This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13099.20 3899.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8199.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
mvs_tets99.63 599.67 599.49 4999.88 798.61 9299.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9299.28 3099.66 1999.09 6799.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
EU-MVSNet97.66 19498.50 9195.13 33399.63 5085.84 36298.35 11698.21 29798.23 12499.54 3099.46 4695.02 22999.68 25498.24 7899.87 5599.87 4
UA-Net99.47 1199.40 1499.70 299.49 8699.29 1899.80 399.72 1099.82 399.04 11699.81 398.05 6999.96 898.85 4299.99 599.86 6
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
RRT_test8_iter0595.24 29695.13 29695.57 32597.32 34887.02 35997.99 15499.41 9498.06 13799.12 9899.05 11266.85 37599.85 10998.93 3799.47 21099.84 8
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6399.34 1599.69 1598.93 8499.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
ANet_high99.57 799.67 599.28 8399.89 698.09 13499.14 4699.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6099.29 2699.53 5499.53 2399.46 4399.41 5598.23 5299.95 1598.89 4099.95 1699.81 11
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11199.30 2599.57 3599.61 1999.40 5399.50 3997.12 14099.85 10999.02 3399.94 2499.80 12
CP-MVSNet99.21 2999.09 3499.56 2499.65 4598.96 6999.13 4799.34 12199.42 3199.33 6599.26 7397.01 14799.94 2398.74 5199.93 2899.79 13
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
CVMVSNet96.25 27597.21 21593.38 35099.10 17380.56 37697.20 22998.19 30096.94 22699.00 12399.02 11989.50 29899.80 17696.36 20999.59 17199.78 14
Anonymous2023121199.27 2599.27 2499.26 8999.29 12898.18 12799.49 899.51 5899.70 899.80 999.68 1496.84 15599.83 14299.21 2399.91 4399.77 16
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5299.29 2699.54 5099.62 1799.56 2899.42 5298.16 6299.96 898.78 4699.93 2899.77 16
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1799.55 4699.46 2799.50 3999.34 6497.30 12999.93 2898.90 3899.93 2899.77 16
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5999.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16799.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5598.98 6299.48 7099.68 999.46 4399.26 7398.62 3099.73 23099.17 2699.92 3799.76 20
FIs99.14 3299.09 3499.29 8199.70 3898.28 11799.13 4799.52 5799.48 2499.24 8599.41 5596.79 16199.82 15398.69 5599.88 5299.76 20
v7n99.53 899.57 899.41 6199.88 798.54 10099.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
APDe-MVS98.99 4098.79 5399.60 1399.21 14399.15 4898.87 6899.48 7097.57 17099.35 6299.24 7697.83 8399.89 5997.88 10099.70 12799.75 22
test_part197.91 17097.46 20099.27 8698.80 24098.18 12799.07 5399.36 10999.75 599.63 2599.49 4282.20 34899.89 5998.87 4199.95 1699.74 24
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2199.51 5899.64 1299.56 2899.46 4698.23 5299.97 398.78 4699.93 2899.72 25
MSC_two_6792asdad99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
No_MVS99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
PMMVS298.07 16098.08 15498.04 23899.41 10994.59 28194.59 34299.40 9797.50 17698.82 16098.83 17496.83 15799.84 12797.50 12099.81 7299.71 26
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9797.47 20999.57 3599.37 3599.21 8999.61 2396.76 16499.83 14298.06 8999.83 6599.71 26
XXY-MVS99.14 3299.15 3299.10 11199.76 2397.74 17798.85 7199.62 2298.48 10899.37 5899.49 4298.75 2499.86 9498.20 8199.80 8099.71 26
test_0728_THIRD98.17 13199.08 10699.02 11997.89 7999.88 7097.07 14499.71 12299.70 31
MSP-MVS98.40 12998.00 16099.61 999.57 5799.25 2398.57 9099.35 11597.55 17399.31 7397.71 29394.61 24299.88 7096.14 22299.19 25699.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7999.23 2598.02 15099.32 12899.88 7096.99 15099.63 15599.68 33
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6599.63 699.58 2899.44 2999.78 1099.76 696.39 18299.92 3599.44 1399.92 3799.68 33
CHOSEN 1792x268897.49 20597.14 22098.54 19799.68 4196.09 24196.50 27199.62 2291.58 33598.84 15598.97 13792.36 28099.88 7096.76 17399.95 1699.67 35
IU-MVS99.49 8699.15 4898.87 24592.97 31899.41 5096.76 17399.62 15899.66 36
test_241102_TWO99.30 14498.03 13899.26 8099.02 11997.51 11499.88 7096.91 15699.60 16799.66 36
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 13199.15 4897.01 24099.39 9997.67 16199.44 4798.99 13197.53 11199.89 5995.40 25399.68 13899.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9599.27 3299.57 3599.39 3399.75 1299.62 2199.17 1299.83 14299.06 3099.62 15899.66 36
EI-MVSNet-UG-set98.69 8398.71 6298.62 18199.10 17396.37 23397.23 22598.87 24599.20 4999.19 9198.99 13197.30 12999.85 10998.77 4999.79 8599.65 40
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3799.64 41
bset_n11_16_dypcd96.99 24796.56 25698.27 22299.00 19595.25 26192.18 36594.05 35798.75 9299.01 12098.38 24488.98 30199.93 2898.77 4999.92 3799.64 41
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17999.09 17696.40 23297.23 22598.86 25099.20 4999.18 9598.97 13797.29 13199.85 10998.72 5299.78 8999.64 41
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11099.07 5399.55 4698.30 11699.65 2299.45 5099.22 999.76 21598.44 6899.77 9399.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 5098.81 5299.28 8399.21 14398.45 10698.46 10699.33 12699.63 1499.48 4099.15 9497.23 13799.75 22297.17 13399.66 14999.63 45
test111196.49 26796.82 23895.52 32799.42 10787.08 35899.22 3587.14 37299.11 5799.46 4399.58 2788.69 30399.86 9498.80 4599.95 1699.62 46
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8698.36 11499.00 5999.45 8199.63 1499.52 3599.44 5198.25 5099.88 7099.09 2899.84 5999.62 46
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5798.97 6698.23 12399.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
LGP-MVS_train99.47 5499.57 5798.97 6699.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
Test_1112_low_res96.99 24796.55 25798.31 21899.35 12195.47 25695.84 30499.53 5491.51 33796.80 30698.48 23691.36 28799.83 14296.58 18799.53 19399.62 46
v1098.97 4599.11 3398.55 19499.44 10296.21 23898.90 6699.55 4698.73 9399.48 4099.60 2596.63 17199.83 14299.70 399.99 599.61 51
Regformer-498.73 7698.68 6898.89 14699.02 19297.22 20497.17 23399.06 20999.21 4699.17 9698.85 16897.45 12199.86 9498.48 6699.70 12799.60 52
v899.01 3899.16 3098.57 18999.47 9696.31 23698.90 6699.47 7699.03 7399.52 3599.57 2896.93 15199.81 16799.60 499.98 999.60 52
EI-MVSNet98.40 12998.51 8998.04 23899.10 17394.73 27597.20 22998.87 24598.97 7999.06 10999.02 11996.00 19699.80 17698.58 5899.82 6899.60 52
SixPastTwentyTwo98.75 7398.62 7599.16 10299.83 1597.96 15599.28 3098.20 29899.37 3599.70 1599.65 1992.65 27899.93 2899.04 3299.84 5999.60 52
IterMVS-LS98.55 10998.70 6598.09 23199.48 9494.73 27597.22 22899.39 9998.97 7999.38 5699.31 6896.00 19699.93 2898.58 5899.97 1199.60 52
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 23096.60 25398.96 13699.62 5297.28 20095.17 32499.50 6094.21 30199.01 12098.32 25386.61 31499.99 297.10 14299.84 5999.60 52
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5399.29 1897.82 17199.25 16396.94 22698.78 16399.12 9898.02 7099.84 12797.13 14099.67 14499.59 58
VPNet98.87 5798.83 4999.01 13299.70 3897.62 18598.43 10999.35 11599.47 2699.28 7499.05 11296.72 16799.82 15398.09 8799.36 22799.59 58
WR-MVS98.40 12998.19 13999.03 12899.00 19597.65 18296.85 25298.94 23298.57 10598.89 14598.50 23195.60 21399.85 10997.54 11799.85 5799.59 58
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4599.29 1899.16 4499.43 9096.74 23498.61 18498.38 24498.62 3099.87 8796.47 20099.67 14499.59 58
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 4099.01 3998.94 13999.50 7997.47 19098.04 14799.59 2698.15 13499.40 5399.36 6198.58 3399.76 21598.78 4699.68 13899.59 58
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11899.17 4399.78 699.11 5799.27 7699.48 4498.82 2199.95 1598.94 3699.93 2899.59 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 4099.35 1297.16 23599.38 10194.87 28798.97 12998.99 13198.01 7199.88 7097.29 12899.70 12799.58 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 8398.40 11099.54 2999.53 7299.17 3998.52 9599.31 13497.46 18498.44 20498.51 22897.83 8399.88 7096.46 20199.58 17799.58 64
ACMMPR98.70 8198.42 10899.54 2999.52 7499.14 5298.52 9599.31 13497.47 17998.56 19498.54 22497.75 9099.88 7096.57 18999.59 17199.58 64
PGM-MVS98.66 9098.37 11699.55 2699.53 7299.18 3898.23 12399.49 6897.01 22498.69 17398.88 16198.00 7299.89 5995.87 23399.59 17199.58 64
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2599.16 4398.23 12399.31 13497.92 14698.90 14298.90 15298.00 7299.88 7096.15 22199.72 11799.58 64
Skip Steuart: Steuart Systems R&D Blog.
