DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 68 | 88.18 1 | 87.15 6 | 65.04 20 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 9 |
|
FOURS1 | | | | | | 86.12 40 | 60.82 42 | 88.18 1 | 83.61 68 | 60.87 89 | 81.50 16 | | | | | | |
|
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 23 | 60.02 53 | 88.12 3 | 86.42 18 | 62.94 55 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 11 | 88.32 36 | 86.79 66 |
|
test0726 | | | | | | 87.75 7 | 59.07 72 | 87.86 4 | 86.83 12 | 64.26 32 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 36 | 87.75 7 | 59.07 72 | 87.85 5 | 85.03 38 | 64.26 32 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 114 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 71 | 87.85 5 | 87.15 6 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 38 |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 77 | 87.82 7 | 86.78 14 | 64.18 35 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 14 |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 40 | 87.82 7 | | | | 89.89 47 | 67.01 1 | 90.33 11 | 73.16 49 | 91.15 4 | 88.23 14 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 11 | 79.98 2 | 83.01 82 | 62.18 19 | 87.60 9 | 85.83 24 | 66.69 10 | 78.03 31 | 90.98 14 | 54.26 58 | 90.06 12 | 78.42 17 | 89.02 27 | 87.69 34 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 77.12 37 | 76.68 38 | 78.43 35 | 86.05 43 | 63.18 7 | 87.55 10 | 83.45 73 | 62.44 68 | 72.68 87 | 90.50 24 | 48.18 126 | 87.34 52 | 73.59 46 | 85.71 64 | 84.76 139 |
|
ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 13 | 86.43 30 | 62.05 21 | 86.62 11 | 86.01 23 | 63.32 47 | 75.08 43 | 90.47 27 | 53.96 62 | 88.68 27 | 76.48 26 | 89.63 24 | 87.16 55 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 66 | 65.37 15 | 78.78 25 | 90.64 19 | 58.63 23 | 87.24 53 | 79.00 10 | 90.37 14 | 85.26 123 |
|
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 25 | 61.95 22 | 86.33 13 | 85.75 26 | 62.49 66 | 82.20 15 | 92.28 1 | 56.53 35 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HFP-MVS | | | 78.01 27 | 77.65 28 | 79.10 20 | 86.71 20 | 62.81 10 | 86.29 14 | 84.32 49 | 62.82 59 | 73.96 62 | 90.50 24 | 53.20 73 | 88.35 31 | 74.02 41 | 87.05 50 | 86.13 86 |
|
region2R | | | 77.67 31 | 77.18 34 | 79.15 17 | 86.76 18 | 62.95 8 | 86.29 14 | 84.16 53 | 62.81 61 | 73.30 74 | 90.58 21 | 49.90 105 | 88.21 35 | 73.78 43 | 87.03 52 | 86.29 84 |
|
ACMMPR | | | 77.71 29 | 77.23 33 | 79.16 16 | 86.75 19 | 62.93 9 | 86.29 14 | 84.24 51 | 62.82 59 | 73.55 71 | 90.56 22 | 49.80 107 | 88.24 34 | 74.02 41 | 87.03 52 | 86.32 81 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 34 | 62.73 12 | 86.09 17 | 86.83 12 | 65.51 14 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 1 | 88.44 32 | 88.09 19 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testtj | | | 78.47 19 | 78.43 19 | 78.61 32 | 86.82 17 | 60.67 46 | 86.07 18 | 85.38 32 | 62.12 72 | 78.65 26 | 90.29 33 | 55.76 43 | 89.31 19 | 73.55 47 | 87.22 49 | 85.84 95 |
|
MTMP | | | | | | | | 86.03 19 | 17.08 377 | | | | | | | | |
|
MP-MVS |  | | 78.35 22 | 78.26 22 | 78.64 31 | 86.54 27 | 63.47 5 | 86.02 20 | 83.55 70 | 63.89 40 | 73.60 70 | 90.60 20 | 54.85 54 | 86.72 70 | 77.20 21 | 88.06 41 | 85.74 103 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 24 | 77.85 27 | 78.99 25 | 86.05 43 | 61.82 25 | 85.84 21 | 85.21 34 | 63.56 44 | 74.29 59 | 90.03 43 | 52.56 77 | 88.53 29 | 74.79 34 | 88.34 34 | 86.63 70 |
