792.53 20995.24 21199.04 13698.12 17698.90 19098.29 191
testgi99.43 7799.47 5099.38 12699.90 4099.67 3999.30 14099.73 13798.64 13999.53 13499.52 9799.90 6298.08 16999.65 5099.40 5799.75 7699.55 89
DU-MVS99.48 6499.26 8299.75 5299.85 7799.38 9699.50 10099.81 9898.86 11499.89 1799.51 9998.98 16099.59 5099.46 6798.97 10899.87 3999.63 61
NR-MVSNet99.52 5799.29 7899.80 3799.96 799.38 9699.55 8499.81 9898.86 11499.87 2899.51 9998.81 16699.72 2699.86 1899.04 9799.89 3199.54 91
CS-MVS-test99.75 1699.66 1799.87 1699.95 1199.95 199.85 1399.93 2798.83 11999.84 4699.50 10199.95 2699.70 2999.85 1999.71 2199.91 2499.82 16
Fast-Effi-MVS+99.39 8899.18 10099.63 8099.86 6999.28 12199.45 11299.91 4398.47 15199.61 11999.50 10199.57 12899.17 10699.24 10798.66 14499.78 6799.59 69
TAPA-MVS98.54 1099.30 10799.24 8799.36 13699.44 19498.77 17899.00 17599.41 19099.23 6299.60 12299.50 10199.86 7999.15 11399.29 9698.95 11299.56 13599.08 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DROMVSNet99.70 2699.57 3399.85 2099.95 1199.81 1299.85 1399.93 2798.39 16599.76 7299.48 10499.94 3899.70 2999.85 1999.66 2599.91 2499.87 10
PM-MVS99.49 6399.43 5599.57 9199.76 12299.34 10899.53 8999.77 12198.93 10599.75 7699.46 10599.83 8999.11 11999.72 4099.29 6299.49 14999.46 109
UniMVSNet_NR-MVSNet99.41 8299.12 11299.76 4899.86 6999.48 7699.50 10099.81 9898.84 11799.89 1799.45 10698.32 17699.59 5099.22 11198.89 11799.90 2899.63 61
tfpnnormal99.74 1899.63 2299.86 1799.93 2899.75 2899.80 2999.89 5199.31 5499.88 2299.43 10799.66 12199.77 1499.80 2899.71 2199.92 2199.76 31
MDA-MVSNet-bldmvs99.11 13399.11 11499.12 16599.91 3699.38 9699.77 3398.72 21199.31 5499.85 4299.43 10798.26 17799.48 7699.85 1998.47 15696.99 20899.08 160
GBi-Net98.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10797.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
test198.96 14899.05 12098.85 18599.02 21699.53 6299.31 13599.78 11498.13 17698.48 21299.43 10797.58 18496.92 19899.68 4399.50 4299.61 12199.53 94
FMVSNet398.63 17298.75 15298.49 19898.10 22299.44 8299.02 17399.78 11498.13 17698.48 21299.43 10797.58 18496.16 20698.85 16698.39 16299.40 16399.41 120
QAPM99.41 8299.21 9599.64 7999.78 10999.16 14199.51 9699.85 6799.20 6699.72 9199.43 10799.81 9499.25 10198.87 16198.71 13999.71 9199.30 138
tmp_tt88.14 21796.68 22491.91 22493.70 22461.38 22299.61 2090.51 22699.40 11399.71 11390.32 22099.22 11199.44 5296.25 212
RPSCF99.48 6499.45 5399.52 10399.73 13799.33 10999.13 15999.77 12199.33 5299.47 15199.39 11499.92 5399.36 8599.63 5299.13 8299.63 11399.41 120
UA-Net99.64 3599.62 2499.66 7299.97 299.82 899.14 15899.96 1298.95 10199.52 14099.38 11599.86 7999.55 5799.72 4099.66 2599.80 6299.94 2
TSAR-MVS + COLMAP98.74 16598.58 16198.93 18199.29 20798.23 20499.04 16899.24 20298.79 12498.80 20399.37 11699.71 11398.06 17098.02 19797.46 19399.16 18398.48 184
ambc98.83 14699.72 13998.52 19398.84 19198.96 10099.92 1099.34 11799.74 10899.04 12598.68 18097.57 19299.46 15298.99 171