Regformer-398.61 9898.61 7898.63 17999.02 19296.53 23097.17 23398.84 25499.13 5699.10 10398.85 16897.24 13699.79 19098.41 7199.70 12799.57 69
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11698.87 7298.39 11299.42 9399.42 3199.36 6099.06 10598.38 4399.95 1598.34 7599.90 4799.57 69
mPP-MVS98.64 9398.34 12099.54 2999.54 7099.17 3998.63 8399.24 16897.47 17998.09 22998.68 19997.62 10299.89 5996.22 21699.62 15899.57 69
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22599.73 2595.15 26697.36 21699.68 1694.45 29698.99 12499.27 7196.87 15499.94 2397.13 14099.91 4399.57 69
1112_ss97.29 22296.86 23498.58 18699.34 12396.32 23596.75 25999.58 2893.14 31796.89 30097.48 30892.11 28399.86 9496.91 15699.54 18999.57 69
zzz-MVS98.79 6598.52 8799.61 999.67 4299.36 1097.33 21899.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
MTAPA98.88 5698.64 7399.61 999.67 4299.36 1098.43 10999.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
XVS98.72 7798.45 10299.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26598.63 21397.50 11599.83 14296.79 16999.53 19399.56 74
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 8999.29 2699.63 2199.30 4299.65 2299.60 2599.16 1499.82 15399.07 2999.83 6599.56 74
X-MVStestdata94.32 30892.59 32699.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26545.85 37297.50 11599.83 14296.79 16999.53 19399.56 74
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3299.35 1299.00 5999.50 6097.33 19798.94 13898.86 16598.75 2499.82 15397.53 11899.71 12299.56 74
K. test v398.00 16597.66 18499.03 12899.79 1997.56 18699.19 4292.47 36299.62 1799.52 3599.66 1789.61 29699.96 899.25 2099.81 7299.56 74
CP-MVS98.70 8198.42 10899.52 4199.36 11799.12 5798.72 7799.36 10997.54 17498.30 21498.40 24097.86 8199.89 5996.53 19799.72 11799.56 74
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5799.21 2798.46 10699.29 15197.28 20398.11 22798.39 24298.00 7299.87 8796.86 16699.64 15299.55 82
v119298.60 10098.66 7198.41 20999.27 13195.88 24597.52 20399.36 10997.41 19099.33 6599.20 8196.37 18599.82 15399.57 699.92 3799.55 82
v124098.55 10998.62 7598.32 21699.22 14195.58 25197.51 20599.45 8197.16 21799.45 4699.24 7696.12 19199.85 10999.60 499.88 5299.55 82
UGNet98.53 11498.45 10298.79 16097.94 32296.96 21899.08 5098.54 28399.10 6496.82 30599.47 4596.55 17499.84 12798.56 6399.94 2499.55 82
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 33191.89 33493.89 34499.38 11282.28 37399.32 1766.03 38099.08 6998.77 16699.57 2866.26 37799.84 12798.71 5399.95 1699.54 86
ECVR-MVScopyleft96.42 27096.61 25195.85 31899.38 11288.18 35399.22 3586.00 37499.08 6999.36 6099.57 2888.47 30899.82 15398.52 6499.95 1699.54 86
testtj97.79 18797.25 21199.42 5899.03 19098.85 7397.78 17399.18 18395.83 26698.12 22598.50 23195.50 21899.86 9492.23 32899.07 27299.54 86
v14419298.54 11298.57 8398.45 20699.21 14395.98 24297.63 19099.36 10997.15 21999.32 7199.18 8495.84 20799.84 12799.50 1099.91 4399.54 86
v192192098.54 11298.60 8098.38 21299.20 14795.76 25097.56 19999.36 10997.23 21299.38 5699.17 8896.02 19499.84 12799.57 699.90 4799.54 86
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5799.22 2698.50 10099.19 17997.61 16797.58 26198.66 20497.40 12499.88 7094.72 26799.60 16799.54 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2699.59 2099.71 1499.57 2897.12 14099.90 4999.21 2399.87 5599.54 86
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6499.16 4398.87 6899.37 10597.16 21798.82 16099.01 12897.71 9399.87 8796.29 21399.69 13399.54 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 16199.21 2798.05 14599.22 17194.16 30398.98 12699.10 10297.52 11399.79 19096.45 20299.64 15299.53 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 7898.44 10499.51 4599.49 8699.16 4398.52 9599.31 13497.47 17998.58 19098.50 23197.97 7699.85 10996.57 18999.59 17199.53 94
#test#98.50 11798.16 14499.51 4599.49 8699.16 4398.03 14899.31 13496.30 25198.58 19098.50 23197.97 7699.85 10995.68 24399.59 17199.53 94
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15998.74 8197.68 18599.40 9799.14 5599.06 10998.59 22096.71 16899.93 2898.57 6099.77 9399.53 94
GST-MVS98.61 9898.30 12599.52 4199.51 7699.20 3398.26 12199.25 16397.44 18898.67 17598.39 24297.68 9499.85 10996.00 22599.51 19999.52 98
Regformer-298.60 10098.46 10099.02 13198.85 22797.71 17996.91 24999.09 20598.98 7899.01 12098.64 20997.37 12699.84 12797.75 11199.57 18199.52 98
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17698.24 7899.84 5999.52 98
v114498.60 10098.66 7198.41 20999.36 11795.90 24497.58 19799.34 12197.51 17599.27 7699.15 9496.34 18799.80 17699.47 1299.93 2899.51 101
Regformer-198.55 10998.44 10498.87 14898.85 22797.29 19896.91 24998.99 22998.97 7998.99 12498.64 20997.26 13599.81 16797.79 10499.57 18199.51 101
v2v48298.56 10598.62 7598.37 21399.42 10795.81 24897.58 19799.16 19297.90 14899.28 7499.01 12895.98 20099.79 19099.33 1599.90 4799.51 101
CPTT-MVS97.84 18397.36 20599.27 8699.31 12498.46 10598.29 11899.27 15794.90 28697.83 24498.37 24694.90 23199.84 12793.85 29799.54 18999.51 101
DU-MVS98.82 6198.63 7499.39 6499.16 16198.74 8197.54 20199.25 16398.84 8999.06 10998.76 18796.76 16499.93 2898.57 6099.77 9399.50 105
NR-MVSNet98.95 4898.82 5099.36 6599.16 16198.72 8699.22 3599.20 17499.10 6499.72 1398.76 18796.38 18499.86 9498.00 9499.82 6899.50 105
abl_698.99 4098.78 5499.61 999.45 10099.46 498.60 8699.50 6098.59 10199.24 8599.04 11598.54 3599.89 5996.45 20299.62 15899.50 105
ACMH+96.62 999.08 3599.00 4099.33 7699.71 3298.83 7598.60 8699.58 2899.11 5799.53 3399.18 8498.81 2299.67 25796.71 18099.77 9399.50 105
DVP-MVS++98.90 5498.70 6599.51 4598.43 29399.15 4899.43 1099.32 12898.17 13199.26 8099.02 11998.18 5999.88 7097.07 14499.45 21499.49 109
PC_three_145293.27 31599.40 5398.54 22498.22 5597.00 37095.17 25599.45 21499.49 109
GeoE99.05 3698.99 4299.25 9199.44 10298.35 11598.73 7699.56 4298.42 11098.91 14198.81 17998.94 1899.91 4598.35 7499.73 11099.49 109
h-mvs3397.77 18897.33 20999.10 11199.21 14397.84 16598.35 11698.57 28299.11 5798.58 19099.02 11988.65 30699.96 898.11 8496.34 35299.49 109
IterMVS-SCA-FT97.85 18298.18 14096.87 29799.27 13191.16 34395.53 31499.25 16399.10 6499.41 5099.35 6293.10 26999.96 898.65 5699.94 2499.49 109
new-patchmatchnet98.35 13498.74 5797.18 28399.24 13692.23 32896.42 27699.48 7098.30 11699.69 1799.53 3697.44 12299.82 15398.84 4399.77 9399.49 109