ETV-MVS99.45 7499.32 7399.60 8599.79 10499.60 4699.40 12199.78 11497.88 19099.83 5299.33 11899.70 11698.97 13099.74 3799.43 5399.84 4799.58 77
PVSNet_BlendedMVS99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11899.36 14498.10 16799.29 9698.87 11999.65 10199.56 84
PVSNet_Blended99.20 12299.17 10499.23 14999.69 14499.33 10999.04 16899.13 20498.41 16199.79 6399.33 11899.36 14498.10 16799.29 9698.87 11999.65 10199.56 84
UGNet99.40 8699.61 2599.16 16199.88 4999.64 4199.61 7199.77 12199.31 5499.63 11599.33 11899.93 4596.46 20499.63 5299.53 3999.63 11399.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS97.86 1598.95 15198.53 16399.44 11699.70 14398.80 17598.96 17799.69 14298.65 13599.59 12499.33 11899.94 3899.12 11898.01 19897.11 19599.59 13097.83 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OPM-MVS99.39 8899.22 9199.59 8699.76 12298.82 17399.51 9699.79 10999.17 7299.53 13499.31 12399.95 2699.35 8699.22 11198.79 13099.60 12499.27 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test0.0.03 198.41 17898.41 17098.40 20299.62 16099.16 14198.87 18899.41 19097.15 20496.60 22499.31 12397.00 19096.55 20398.91 15598.51 15599.37 16698.82 176
MVSTER97.55 20196.75 19798.48 19999.46 19199.54 5998.24 21399.77 12197.56 19899.41 16199.31 12384.86 22494.66 21498.86 16497.75 18799.34 17099.38 128
tpmrst96.18 21294.47 21698.18 20499.52 17997.89 21698.96 17799.79 10998.07 18199.16 18399.30 12692.69 20596.69 20190.76 21988.85 21994.96 21893.69 218
MIMVSNet99.00 14499.03 12398.97 17899.32 20699.32 11399.39 12299.91 4398.41 16198.76 20499.24 12799.17 15697.13 19199.30 9398.80 12999.29 17399.01 168
MSDG99.32 10199.09 11799.58 8899.75 12698.74 18099.36 12799.54 17299.14 7999.72 9199.24 12799.89 6599.51 6499.30 9398.76 13199.62 11998.54 182
MVS_030499.36 9299.35 6999.37 13299.85 7799.36 10299.39 12299.56 16999.36 5099.75 7699.23 12999.90 6297.97 17899.00 14298.83 12499.69 9499.77 28
thisisatest053098.78 16398.26 17299.39 12299.78 10999.43 8599.07 16599.64 15698.44 15599.42 15999.22 13092.68 20698.63 15399.30 9399.14 7499.80 6299.60 67
MDTV_nov1_ep1397.41 20396.26 20598.76 18999.47 19098.43 19899.26 14799.82 9098.06 18299.23 17999.22 13092.86 20398.05 17195.33 21393.66 20896.73 21096.26 209
tttt051798.77 16498.25 17499.38 12699.79 10499.46 7999.07 16599.64 15698.40 16499.38 16599.21 13292.54 20898.63 15399.34 8699.14 7499.80 6299.62 64
test250697.57 20095.67 20999.78 4299.95 1199.78 1899.67 6199.93 2799.45 3899.55 13399.20 13371.73 22999.65 3899.93 399.88 399.94 1699.72 40
test_method91.96 21695.51 21087.82 21870.84 22582.79 22692.13 22587.74 22198.88 11195.40 22599.20 13398.04 18085.65 22197.71 20094.95 20495.13 21697.00 207
tpm96.56 21094.68 21598.74 19099.12 21297.90 21598.79 19699.93 2796.79 21799.69 10099.19 13581.48 22797.56 18595.46 21293.97 20797.37 20697.99 195
DeepC-MVS_fast98.69 999.32 10199.13 11099.53 9999.63 15998.78 17699.53 8999.33 19999.08 8399.77 6999.18 13699.89 6599.29 9899.00 14298.70 14099.65 10199.30 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121199.47 6799.39 6399.57 9199.89 4399.60 4699.50 10099.69 14298.91 10899.62 11699.17 13799.35 14798.86 14099.63 5299.46 4999.84 4799.62 64
PHI-MVS99.33 9999.19 9899.49 10899.69 14499.25 12699.27 14499.59 16398.44 15599.78 6799.15 13899.92 5398.95 13499.39 7899.04 9799.64 11099.18 147
TinyColmap99.21 11998.89 14199.59 8699.61 16498.61 18999.47 10999.67 15199.02 9299.82 5599.15 13899.74 10899.35 8699.17 12598.33 16699.63 11398.22 192
RPMNet97.70 19496.54 19999.06 17299.57 17898.23 20498.95 18099.97 196.89 21499.49 14699.13 14089.63 21597.09 19396.68 20997.02 19799.26 17698.19 193
OMC-MVS99.11 13398.95 13499.29 14199.37 20098.57 19199.19 15299.20 20398.87 11399.58 12899.13 14099.88 7199.00 12799.19 12098.46 15799.43 15998.57 181
Effi-MVS+99.20 12298.93 13699.50 10799.79 10499.26 12398.82 19499.96 1298.37 16699.60 12299.12 14298.36 17499.05 12498.93 15098.82 12599.78 6799.68 50
MVS_111021_LR99.25 11399.13 11099.39 12299.50 18799.14 14499.23 14999.50 18098.67 13399.61 11999.12 14299.81 9499.16 10999.28 10198.67 14399.35 16999.21 146
CR-MVSNet97.91 18696.80 19699.22 15299.60 16898.23 20498.91 18399.97 196.89 21499.43 15699.10 14489.24 21798.15 16498.04 19597.78 18599.26 17698.30 189
DI_MVS_plusplus_trai98.74 16598.08 18299.51 10599.79 10499.29 12099.61 7199.60 16099.20 6699.46 15299.09 14592.93 20098.97 13098.27 19298.35 16499.65 10199.45 110
ADS-MVSNet97.29 20496.17 20698.59 19599.59 17298.70 18499.32 13399.86 6098.47 15199.56 13099.08 14698.16 17897.34 18992.92 21591.17 21395.91 21394.72 215
Vis-MVSNet (Re-imp)99.40 8699.28 8099.55 9699.92 3199.68 3799.31 13599.87 5698.69 13299.16 18399.08 14698.64 16999.20 10599.65 5099.46 4999.83 5299.72 40
EPNet_dtu98.09 18498.25 17497.91 21099.58 17598.02 21298.19 21599.67 15197.94 18899.74 8299.07 14898.71 16893.40 21897.50 20397.09 19696.89 20999.44 113
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS96.76 20895.30 21398.46 20099.42 19798.47 19699.32 13399.91 4398.42 15899.51 14299.07 14892.81 20497.12 19292.39 21791.71 21195.51 21594.20 217
PatchT98.11 18297.12 19399.26 14799.65 15698.34 20199.57 8299.97 197.48 20099.43 15699.04 15090.84 21298.15 16498.04 19597.78 18598.82 19198.30 189
ACMMP_NAP99.47 6799.33 7199.63 8099.85 7799.28 12199.56 8399.83 8398.75 12799.48 14899.03 15199.95 2699.47 7999.48 6399.19 6799.57 13299.59 69
MVS_111021_HR99.30 10799.14 10899.48 10999.58 17599.25 12699.27 14499.61 15898.74 12899.66 11099.02 15299.84 8799.33 9099.20 11798.76 13199.44 15699.18 147
MSP-MVS99.32 10199.26 8299.38 12699.76 12299.54 5999.42 11699.72 13898.92 10798.84 20198.96 15399.96 1498.91 13698.72 17999.14 7499.63 11399.58 77
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS99.51 5899.36 6799.68 6899.88 4999.38 9699.53 8999.84 7799.11 8299.59 12498.93 15499.95 2699.58 5399.44 7599.21 6699.65 10199.52 99