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16998.93 7097.76 17899.28 15494.97 28498.72 17298.77 18597.04 14399.85 10993.79 29899.54 18999.49 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 13898.04 15799.07 11899.56 6497.83 16699.29 2698.07 30499.03 7398.59 18899.13 9792.16 28299.90 4996.87 16499.68 13899.49 109
DeepC-MVS97.60 498.97 4598.93 4399.10 11199.35 12197.98 15098.01 15399.46 7897.56 17299.54 3099.50 3998.97 1699.84 12798.06 8999.92 3799.49 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6799.14 5298.07 14199.37 10597.62 16599.04 11698.96 14098.84 2099.79 19097.43 12299.65 15099.49 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117298.76 7198.49 9499.57 1899.18 15799.37 998.39 11299.31 13498.43 10998.90 14298.88 16197.49 11899.86 9496.43 20499.37 22699.48 119
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7999.21 2798.02 15098.84 25497.97 14299.08 10699.02 11997.61 10399.88 7096.99 15099.63 15599.48 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 7898.43 10699.57 1899.18 15799.35 1298.36 11599.29 15198.29 11998.88 14998.85 16897.53 11199.87 8796.14 22299.31 23599.48 119
TSAR-MVS + MP.98.63 9598.49 9499.06 12399.64 4897.90 16098.51 9998.94 23296.96 22599.24 8598.89 16097.83 8399.81 16796.88 16399.49 20799.48 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 14997.95 16399.01 13299.58 5397.74 17799.01 5797.29 32499.67 1098.97 12999.50 3990.45 29199.80 17697.88 10099.20 25299.48 119
IterMVS97.73 18998.11 15096.57 30499.24 13690.28 34495.52 31699.21 17298.86 8799.33 6599.33 6693.11 26899.94 2398.49 6599.94 2499.48 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 15197.90 16899.08 11599.57 5797.97 15199.31 2198.32 29399.01 7598.98 12699.03 11891.59 28699.79 19095.49 25199.80 8099.48 119
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7698.79 7997.68 18599.38 10195.76 26898.81 16298.82 17798.36 4499.82 15394.75 26499.77 9399.48 119
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 16597.63 18799.10 11199.24 13698.17 12996.89 25198.73 27395.66 26997.92 23797.70 29597.17 13999.66 26596.18 22099.23 24899.47 127
3Dnovator+97.89 398.69 8398.51 8999.24 9398.81 23898.40 10799.02 5699.19 17998.99 7698.07 23099.28 6997.11 14299.84 12796.84 16799.32 23399.47 127
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17699.13 5597.52 20398.75 27097.46 18496.90 29997.83 28796.01 19599.84 12795.82 23799.35 22999.46 129
V4298.78 6898.78 5498.76 16699.44 10297.04 21498.27 12099.19 17997.87 15099.25 8499.16 9096.84 15599.78 20299.21 2399.84 5999.46 129
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 15099.27 2198.49 10199.33 12698.64 9599.03 11998.98 13597.89 7999.85 10996.54 19699.42 21899.46 129
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13698.73 8497.73 18199.38 10198.93 8499.12 9898.73 19096.77 16299.86 9498.63 5799.80 8099.46 129
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.49 11899.86 9496.56 19299.39 22299.45 133
RE-MVS-def98.58 8299.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.75 9096.56 19299.39 22299.45 133
RRT_MVS97.07 23896.57 25598.58 18695.89 37096.33 23497.36 21698.77 26697.85 15299.08 10699.12 9882.30 34599.96 898.82 4499.90 4799.45 133
HQP_MVS97.99 16897.67 18198.93 14099.19 15097.65 18297.77 17699.27 15798.20 12897.79 24797.98 27794.90 23199.70 24194.42 27699.51 19999.45 133
plane_prior599.27 15799.70 24194.42 27699.51 19999.45 133
lessismore_v098.97 13599.73 2597.53 18886.71 37399.37 5899.52 3889.93 29499.92 3598.99 3599.72 11799.44 138
TAMVS98.24 14798.05 15698.80 15899.07 18097.18 20997.88 16498.81 26096.66 23899.17 9699.21 7994.81 23799.77 20896.96 15499.88 5299.44 138
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9498.39 29898.97 6695.03 32899.18 18396.88 22999.33 6598.78 18398.16 6299.28 34496.74 17599.62 15899.44 138
3Dnovator98.27 298.81 6398.73 5899.05 12598.76 24397.81 17199.25 3399.30 14498.57 10598.55 19699.33 6697.95 7899.90 4997.16 13499.67 14499.44 138
MVSFormer98.26 14498.43 10697.77 25098.88 22293.89 30199.39 1399.56 4299.11 5798.16 22198.13 26493.81 25999.97 399.26 1899.57 18199.43 142
jason97.45 21097.35 20697.76 25199.24 13693.93 29795.86 30198.42 28994.24 30098.50 20198.13 26494.82 23599.91 4597.22 13199.73 11099.43 142
jason: jason.
NCCC97.86 17797.47 19999.05 12598.61 27298.07 14096.98 24298.90 24097.63 16497.04 29097.93 28295.99 19999.66 26595.31 25498.82 29399.43 142
Anonymous2024052198.69 8398.87 4598.16 22999.77 2095.11 26999.08 5099.44 8499.34 3899.33 6599.55 3294.10 25699.94 2399.25 2099.96 1499.42 145
MVS_111021_HR98.25 14698.08 15498.75 16899.09 17697.46 19195.97 29399.27 15797.60 16897.99 23698.25 25698.15 6499.38 33296.87 16499.57 18199.42 145
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5399.10 6098.74 7499.56 4299.09 6799.33 6599.19 8298.40 4299.72 23895.98 22799.76 10399.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 5298.72 6099.49 4999.49 8699.17 3998.10 13799.31 13498.03 13899.66 2099.02 11998.36 4499.88 7096.91 15699.62 15899.41 148
OPU-MVS98.82 15498.59 27698.30 11698.10 13798.52 22798.18 5998.75 36494.62 26899.48 20999.41 148
our_test_397.39 21497.73 17996.34 30898.70 25689.78 34694.61 34198.97 23196.50 24299.04 11698.85 16895.98 20099.84 12797.26 13099.67 14499.41 148
casdiffmvs98.95 4899.00 4098.81 15699.38 11297.33 19697.82 17199.57 3599.17 5499.35 6299.17 8898.35 4799.69 24598.46 6799.73 11099.41 148
YYNet197.60 19897.67 18197.39 27799.04 18793.04 31595.27 32198.38 29297.25 20698.92 14098.95 14495.48 22099.73 23096.99 15098.74 29599.41 148
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27699.04 18793.09 31195.27 32198.42 28997.26 20598.88 14998.95 14495.43 22199.73 23097.02 14798.72 29799.41 148
GBi-Net98.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
test198.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
FMVSNet199.17 3099.17 2999.17 9999.55 6798.24 12099.20 3899.44 8499.21 4699.43 4899.55 3297.82 8699.86 9498.42 7099.89 5199.41 148
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6498.69 8099.54 5099.31 4099.62 2799.53 3697.36 12799.86 9499.24 2299.71 12299.39 157
v14898.45 12298.60 8098.00 24099.44 10294.98 27097.44 21299.06 20998.30 11699.32 7198.97 13796.65 17099.62 27798.37 7299.85 5799.39 157
test20.0398.78 6898.77 5698.78 16399.46 9797.20 20797.78 17399.24 16899.04 7299.41 5098.90 15297.65 9799.76 21597.70 11299.79 8599.39 157
CDPH-MVS97.26 22396.66 24999.07 11899.00 19598.15 13096.03 29199.01 22591.21 34197.79 24797.85 28696.89 15399.69 24592.75 32099.38 22599.39 157
EPNet96.14 27795.44 28698.25 22390.76 37795.50 25597.92 16094.65 34998.97 7992.98 36298.85 16889.12 30099.87 8795.99 22699.68 13899.39 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 15497.87 17099.07 11898.67 26598.24 12097.01 24098.93 23497.25 20697.62 25798.34 25097.27 13299.57 29496.42 20599.33 23299.39 157
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16898.61 27297.23 20297.76 17899.09 20597.31 20098.75 16998.66 20497.56 10799.64 27296.10 22499.55 18899.39 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12399.11 16997.97 15196.53 26899.54 5098.24 12298.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
SF-MVS98.53 11498.27 12999.32 7899.31 12498.75 8098.19 12799.41 9496.77 23398.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
test9_res93.28 31199.15 26299.38 164
OPM-MVS98.56 10598.32 12499.25 9199.41 10998.73 8497.13 23799.18 18397.10 22098.75 16998.92 14898.18 5999.65 27096.68 18299.56 18699.37 167
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 32599.16 25999.37 167
AllTest98.44 12398.20 13799.16 10299.50 7998.55 9798.25 12299.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
TestCases99.16 10299.50 7998.55 9799.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23699.44 10294.96 27196.63 26599.15 19898.35 11298.83 15699.11 10094.31 24999.85 10996.60 18698.72 29799.37 167
MVSTER96.86 25196.55 25797.79 24997.91 32494.21 28797.56 19998.87 24597.49 17899.06 10999.05 11280.72 35099.80 17698.44 6899.82 6899.37 167
pmmvs597.64 19597.49 19598.08 23499.14 16695.12 26896.70 26299.05 21393.77 30998.62 18298.83 17493.23 26599.75 22298.33 7799.76 10399.36 173
Anonymous2023120698.21 14998.21 13698.20 22699.51 7695.43 25898.13 13299.32 12896.16 25498.93 13998.82 17796.00 19699.83 14297.32 12799.73 11099.36 173
train_agg97.10 23596.45 26099.07 11898.71 25298.08 13895.96 29599.03 21891.64 33395.85 33197.53 30396.47 17899.76 21593.67 30099.16 25999.36 173
PVSNet_BlendedMVS97.55 20197.53 19297.60 26198.92 21293.77 30596.64 26499.43 9094.49 29297.62 25799.18 8496.82 15899.67 25794.73 26599.93 2899.36 173
Anonymous2024052998.93 5098.87 4599.12 10799.19 15098.22 12599.01 5798.99 22999.25 4599.54 3099.37 5897.04 14399.80 17697.89 9799.52 19699.35 177
F-COLMAP97.30 22096.68 24699.14 10599.19 15098.39 10897.27 22499.30 14492.93 31996.62 31198.00 27595.73 21099.68 25492.62 32398.46 30999.35 177
ppachtmachnet_test97.50 20397.74 17796.78 30298.70 25691.23 34294.55 34399.05 21396.36 24799.21 8998.79 18296.39 18299.78 20296.74 17599.82 6899.34 179
agg_prior197.06 23996.40 26199.03 12898.68 26397.99 14695.76 30599.01 22591.73 33295.59 33497.50 30696.49 17799.77 20893.71 29999.14 26399.34 179
VDD-MVS98.56 10598.39 11399.07 11899.13 16898.07 14098.59 8897.01 32899.59 2099.11 10099.27 7194.82 23599.79 19098.34 7599.63 15599.34 179
testgi98.32 13698.39 11398.13 23099.57 5795.54 25297.78 17399.49 6897.37 19499.19 9197.65 29798.96 1799.49 31596.50 19998.99 28499.34 179
diffmvs98.22 14898.24 13298.17 22899.00 19595.44 25796.38 27899.58 2897.79 15698.53 19998.50 23196.76 16499.74 22697.95 9699.64 15299.34 179
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16899.31 12497.17 21097.62 19199.35 11598.72 9498.76 16898.68 19992.57 27999.74 22697.76 11095.60 35999.34 179
baseline98.96 4799.02 3898.76 16699.38 11297.26 20198.49 10199.50 6098.86 8799.19 9199.06 10598.23 5299.69 24598.71 5399.76 10399.33 185
MG-MVS96.77 25596.61 25197.26 28198.31 30293.06 31295.93 29898.12 30396.45 24597.92 23798.73 19093.77 26199.39 33091.19 34299.04 27699.33 185
HQP4-MVS95.56 33799.54 30399.32 187
CDS-MVSNet97.69 19197.35 20698.69 17398.73 24797.02 21696.92 24898.75 27095.89 26498.59 18898.67 20192.08 28499.74 22696.72 17899.81 7299.32 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 24696.49 25998.55 19498.67 26596.79 22396.29 28299.04 21696.05 25795.55 33896.84 32893.84 25799.54 30392.82 31799.26 24599.32 187
RPSCF98.62 9798.36 11799.42 5899.65 4599.42 598.55 9299.57 3597.72 15998.90 14299.26 7396.12 19199.52 30995.72 24099.71 12299.32 187
MVP-Stereo98.08 15997.92 16698.57 18998.96 20396.79 22397.90 16399.18 18396.41 24698.46 20298.95 14495.93 20399.60 28496.51 19898.98 28699.31 191
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12998.68 6897.54 26898.96 20397.99 14697.88 16499.36 10998.20 12899.63 2599.04 11598.76 2395.33 37396.56 19299.74 10799.31 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 12598.30 12598.79 16098.79 24297.29 19898.23 12398.66 27799.31 4098.85 15398.80 18094.80 23899.78 20298.13 8399.13 26699.31 191
ETH3D-3000-0.198.03 16197.62 18899.29 8199.11 16998.80 7897.47 20999.32 12895.54 27198.43 20798.62 21596.61 17299.77 20893.95 29299.49 20799.30 194
test_prior397.48 20797.00 22598.95 13798.69 26097.95 15695.74 30799.03 21896.48 24396.11 32597.63 29995.92 20499.59 28894.16 28299.20 25299.30 194
test_prior98.95 13798.69 26097.95 15699.03 21899.59 28899.30 194
USDC97.41 21397.40 20197.44 27498.94 20693.67 30795.17 32499.53 5494.03 30698.97 12999.10 10295.29 22399.34 33595.84 23699.73 11099.30 194
FMVSNet298.49 11898.40 11098.75 16898.90 21697.14 21398.61 8599.13 19998.59 10199.19 9199.28 6994.14 25299.82 15397.97 9599.80 8099.29 198
ETH3 D test640096.46 26995.59 28199.08 11598.88 22298.21 12696.53 26899.18 18388.87 35597.08 28797.79 28893.64 26499.77 20888.92 35399.40 22199.28 199
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10599.49 8698.83 7596.54 26799.48 7097.32 19999.11 10098.61 21899.33 899.30 34196.23 21598.38 31099.28 199
test1298.93 14098.58 27797.83 16698.66 27796.53 31495.51 21799.69 24599.13 26699.27 201
DSMNet-mixed97.42 21297.60 19096.87 29799.15 16591.46 33498.54 9399.12 20192.87 32197.58 26199.63 2096.21 18999.90 4995.74 23999.54 18999.27 201
N_pmnet97.63 19797.17 21698.99 13499.27 13197.86 16395.98 29293.41 35995.25 28099.47 4298.90 15295.63 21299.85 10996.91 15699.73 11099.27 201
ambc98.24 22498.82 23695.97 24398.62 8499.00 22899.27 7699.21 7996.99 14899.50 31496.55 19599.50 20699.26 204
LFMVS97.20 22996.72 24398.64 17698.72 24996.95 21998.93 6594.14 35699.74 798.78 16399.01 12884.45 33299.73 23097.44 12199.27 24299.25 205
FMVSNet596.01 27995.20 29498.41 20997.53 34096.10 23998.74 7499.50 6097.22 21598.03 23599.04 11569.80 37099.88 7097.27 12999.71 12299.25 205
BH-RMVSNet96.83 25296.58 25497.58 26398.47 28994.05 29096.67 26397.36 32096.70 23797.87 24197.98 27795.14 22799.44 32590.47 34898.58 30799.25 205