LGP-MVS_train99.46 7199.18 10099.78 4299.87 5599.25 12699.71 5599.87 5698.02 18499.79 6398.90 15599.96 1499.66 3699.49 6299.17 7099.79 6599.49 102
HFP-MVS99.46 7199.30 7699.65 7499.82 9499.25 12699.50 10099.82 9099.23 6299.58 12898.86 15699.94 3899.56 5699.14 12999.12 8699.63 11399.56 84
FPMVS98.48 17698.83 14698.07 20899.09 21497.98 21399.07 16598.04 21998.99 9599.22 18098.85 15799.43 14093.79 21699.66 4899.11 8799.24 17897.76 200
ET-MVSNet_ETH3D97.44 20296.29 20498.78 18897.93 22398.95 16498.91 18399.09 20698.00 18599.24 17898.83 15884.62 22598.02 17697.43 20597.38 19499.48 15098.84 173
SD-MVS99.35 9599.26 8299.46 11299.66 15299.15 14398.92 18299.67 15199.55 2899.35 17198.83 15899.91 5999.35 8699.19 12098.53 15399.78 6799.68 50
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CostFormer95.61 21393.35 21998.24 20399.48 18998.03 21198.65 20099.83 8396.93 21299.42 15998.83 15883.65 22697.08 19490.39 22089.54 21894.94 21996.11 211
PatchmatchNetpermissive96.81 20795.41 21198.43 20199.43 19698.30 20299.23 14999.93 2798.19 17499.64 11398.81 16193.50 19897.43 18892.89 21690.78 21594.94 21995.41 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PMMVS98.71 16898.55 16298.90 18399.28 20898.45 19798.53 20699.45 18597.67 19799.15 18598.76 16299.54 13397.79 18098.77 17798.23 17099.16 18398.46 185
baseline297.87 18797.18 19298.67 19399.34 20399.17 14098.48 20798.82 21097.08 20798.83 20298.75 16389.47 21697.03 19698.67 18198.27 16799.52 14298.83 175
IS_MVSNet99.15 13099.12 11299.19 15899.92 3199.73 3299.55 8499.86 6098.45 15496.91 22298.74 16498.33 17599.02 12699.54 6099.47 4799.88 3399.61 66
ACMMPR99.51 5899.32 7399.72 6199.87 5599.33 10999.61 7199.85 6799.19 6999.73 8898.73 16599.95 2699.61 4799.35 8399.14 7499.66 9999.58 77
HPM-MVS++copyleft99.23 11698.98 13099.53 9999.75 12699.02 15899.44 11399.77 12198.65 13599.52 14098.72 16699.92 5399.33 9098.77 17798.40 16199.40 16399.36 131
SCA97.25 20596.05 20798.64 19499.36 20299.02 15899.27 14499.96 1298.25 17199.69 10098.71 16794.66 19697.95 17993.95 21492.35 21095.64 21495.40 214
SteuartSystems-ACMMP99.47 6799.22 9199.76 4899.88 4999.36 10299.65 6499.84 7798.47 15199.80 5998.68 16899.96 1499.68 3299.37 8099.06 9299.72 8899.66 54
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS99.41 8299.20 9699.65 7499.80 10099.23 13399.44 11399.75 13498.60 14499.74 8298.66 16999.93 4599.48 7699.33 8799.16 7199.73 8599.48 105
MVEpermissive91.08 1897.68 19797.65 18397.71 21698.46 22191.62 22597.92 22298.86 20998.73 13097.99 21998.64 17099.96 1499.17 10699.59 5697.75 18793.87 22497.27 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
xxxxxxxxxxxxxcwj98.97 14798.97 13298.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.96 1498.04 17399.02 13898.76 13199.52 14299.13 156
SF-MVS98.96 14898.95 13498.98 17499.64 15798.89 16898.00 22099.58 16698.42 15899.08 18798.63 17199.83 8998.04 17399.02 13898.76 13199.52 14299.13 156