112196.73 25696.00 26998.91 14398.95 20597.76 17498.07 14198.73 27387.65 35996.54 31398.13 26494.52 24499.73 23092.38 32699.02 28099.24 208
旧先验198.82 23697.45 19298.76 26798.34 25095.50 21899.01 28299.23 209
test22298.92 21296.93 22095.54 31398.78 26585.72 36396.86 30298.11 26894.43 24599.10 27199.23 209
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9599.54 7098.59 9497.71 18299.46 7897.25 20698.98 12698.99 13197.54 10999.84 12795.88 23099.74 10799.23 209
FMVSNet397.50 20397.24 21398.29 22098.08 31695.83 24797.86 16798.91 23997.89 14998.95 13298.95 14487.06 31199.81 16797.77 10699.69 13399.23 209
无先验95.74 30798.74 27289.38 35299.73 23092.38 32699.22 213
tttt051795.64 28894.98 29997.64 25999.36 11793.81 30398.72 7790.47 36898.08 13698.67 17598.34 25073.88 36799.92 3597.77 10699.51 19999.20 214
pmmvs-eth3d98.47 12098.34 12098.86 15099.30 12797.76 17497.16 23599.28 15495.54 27199.42 4999.19 8297.27 13299.63 27597.89 9799.97 1199.20 214
MS-PatchMatch97.68 19297.75 17697.45 27398.23 30893.78 30497.29 22198.84 25496.10 25698.64 17998.65 20696.04 19399.36 33396.84 16799.14 26399.20 214
新几何198.91 14398.94 20697.76 17498.76 26787.58 36096.75 30798.10 26994.80 23899.78 20292.73 32199.00 28399.20 214
PHI-MVS98.29 14197.95 16399.34 7398.44 29299.16 4398.12 13499.38 10196.01 26098.06 23198.43 23897.80 8799.67 25795.69 24299.58 17799.20 214
Anonymous20240521197.90 17197.50 19499.08 11598.90 21698.25 11998.53 9496.16 34098.87 8699.11 10098.86 16590.40 29299.78 20297.36 12599.31 23599.19 219
CANet97.87 17697.76 17598.19 22797.75 33095.51 25496.76 25899.05 21397.74 15796.93 29398.21 26095.59 21499.89 5997.86 10299.93 2899.19 219
XVG-OURS98.53 11498.34 12099.11 10999.50 7998.82 7795.97 29399.50 6097.30 20199.05 11498.98 13599.35 799.32 33895.72 24099.68 13899.18 221
WTY-MVS96.67 25996.27 26797.87 24598.81 23894.61 28096.77 25797.92 30994.94 28597.12 28497.74 29291.11 28899.82 15393.89 29498.15 31999.18 221
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21599.55 6796.10 23998.94 6498.44 28898.32 11598.16 22198.62 21588.76 30299.73 23093.88 29599.79 8599.18 221
TinyColmap97.89 17397.98 16197.60 26198.86 22594.35 28496.21 28699.44 8497.45 18699.06 10998.88 16197.99 7599.28 34494.38 28099.58 17799.18 221
testdata98.09 23198.93 20895.40 25998.80 26290.08 34997.45 27398.37 24695.26 22499.70 24193.58 30398.95 28899.17 225
lupinMVS97.06 23996.86 23497.65 25798.88 22293.89 30195.48 31797.97 30793.53 31298.16 22197.58 30193.81 25999.91 4596.77 17299.57 18199.17 225
Patchmtry97.35 21696.97 22798.50 20297.31 34996.47 23198.18 12898.92 23798.95 8398.78 16399.37 5885.44 32699.85 10995.96 22899.83 6599.17 225
sss97.21 22896.93 22898.06 23698.83 23395.22 26496.75 25998.48 28794.49 29297.27 28197.90 28392.77 27699.80 17696.57 18999.32 23399.16 228
CSCG98.68 8798.50 9199.20 9699.45 10098.63 8998.56 9199.57 3597.87 15098.85 15398.04 27497.66 9699.84 12796.72 17899.81 7299.13 229
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9898.51 28698.64 8896.85 25299.13 19994.19 30297.65 25598.40 24095.78 20899.81 16793.37 30999.16 25999.12 230
MVS_111021_LR98.30 13898.12 14998.83 15399.16 16198.03 14496.09 29099.30 14497.58 16998.10 22898.24 25798.25 5099.34 33596.69 18199.65 15099.12 230
miper_lstm_enhance97.18 23197.16 21797.25 28298.16 31192.85 31795.15 32699.31 13497.25 20698.74 17198.78 18390.07 29399.78 20297.19 13299.80 8099.11 232
原ACMM198.35 21498.90 21696.25 23798.83 25992.48 32596.07 32898.10 26995.39 22299.71 23992.61 32498.99 28499.08 233
QAPM97.31 21996.81 23998.82 15498.80 24097.49 18999.06 5599.19 17990.22 34797.69 25399.16 9096.91 15299.90 4990.89 34699.41 21999.07 234
PAPM_NR96.82 25496.32 26498.30 21999.07 18096.69 22897.48 20798.76 26795.81 26796.61 31296.47 33694.12 25599.17 35190.82 34797.78 32999.06 235
eth_miper_zixun_eth97.23 22797.25 21197.17 28498.00 32092.77 31994.71 33599.18 18397.27 20498.56 19498.74 18991.89 28599.69 24597.06 14699.81 7299.05 236
D2MVS97.84 18397.84 17297.83 24799.14 16694.74 27496.94 24498.88 24395.84 26598.89 14598.96 14094.40 24799.69 24597.55 11599.95 1699.05 236
c3_l97.36 21597.37 20497.31 27898.09 31593.25 31095.01 32999.16 19297.05 22198.77 16698.72 19292.88 27499.64 27296.93 15599.76 10399.05 236
PLCcopyleft94.65 1696.51 26495.73 27598.85 15198.75 24597.91 15996.42 27699.06 20990.94 34495.59 33497.38 31494.41 24699.59 28890.93 34498.04 32699.05 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 5498.90 4498.91 14399.67 4297.82 16999.00 5999.44 8499.45 2899.51 3899.24 7698.20 5899.86 9495.92 22999.69 13399.04 240
CANet_DTU97.26 22397.06 22297.84 24697.57 33794.65 27996.19 28898.79 26397.23 21295.14 34798.24 25793.22 26699.84 12797.34 12699.84 5999.04 240
PM-MVS98.82 6198.72 6099.12 10799.64 4898.54 10097.98 15699.68 1697.62 16599.34 6499.18 8497.54 10999.77 20897.79 10499.74 10799.04 240
TSAR-MVS + GP.98.18 15297.98 16198.77 16598.71 25297.88 16196.32 28198.66 27796.33 24899.23 8898.51 22897.48 12099.40 32897.16 13499.46 21199.02 243
DIV-MVS_self_test97.02 24396.84 23697.58 26397.82 32894.03 29294.66 33899.16 19297.04 22298.63 18098.71 19388.69 30399.69 24597.00 14899.81 7299.01 244
GA-MVS95.86 28395.32 29197.49 27198.60 27494.15 28993.83 35597.93 30895.49 27496.68 30897.42 31283.21 34099.30 34196.22 21698.55 30899.01 244
OMC-MVS97.88 17597.49 19599.04 12798.89 22198.63 8996.94 24499.25 16395.02 28298.53 19998.51 22897.27 13299.47 32093.50 30699.51 19999.01 244
cl____97.02 24396.83 23797.58 26397.82 32894.04 29194.66 33899.16 19297.04 22298.63 18098.71 19388.68 30599.69 24597.00 14899.81 7299.00 247
pmmvs497.58 20097.28 21098.51 20098.84 23096.93 22095.40 32098.52 28593.60 31198.61 18498.65 20695.10 22899.60 28496.97 15399.79 8598.99 248
MVS_030497.64 19597.35 20698.52 19897.87 32696.69 22898.59 8898.05 30697.44 18893.74 36198.85 16893.69 26399.88 7098.11 8499.81 7298.98 249
EPNet_dtu94.93 30294.78 30395.38 33193.58 37487.68 35596.78 25695.69 34697.35 19689.14 37098.09 27188.15 30999.49 31594.95 26199.30 23898.98 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 26695.77 27398.69 17399.48 9497.43 19397.84 16999.55 4681.42 36896.51 31698.58 22195.53 21599.67 25793.41 30899.58 17798.98 249
PVSNet_Blended96.88 25096.68 24697.47 27298.92 21293.77 30594.71 33599.43 9090.98 34397.62 25797.36 31796.82 15899.67 25794.73 26599.56 18698.98 249
PAPR95.29 29494.47 30497.75 25297.50 34495.14 26794.89 33298.71 27591.39 33995.35 34595.48 35294.57 24399.14 35484.95 36197.37 33798.97 253
EGC-MVSNET85.24 33880.54 34199.34 7399.77 2099.20 3399.08 5099.29 15112.08 37420.84 37599.42 5297.55 10899.85 10997.08 14399.72 11798.96 254
thisisatest053095.27 29594.45 30597.74 25399.19 15094.37 28397.86 16790.20 36997.17 21698.22 21897.65 29773.53 36899.90 4996.90 16199.35 22998.95 255
mvs_anonymous97.83 18598.16 14496.87 29798.18 31091.89 33097.31 22098.90 24097.37 19498.83 15699.46 4696.28 18899.79 19098.90 3898.16 31898.95 255
baseline195.96 28195.44 28697.52 27098.51 28693.99 29598.39 11296.09 34298.21 12598.40 21297.76 29186.88 31299.63 27595.42 25289.27 37198.95 255
CLD-MVS97.49 20597.16 21798.48 20399.07 18097.03 21594.71 33599.21 17294.46 29498.06 23197.16 32397.57 10699.48 31894.46 27399.78 8998.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 16398.14 14897.64 25998.58 27795.19 26597.48 20799.23 17097.47 17997.90 23998.62 21597.04 14398.81 36397.55 11599.41 21998.94 259
DELS-MVS98.27 14298.20 13798.48 20398.86 22596.70 22795.60 31299.20 17497.73 15898.45 20398.71 19397.50 11599.82 15398.21 8099.59 17198.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 28595.39 28996.98 29196.77 35892.79 31894.40 34698.53 28494.59 29197.89 24098.17 26382.82 34499.24 34696.37 20799.03 27798.92 261
LS3D98.63 9598.38 11599.36 6597.25 35099.38 699.12 4999.32 12899.21 4698.44 20498.88 16197.31 12899.80 17696.58 18799.34 23198.92 261
CMPMVSbinary75.91 2396.29 27395.44 28698.84 15296.25 36698.69 8797.02 23999.12 20188.90 35497.83 24498.86 16589.51 29798.90 36191.92 32999.51 19998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 9398.48 9699.11 10998.85 22798.51 10298.49 10199.83 498.37 11199.69 1799.46 4698.21 5799.92 3594.13 28799.30 23898.91 264
DPM-MVS96.32 27295.59 28198.51 20098.76 24397.21 20694.54 34498.26 29591.94 33196.37 32197.25 31993.06 27199.43 32691.42 33898.74 29598.89 265
test_yl96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
DCV-MVSNet96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20699.28 12996.78 22696.20 28799.27 15795.42 27698.28 21698.30 25493.16 26799.71 23994.99 25997.37 33798.87 268
Effi-MVS+98.02 16397.82 17398.62 18198.53 28597.19 20897.33 21899.68 1697.30 20196.68 30897.46 31098.56 3499.80 17696.63 18598.20 31598.86 269
test_040298.76 7198.71 6298.93 14099.56 6498.14 13298.45 10899.34 12199.28 4398.95 13298.91 14998.34 4899.79 19095.63 24699.91 4398.86 269
PatchmatchNetpermissive95.58 28995.67 27895.30 33297.34 34787.32 35697.65 18996.65 33595.30 27997.07 28898.69 19784.77 32999.75 22294.97 26098.64 30398.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test97.44 21197.22 21498.08 23498.57 27995.78 24994.30 34898.79 26396.58 24198.60 18698.19 26294.74 24199.64 27296.41 20698.84 29198.82 272
miper_ehance_all_eth97.06 23997.03 22397.16 28697.83 32793.06 31294.66 33899.09 20595.99 26198.69 17398.45 23792.73 27799.61 28396.79 16999.03 27798.82 272
MIMVSNet96.62 26296.25 26897.71 25499.04 18794.66 27899.16 4496.92 33297.23 21297.87 24199.10 10286.11 32099.65 27091.65 33399.21 25198.82 272
hse-mvs297.46 20897.07 22198.64 17698.73 24797.33 19697.45 21197.64 31799.11 5798.58 19097.98 27788.65 30699.79 19098.11 8497.39 33698.81 275
GSMVS98.81 275
sam_mvs184.74 33098.81 275
SCA96.41 27196.66 24995.67 32298.24 30688.35 35195.85 30396.88 33396.11 25597.67 25498.67 20193.10 26999.85 10994.16 28299.22 24998.81 275
Patchmatch-RL test97.26 22397.02 22497.99 24199.52 7495.53 25396.13 28999.71 1197.47 17999.27 7699.16 9084.30 33599.62 27797.89 9799.77 9398.81 275
AUN-MVS96.24 27695.45 28598.60 18498.70 25697.22 20497.38 21497.65 31595.95 26295.53 34297.96 28182.11 34999.79 19096.31 21197.44 33498.80 280
ITE_SJBPF98.87 14899.22 14198.48 10499.35 11597.50 17698.28 21698.60 21997.64 10099.35 33493.86 29699.27 24298.79 281
tpm94.67 30494.34 30895.66 32397.68 33688.42 35097.88 16494.90 34894.46 29496.03 33098.56 22378.66 35999.79 19095.88 23095.01 36298.78 282
Patchmatch-test96.55 26396.34 26397.17 28498.35 29993.06 31298.40 11197.79 31097.33 19798.41 20898.67 20183.68 33999.69 24595.16 25699.31 23598.77 283
DROMVSNet99.09 3499.05 3799.20 9699.28 12998.93 7099.24 3499.84 399.08 6998.12 22598.37 24698.72 2699.90 4999.05 3199.77 9398.77 283
PMMVS96.51 26495.98 27098.09 23197.53 34095.84 24694.92 33198.84 25491.58 33596.05 32995.58 34995.68 21199.66 26595.59 24898.09 32298.76 285
test_method79.78 33979.50 34280.62 35580.21 37845.76 38070.82 36998.41 29131.08 37380.89 37497.71 29384.85 32897.37 36991.51 33780.03 37298.75 286
ab-mvs98.41 12698.36 11798.59 18599.19 15097.23 20299.32 1798.81 26097.66 16298.62 18299.40 5796.82 15899.80 17695.88 23099.51 19998.75 286
CHOSEN 280x42095.51 29295.47 28395.65 32498.25 30588.27 35293.25 35998.88 24393.53 31294.65 35097.15 32486.17 31899.93 2897.41 12399.93 2898.73 288
MVS_Test98.18 15298.36 11797.67 25598.48 28894.73 27598.18 12899.02 22297.69 16098.04 23499.11 10097.22 13899.56 29798.57 6098.90 29098.71 289
PVSNet93.40 1795.67 28795.70 27695.57 32598.83 23388.57 34992.50 36297.72 31292.69 32396.49 31996.44 33793.72 26299.43 32693.61 30199.28 24198.71 289
alignmvs97.35 21696.88 23398.78 16398.54 28398.09 13497.71 18297.69 31499.20 4997.59 26095.90 34588.12 31099.55 30098.18 8298.96 28798.70 291
ADS-MVSNet295.43 29394.98 29996.76 30398.14 31291.74 33197.92 16097.76 31190.23 34596.51 31698.91 14985.61 32399.85 10992.88 31596.90 34598.69 292
ADS-MVSNet95.24 29694.93 30196.18 31298.14 31290.10 34597.92 16097.32 32390.23 34596.51 31698.91 14985.61 32399.74 22692.88 31596.90 34598.69 292
MDTV_nov1_ep13_2view74.92 37897.69 18490.06 35097.75 25085.78 32293.52 30498.69 292
MSDG97.71 19097.52 19398.28 22198.91 21596.82 22294.42 34599.37 10597.65 16398.37 21398.29 25597.40 12499.33 33794.09 28899.22 24998.68 295
miper_enhance_ethall96.01 27995.74 27496.81 30196.41 36492.27 32793.69 35798.89 24291.14 34298.30 21497.35 31890.58 29099.58 29396.31 21199.03 27798.60 296
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31899.49 398.02 15099.16 19298.29 11997.64 25697.99 27696.44 18099.95 1596.66 18398.93 28998.60 296
new_pmnet96.99 24796.76 24197.67 25598.72 24994.89 27295.95 29798.20 29892.62 32498.55 19698.54 22494.88 23499.52 30993.96 29199.44 21798.59 298
EIA-MVS98.00 16597.74 17798.80 15898.72 24998.09 13498.05 14599.60 2597.39 19296.63 31095.55 35097.68 9499.80 17696.73 17799.27 24298.52 299
PatchMatch-RL97.24 22696.78 24098.61 18399.03 19097.83 16696.36 27999.06 20993.49 31497.36 27997.78 28995.75 20999.49 31593.44 30798.77 29498.52 299