baseline198.39 18097.59 18599.31 13999.78 10999.45 8099.13 15999.53 17798.06 18298.87 19898.63 17190.04 21498.76 14698.85 16698.84 12399.81 5899.28 140
Anonymous20240521199.14 10899.87 5599.55 5699.50 10099.70 14098.55 14898.61 17498.46 17198.76 14699.66 4899.50 4299.85 4499.63 61
MS-PatchMatch98.94 15298.71 15599.21 15599.52 17998.22 20798.97 17699.53 17798.76 12599.50 14498.59 17599.56 13098.68 15098.63 18298.45 15999.05 18598.73 178
3Dnovator99.16 399.42 8099.22 9199.65 7499.78 10999.13 14899.50 10099.85 6799.40 4499.80 5998.59 17599.79 10399.30 9799.20 11799.06 9299.71 9199.35 133
MCST-MVS99.17 12598.82 14999.57 9199.75 12698.70 18499.25 14899.69 14298.62 14099.59 12498.54 17799.79 10399.53 6098.48 18898.15 17499.64 11099.43 116
Effi-MVS+-dtu99.01 14399.05 12098.98 17499.60 16899.13 14899.03 17299.61 15898.52 15099.01 18998.53 17899.83 8996.95 19799.48 6398.59 15199.66 9999.25 145
ACMM98.37 1299.47 6799.23 8899.74 5899.86 6999.19 13899.68 5799.86 6099.16 7699.71 9798.52 17999.95 2699.62 4599.35 8399.02 9999.74 8199.42 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.39 8899.28 8099.52 10399.77 11799.39 9399.55 8499.82 9098.93 10599.64 11398.52 17999.67 12098.58 15699.74 3799.63 3099.75 7699.06 163
Fast-Effi-MVS+-dtu98.82 16098.80 15198.84 18799.51 18598.90 16598.96 17799.91 4398.29 16999.11 18698.47 18199.63 12396.03 20899.21 11498.12 17699.52 14299.01 168
OpenMVScopyleft98.82 899.17 12598.85 14599.53 9999.75 12699.06 15699.36 12799.82 9098.28 17099.76 7298.47 18199.61 12498.91 13698.80 17498.70 14099.60 12499.04 167
EIA-MVS99.23 11699.03 12399.47 11099.83 8999.64 4199.16 15599.81 9897.11 20699.65 11298.44 18399.78 10698.61 15599.46 6799.22 6499.75 7699.59 69
MP-MVScopyleft99.35 9599.09 11799.65 7499.84 8399.22 13499.59 7699.78 11498.13 17699.67 10898.44 18399.93 4599.43 8299.31 9199.09 8999.60 12499.49 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
canonicalmvs99.00 14498.68 15699.37 13299.68 15099.42 8998.94 18199.89 5199.00 9498.99 19098.43 18595.69 19398.96 13399.18 12399.18 6899.74 8199.88 7
ACMP98.32 1399.44 7699.18 10099.75 5299.83 8999.18 13999.64 6599.83 8398.81 12299.79 6398.42 18699.96 1499.64 4299.46 6798.98 10799.74 8199.44 113
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CMPMVSbinary76.62 1998.64 17098.60 15998.68 19299.33 20497.07 21998.11 21898.50 21397.69 19699.26 17798.35 18799.66 12197.62 18499.43 7699.02 9999.24 17899.01 168
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD-MVScopyleft99.17 12598.92 13799.46 11299.78 10999.24 13199.34 13199.78 11497.79 19399.48 14898.25 18899.88 7198.77 14599.18 12398.92 11499.63 11399.18 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS99.32 10198.99 12899.71 6299.86 6999.31 11499.59 7699.86 6097.51 19999.75 7698.23 18999.94 3899.53 6099.29 9699.08 9099.65 10199.54 91
CDPH-MVS99.05 14098.63 15899.54 9899.75 12698.78 17699.59 7699.68 14897.79 19399.37 16898.20 19099.86 7999.14 11598.58 18498.01 18299.68 9599.16 153
CNVR-MVS99.08 13698.83 14699.37 13299.61 16498.74 18099.15 15699.54 17298.59 14599.37 16898.15 19199.88 7199.08 12098.91 15598.46 15799.48 15099.06 163
E-PMN96.72 20995.78 20897.81 21299.45 19295.46 22298.14 21798.33 21797.99 18698.73 20598.09 19298.97 16197.54 18697.45 20491.09 21494.70 22191.40 220
tpm cat195.52 21593.49 21797.88 21199.28 20897.87 21798.65 20099.77 12197.27 20399.46 15298.04 19390.99 21195.46 21088.57 22188.14 22094.64 22293.54 219
3Dnovator+98.92 799.31 10599.03 12399.63 8099.77 11798.90 16599.52 9399.81 9899.37 4899.72 9198.03 19499.73 11199.32 9398.99 14598.81 12899.67 9799.36 131
train_agg98.89 15698.48 16899.38 12699.69 14498.76 17999.31 13599.60 16097.71 19598.98 19197.89 19599.89 6599.29 9898.32 18997.59 19199.42 16299.16 153
EPNet98.06 18598.11 18198.00 20999.60 16898.99 16298.38 20999.68 14898.18 17598.85 20097.89 19595.60 19492.72 21998.30 19098.10 17898.76 19299.72 40
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DCV-MVSNet99.43 7799.23 8899.67 7099.92 3199.76 2299.64 6599.93 2799.06 8799.68 10797.77 19798.97 16198.97 13099.72 4099.54 3899.88 3399.81 20
dps95.59 21493.46 21898.08 20699.33 20498.22 20798.87 18899.70 14096.17 22098.87 19897.75 19886.85 22396.60 20291.24 21889.62 21795.10 21794.34 216
ACMMPcopyleft99.36 9299.06 11999.71 6299.86 6999.36 10299.63 6999.85 6798.33 16799.72 9197.73 19999.94 3899.53 6099.37 8099.13 8299.65 10199.56 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PatchMatch-RL98.80 16298.52 16599.12 16599.38 19998.70 18498.56 20399.55 17197.81 19299.34 17497.57 20099.31 15198.67 15199.27 10498.62 14899.22 18098.35 188
CNLPA98.82 16098.52 16599.18 15999.21 21098.50 19598.73 19899.34 19898.73 13099.56 13097.55 20199.42 14199.06 12398.93 15098.10 17899.21 18198.38 186
CPTT-MVS99.21 11998.89 14199.58 8899.72 13999.12 15199.30 14099.76 12998.62 14099.66 11097.51 20299.89 6599.48 7699.01 14098.64 14699.58 13199.40 125
EMVS96.47 21195.38 21297.74 21599.42 19795.37 22398.07 21998.27 21897.85 19198.90 19697.48 20398.73 16797.20 19097.21 20790.39 21694.59 22390.65 221
AdaColmapbinary98.93 15398.53 16399.39 12299.52 17998.65 18799.11 16299.59 16398.08 18099.44 15497.46 20499.45 13799.24 10298.92 15298.44 16099.44 15698.73 178
HQP-MVS98.70 16998.19 17899.28 14599.61 16498.52 19398.71 19999.35 19697.97 18799.53 13497.38 20599.85 8599.14 11597.53 20296.85 19999.36 16799.26 144
X-MVS99.30 10798.99 12899.66 7299.85 7799.30 11699.49 10799.82 9098.32 16899.69 10097.31 20699.93 4599.50 6899.37 8099.16 7199.60 12499.53 94
abl_699.21 15599.49 18898.62 18898.90 18699.44 18897.08 20799.61 11997.19 20799.73 11198.35 16199.45 15498.84 173
MAR-MVS98.54 17498.15 17998.98 17499.37 20098.09 21098.56 20399.65 15596.11 22199.27 17697.16 20899.50 13498.03 17598.87 16198.23 17099.01 18699.13 156
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Gipumacopyleft99.55 5599.23 8899.91 599.87 5599.52 6999.86 1099.93 2799.87 199.96 296.72 20999.55 13199.97 199.77 3499.46 4999.87 3999.74 35