ET-MVSNet_ETH3D94.30 31093.21 32097.58 26398.14 31294.47 28294.78 33493.24 36194.72 28989.56 36995.87 34678.57 36199.81 16796.91 15697.11 34498.46 301
canonicalmvs98.34 13598.26 13098.58 18698.46 29097.82 16998.96 6399.46 7899.19 5397.46 27295.46 35398.59 3299.46 32298.08 8898.71 29998.46 301
TAPA-MVS96.21 1196.63 26195.95 27198.65 17598.93 20898.09 13496.93 24699.28 15483.58 36698.13 22497.78 28996.13 19099.40 32893.52 30499.29 24098.45 303
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 25296.75 24297.08 28798.74 24693.33 30996.71 26198.26 29596.72 23598.44 20497.37 31695.20 22599.47 32091.89 33097.43 33598.44 304
pmmvs395.03 30094.40 30696.93 29397.70 33492.53 32295.08 32797.71 31388.57 35697.71 25198.08 27279.39 35799.82 15396.19 21899.11 27098.43 305
DP-MVS Recon97.33 21896.92 23098.57 18999.09 17697.99 14696.79 25599.35 11593.18 31697.71 25198.07 27395.00 23099.31 33993.97 29099.13 26698.42 306
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15698.43 29398.11 13397.61 19399.50 6098.64 9597.39 27797.52 30598.12 6599.95 1596.90 16198.71 29998.38 307
LF4IMVS97.90 17197.69 18098.52 19899.17 15997.66 18197.19 23299.47 7696.31 25097.85 24398.20 26196.71 16899.52 30994.62 26899.72 11798.38 307
Fast-Effi-MVS+97.67 19397.38 20398.57 18998.71 25297.43 19397.23 22599.45 8194.82 28896.13 32496.51 33398.52 3699.91 4596.19 21898.83 29298.37 309
test0.0.03 194.51 30593.69 31496.99 29096.05 36793.61 30894.97 33093.49 35896.17 25297.57 26394.88 36182.30 34599.01 35893.60 30294.17 36798.37 309
baseline293.73 31992.83 32596.42 30797.70 33491.28 34096.84 25489.77 37093.96 30892.44 36495.93 34479.14 35899.77 20892.94 31396.76 34998.21 311
thisisatest051594.12 31493.16 32196.97 29298.60 27492.90 31693.77 35690.61 36794.10 30496.91 29695.87 34674.99 36699.80 17694.52 27199.12 26998.20 312
EPMVS93.72 32093.27 31995.09 33496.04 36887.76 35498.13 13285.01 37594.69 29096.92 29498.64 20978.47 36399.31 33995.04 25796.46 35198.20 312
dp93.47 32293.59 31693.13 35296.64 35981.62 37597.66 18796.42 33892.80 32296.11 32598.64 20978.55 36299.59 28893.31 31092.18 37098.16 314
CNLPA97.17 23296.71 24498.55 19498.56 28098.05 14396.33 28098.93 23496.91 22897.06 28997.39 31394.38 24899.45 32491.66 33299.18 25898.14 315
HY-MVS95.94 1395.90 28295.35 29097.55 26797.95 32194.79 27398.81 7396.94 33192.28 32895.17 34698.57 22289.90 29599.75 22291.20 34197.33 34198.10 316
CostFormer93.97 31693.78 31394.51 33897.53 34085.83 36397.98 15695.96 34389.29 35394.99 34998.63 21378.63 36099.62 27794.54 27096.50 35098.09 317
AdaColmapbinary97.14 23496.71 24498.46 20598.34 30097.80 17296.95 24398.93 23495.58 27096.92 29497.66 29695.87 20699.53 30590.97 34399.14 26398.04 318
KD-MVS_2432*160092.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
miper_refine_blended92.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
TESTMET0.1,192.19 33591.77 33593.46 34896.48 36282.80 37294.05 35291.52 36694.45 29694.00 35894.88 36166.65 37699.56 29795.78 23898.11 32198.02 319
CS-MVS-test98.41 12698.30 12598.73 17298.84 23098.39 10898.71 7999.79 597.98 14096.86 30297.38 31497.86 8199.83 14297.81 10399.46 21197.97 322
PCF-MVS92.86 1894.36 30793.00 32498.42 20898.70 25697.56 18693.16 36099.11 20379.59 36997.55 26497.43 31192.19 28199.73 23079.85 37099.45 21497.97 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 23696.68 24698.32 21698.32 30197.16 21198.86 7099.37 10589.48 35196.29 32399.15 9496.56 17399.90 4992.90 31499.20 25297.89 324
Gipumacopyleft99.03 3799.16 3098.64 17699.94 298.51 10299.32 1799.75 999.58 2298.60 18699.62 2198.22 5599.51 31397.70 11299.73 11097.89 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DWT-MVSNet_test92.75 32992.05 33094.85 33596.48 36287.21 35797.83 17094.99 34792.22 32992.72 36394.11 36770.75 36999.46 32295.01 25894.33 36697.87 326
PVSNet_089.98 2191.15 33790.30 34093.70 34697.72 33184.34 37090.24 36697.42 31890.20 34893.79 35993.09 36990.90 28998.89 36286.57 35972.76 37397.87 326
test-LLR93.90 31793.85 31194.04 34196.53 36084.62 36794.05 35292.39 36396.17 25294.12 35595.07 35582.30 34599.67 25795.87 23398.18 31697.82 328
test-mter92.33 33391.76 33694.04 34196.53 36084.62 36794.05 35292.39 36394.00 30794.12 35595.07 35565.63 37999.67 25795.87 23398.18 31697.82 328
tpm293.09 32692.58 32794.62 33797.56 33886.53 36097.66 18795.79 34586.15 36294.07 35798.23 25975.95 36499.53 30590.91 34596.86 34897.81 330
CR-MVSNet96.28 27495.95 27197.28 28097.71 33294.22 28598.11 13598.92 23792.31 32796.91 29699.37 5885.44 32699.81 16797.39 12497.36 33997.81 330
RPMNet97.02 24396.93 22897.30 27997.71 33294.22 28598.11 13599.30 14499.37 3596.91 29699.34 6486.72 31399.87 8797.53 11897.36 33997.81 330
tpmrst95.07 29995.46 28493.91 34397.11 35284.36 36997.62 19196.96 32994.98 28396.35 32298.80 18085.46 32599.59 28895.60 24796.23 35497.79 333
PAPM91.88 33690.34 33996.51 30598.06 31792.56 32192.44 36397.17 32586.35 36190.38 36896.01 34286.61 31499.21 34970.65 37395.43 36097.75 334
FPMVS93.44 32392.23 32897.08 28799.25 13597.86 16395.61 31197.16 32692.90 32093.76 36098.65 20675.94 36595.66 37179.30 37197.49 33297.73 335
MAR-MVS96.47 26895.70 27698.79 16097.92 32399.12 5798.28 11998.60 28192.16 33095.54 34196.17 34194.77 24099.52 30989.62 35198.23 31397.72 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 16197.86 17198.56 19398.69 26098.07 14097.51 20599.50 6098.10 13597.50 26995.51 35198.41 4199.88 7096.27 21499.24 24797.71 337
thres600view794.45 30693.83 31296.29 30999.06 18491.53 33397.99 15494.24 35498.34 11397.44 27495.01 35779.84 35399.67 25784.33 36298.23 31397.66 338
thres40094.14 31393.44 31796.24 31198.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32397.66 338
IB-MVS91.63 1992.24 33490.90 33896.27 31097.22 35191.24 34194.36 34793.33 36092.37 32692.24 36594.58 36466.20 37899.89 5993.16 31294.63 36497.66 338
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 30195.25 29294.33 33996.39 36585.87 36198.08 14096.83 33495.46 27595.51 34398.69 19785.91 32199.53 30594.16 28296.23 35497.58 341
cascas94.79 30394.33 30996.15 31696.02 36992.36 32692.34 36499.26 16285.34 36495.08 34894.96 36092.96 27398.53 36594.41 27998.59 30697.56 342
mvs-test197.83 18597.48 19898.89 14698.02 31899.20 3397.20 22999.16 19298.29 11996.46 32097.17 32296.44 18099.92 3596.66 18397.90 32897.54 343
PatchT96.65 26096.35 26297.54 26897.40 34595.32 26097.98 15696.64 33699.33 3996.89 30099.42 5284.32 33499.81 16797.69 11497.49 33297.48 344
TR-MVS95.55 29095.12 29796.86 30097.54 33993.94 29696.49 27296.53 33794.36 29997.03 29196.61 33294.26 25199.16 35286.91 35896.31 35397.47 345
JIA-IIPM95.52 29195.03 29897.00 28996.85 35694.03 29296.93 24695.82 34499.20 4994.63 35199.71 1283.09 34199.60 28494.42 27694.64 36397.36 346
BH-w/o95.13 29894.89 30295.86 31798.20 30991.31 33895.65 31097.37 31993.64 31096.52 31595.70 34893.04 27299.02 35688.10 35595.82 35897.24 347
tpm cat193.29 32493.13 32393.75 34597.39 34684.74 36697.39 21397.65 31583.39 36794.16 35498.41 23982.86 34399.39 33091.56 33695.35 36197.14 348
CS-MVS98.16 15698.22 13597.97 24298.56 28097.01 21798.10 13799.70 1497.45 18697.29 28097.19 32097.72 9299.80 17698.37 7299.62 15897.11 349
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
PMVScopyleft91.26 2097.86 17797.94 16597.65 25799.71 3297.94 15898.52 9598.68 27698.99 7697.52 26799.35 6297.41 12398.18 36791.59 33599.67 14496.82 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 28695.60 28096.17 31397.53 34092.75 32098.07 14198.31 29491.22 34094.25 35396.68 33195.53 21599.03 35591.64 33497.18 34296.74 354
MVS-HIRNet94.32 30895.62 27990.42 35498.46 29075.36 37796.29 28289.13 37195.25 28095.38 34499.75 792.88 27499.19 35094.07 28999.39 22296.72 355
OpenMVS_ROBcopyleft95.38 1495.84 28495.18 29597.81 24898.41 29797.15 21297.37 21598.62 28083.86 36598.65 17898.37 24694.29 25099.68 25488.41 35498.62 30596.60 356
thres100view90094.19 31193.67 31595.75 32199.06 18491.35 33798.03 14894.24 35498.33 11497.40 27694.98 35979.84 35399.62 27783.05 36498.08 32396.29 357
tfpn200view994.03 31593.44 31795.78 32098.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32396.29 357
MVS93.19 32592.09 32996.50 30696.91 35494.03 29298.07 14198.06 30568.01 37094.56 35296.48 33595.96 20299.30 34183.84 36396.89 34796.17 359
gg-mvs-nofinetune92.37 33291.20 33795.85 31895.80 37192.38 32599.31 2181.84 37799.75 591.83 36699.74 868.29 37199.02 35687.15 35797.12 34396.16 360
xiu_mvs_v2_base97.16 23397.49 19596.17 31398.54 28392.46 32395.45 31898.84 25497.25 20697.48 27196.49 33498.31 4999.90 4996.34 21098.68 30196.15 361
PS-MVSNAJ97.08 23797.39 20296.16 31598.56 28092.46 32395.24 32398.85 25397.25 20697.49 27095.99 34398.07 6699.90 4996.37 20798.67 30296.12 362
E-PMN94.17 31294.37 30793.58 34796.86 35585.71 36490.11 36797.07 32798.17 13197.82 24697.19 32084.62 33198.94 35989.77 35097.68 33196.09 363
EMVS93.83 31894.02 31093.23 35196.83 35784.96 36589.77 36896.32 33997.92 14697.43 27596.36 34086.17 31898.93 36087.68 35697.73 33095.81 364
MVEpermissive83.40 2292.50 33091.92 33394.25 34098.83 23391.64 33292.71 36183.52 37695.92 26386.46 37395.46 35395.20 22595.40 37280.51 36998.64 30395.73 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 32093.14 32295.46 33098.66 27091.29 33996.61 26694.63 35097.39 19296.83 30493.71 36879.88 35299.56 29782.40 36798.13 32095.54 366
API-MVS97.04 24296.91 23297.42 27597.88 32598.23 12498.18 12898.50 28697.57 17097.39 27796.75 33096.77 16299.15 35390.16 34999.02 28094.88 367
GG-mvs-BLEND94.76 33694.54 37392.13 32999.31 2180.47 37888.73 37191.01 37167.59 37498.16 36882.30 36894.53 36593.98 368
DeepMVS_CXcopyleft93.44 34998.24 30694.21 28794.34 35164.28 37191.34 36794.87 36389.45 29992.77 37477.54 37293.14 36893.35 369
tmp_tt78.77 34078.73 34378.90 35658.45 37974.76 37994.20 34978.26 37939.16 37286.71 37292.82 37080.50 35175.19 37586.16 36092.29 36986.74 370
wuyk23d96.06 27897.62 18891.38 35398.65 27198.57 9698.85 7196.95 33096.86 23099.90 499.16 9099.18 1198.40 36689.23 35299.77 9377.18 371
test12317.04 34320.11 3467.82 35710.25 3814.91 38194.80 3334.47 3824.93 37510.00 37724.28 3749.69 3803.64 37610.14 37412.43 37514.92 372
testmvs17.12 34220.53 3456.87 35812.05 3804.20 38293.62 3586.73 3814.62 37610.41 37624.33 3738.28 3813.56 3779.69 37515.07 37412.86 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.66 34132.88 3440.00 3590.00 3820.00 3830.00 37099.10 2040.00 3770.00 37897.58 30199.21 100.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.17 34410.90 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37798.07 660.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.12 34510.83 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.48 3080.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.73 2599.67 299.43 1099.54 5099.43 3099.26 80
test_one_060199.39 11199.20 3399.31 13498.49 10798.66 17799.02 11997.64 100
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.01 19498.84 7499.07 20894.10 30498.05 23398.12 26796.36 18699.86 9492.70 32299.19 256
test_241102_ONE99.49 8699.17 3999.31 13497.98 14099.66 2098.90 15298.36 4499.48 318
9.1497.78 17499.07 18097.53 20299.32 12895.53 27398.54 19898.70 19697.58 10599.76 21594.32 28199.46 211
save fliter99.11 16997.97 15196.53 26899.02 22298.24 122
test072699.50 7999.21 2798.17 13199.35 11597.97 14299.26 8099.06 10597.61 103
test_part299.36 11799.10 6099.05 114
sam_mvs84.29 336
MTGPAbinary99.20 174
test_post197.59 19620.48 37683.07 34299.66 26594.16 282
test_post21.25 37583.86 33899.70 241
patchmatchnet-post98.77 18584.37 33399.85 109
MTMP97.93 15991.91 365
gm-plane-assit94.83 37281.97 37488.07 35894.99 35899.60 28491.76 331
TEST998.71 25298.08 13895.96 29599.03 21891.40 33895.85 33197.53 30396.52 17599.76 215
test_898.67 26598.01 14595.91 30099.02 22291.64 33395.79 33397.50 30696.47 17899.76 215
agg_prior98.68 26397.99 14699.01 22595.59 33499.77 208
test_prior497.97 15195.86 301
test_prior295.74 30796.48 24396.11 32597.63 29995.92 20494.16 28299.20 252
旧先验295.76 30588.56 35797.52 26799.66 26594.48 272
新几何295.93 298
原ACMM295.53 314
testdata299.79 19092.80 319
segment_acmp97.02 146
testdata195.44 31996.32 249
plane_prior799.19 15097.87 162
plane_prior698.99 19997.70 18094.90 231
plane_prior497.98 277
plane_prior397.78 17397.41 19097.79 247
plane_prior297.77 17698.20 128
plane_prior199.05 186
plane_prior97.65 18297.07 23896.72 23599.36 227
n20.00 383
nn0.00 383
door-mid99.57 35
test1198.87 245
door99.41 94
HQP5-MVS96.79 223
HQP-NCC98.67 26596.29 28296.05 25795.55 338
ACMP_Plane98.67 26596.29 28296.05 25795.55 338
BP-MVS92.82 317
HQP3-MVS99.04 21699.26 245
HQP2-MVS93.84 257
NP-MVS98.84 23097.39 19596.84 328
MDTV_nov1_ep1395.22 29397.06 35383.20 37197.74 18096.16 34094.37 29896.99 29298.83 17483.95 33799.53 30593.90 29397.95 327
ACMMP++_ref99.77 93
ACMMP++99.68 138
Test By Simon96.52 175