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PLCcopyleft97.83 1698.88 15798.52 16599.30 14099.45 19298.60 19098.65 20099.49 18198.66 13499.59 12496.33 21099.59 12799.17 10698.87 16198.53 15399.46 15299.05 165
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSLP-MVS++98.92 15498.73 15499.14 16299.44 19499.00 16098.36 21099.35 19698.82 12199.38 16596.06 21199.79 10399.07 12198.88 16099.05 9599.27 17599.53 94
NCCC98.88 15798.42 16999.42 11799.62 16098.81 17499.10 16399.54 17298.76 12599.53 13495.97 21299.80 10099.16 10998.49 18798.06 18199.55 13899.05 165
DeepMVS_CXcopyleft96.39 22197.15 22388.89 22097.94 18899.51 14295.71 21397.88 18198.19 16298.92 15297.73 20397.75 201
FMVSNet597.69 19596.98 19498.53 19798.53 22099.36 10298.90 18699.54 17296.38 21998.44 21595.38 21490.08 21397.05 19599.46 6799.06 9298.73 19399.12 159
GG-mvs-BLEND70.44 21796.91 19539.57 2193.32 22896.51 22091.01 2264.05 22597.03 20933.20 22794.67 21597.75 1827.59 22498.28 19196.85 19998.24 19997.26 205
DPM-MVS98.10 18397.32 19199.01 17399.52 17997.92 21498.47 20899.45 18598.25 17198.91 19593.99 21699.69 11798.73 14896.29 21096.32 20299.00 18798.77 177
thres600view797.86 18996.53 20199.41 12099.84 8399.52 6999.36 12799.76 12997.32 20298.38 21793.24 21787.25 22299.23 10399.11 13199.75 1899.88 3399.48 105
thres100view90097.69 19596.37 20399.23 14999.74 13599.21 13798.81 19599.43 18996.10 22298.70 20692.99 21889.10 21898.88 13998.58 18499.31 6199.82 5599.27 141
tfpn200view997.85 19096.54 19999.38 12699.74 13599.52 6999.17 15499.76 12996.10 22298.70 20692.99 21889.10 21899.00 12799.11 13199.56 3499.88 3399.41 120
thres20097.87 18796.56 19899.39 12299.76 12299.52 6999.13 15999.76 12996.88 21698.66 20992.87 22088.77 22099.16 10999.11 13199.42 5499.88 3399.33 134
thres40097.82 19196.47 20299.40 12199.81 9999.44 8299.29 14299.69 14297.15 20498.57 21092.82 22187.96 22199.16 10998.96 14799.55 3799.86 4199.41 120
IB-MVS98.10 1497.76 19297.40 19098.18 20499.62 16099.11 15398.24 21398.35 21596.56 21899.44 15491.28 22298.96 16393.84 21598.09 19498.62 14899.56 13599.18 147
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testmvs22.33 21829.66 22013.79 2208.97 22610.35 22715.53 2298.09 22432.51 22419.87 22845.18 22330.56 23117.05 22329.96 22224.74 22113.21 22534.30 222
test12321.52 21928.47 22113.42 2217.29 22710.12 22815.70 2288.31 22331.54 22519.34 22936.33 22437.40 23017.14 22227.45 22323.17 22212.73 22633.30 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def99.96 2
9.1499.57 128
SR-MVS99.73 13799.74 13699.88 71
our_test_399.75 12699.11 15399.74 47
MTAPA99.62 11699.95 26
MTMP99.53 13499.92 53
Patchmatch-RL test65.75 227
XVS99.86 6999.30 11699.72 5299.69 10099.93 4599.60 124
X-MVStestdata99.86 6999.30 11699.72 5299.69 10099.93 4599.60 124
mPP-MVS99.84 8399.92 53
NP-MVS97.37 201
Patchmtry98.19 20998.91 18399.97 199.43 156