|
XVS | | | 77.17 36 | 76.56 40 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 94 | 90.01 45 | 47.95 128 | 88.01 40 | 71.55 61 | 86.74 58 | 86.37 76 |
|
X-MVStestdata | | | 70.21 124 | 67.28 167 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 94 | 6.49 372 | 47.95 128 | 88.01 40 | 71.55 61 | 86.74 58 | 86.37 76 |
|
3Dnovator+ | | 66.72 4 | 75.84 52 | 74.57 61 | 79.66 8 | 82.40 87 | 59.92 56 | 85.83 22 | 86.32 20 | 66.92 8 | 67.80 158 | 89.24 58 | 42.03 195 | 89.38 18 | 64.07 116 | 86.50 61 | 89.69 1 |
|
mPP-MVS | | | 76.54 42 | 75.93 46 | 78.34 39 | 86.47 28 | 63.50 4 | 85.74 25 | 82.28 96 | 62.90 56 | 71.77 97 | 90.26 34 | 46.61 151 | 86.55 78 | 71.71 59 | 85.66 65 | 84.97 131 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 48 | 85.71 26 | 86.42 18 | 63.28 48 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 27 | 89.67 22 | 86.84 63 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 77.83 28 | 77.41 31 | 79.10 20 | 86.71 20 | 62.81 10 | 85.69 27 | 84.32 49 | 61.61 82 | 73.96 62 | 90.50 24 | 53.20 73 | 88.35 31 | 73.68 44 | 87.05 50 | 86.13 86 |
|
SR-MVS | | | 76.13 47 | 75.70 50 | 77.40 54 | 85.87 45 | 61.20 33 | 85.52 28 | 82.19 97 | 59.99 112 | 75.10 42 | 90.35 29 | 47.66 132 | 86.52 79 | 71.64 60 | 82.99 84 | 84.47 145 |
|
APD-MVS |  | | 78.02 25 | 78.04 26 | 77.98 44 | 86.44 29 | 60.81 43 | 85.52 28 | 84.36 48 | 60.61 94 | 79.05 23 | 90.30 32 | 55.54 46 | 88.32 33 | 73.48 48 | 87.03 52 | 84.83 134 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP |  | | 76.02 49 | 75.33 53 | 78.07 41 | 85.20 56 | 61.91 23 | 85.49 30 | 84.44 46 | 63.04 53 | 69.80 121 | 89.74 52 | 45.43 164 | 87.16 57 | 72.01 55 | 82.87 89 | 85.14 124 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
NCCC | | | 78.58 16 | 78.31 20 | 79.39 11 | 87.51 12 | 62.61 16 | 85.20 31 | 84.42 47 | 66.73 9 | 74.67 54 | 89.38 56 | 55.30 47 | 89.18 21 | 74.19 39 | 87.34 48 | 86.38 73 |
|
SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 49 | 82.88 84 | 57.83 93 | 84.99 32 | 88.13 3 | 61.86 79 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 60 | 77.08 23 | 90.18 15 | 87.87 25 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 35 | 76.63 39 | 79.12 19 | 86.15 38 | 60.86 41 | 84.71 33 | 84.85 43 | 61.98 78 | 73.06 82 | 88.88 64 | 53.72 67 | 89.06 23 | 68.27 78 | 88.04 42 | 87.42 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3 D test6400 | | | 79.14 11 | 79.32 10 | 78.61 32 | 86.34 31 | 58.11 89 | 84.65 34 | 87.66 4 | 58.56 141 | 78.87 24 | 89.54 53 | 63.67 13 | 89.57 16 | 74.60 36 | 89.98 17 | 88.14 17 |
|
SD-MVS | | | 77.70 30 | 77.62 29 | 77.93 45 | 84.47 67 | 61.88 24 | 84.55 35 | 83.87 62 | 60.37 101 | 79.89 18 | 89.38 56 | 54.97 51 | 85.58 103 | 76.12 29 | 84.94 68 | 86.33 79 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CS-MVS | | | 76.16 46 | 76.00 45 | 76.62 67 | 80.18 128 | 54.35 149 | 84.52 36 | 83.98 57 | 63.24 49 | 73.29 75 | 87.26 84 | 55.11 49 | 86.25 87 | 71.80 58 | 84.65 70 | 89.26 4 |
|
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 20 | 84.37 37 | 85.03 38 | 66.96 5 | 77.58 32 | 90.06 40 | 59.47 20 | 89.13 22 | 78.67 12 | 89.73 20 | 87.03 58 |
|
SR-MVS-dyc-post | | | 74.57 66 | 73.90 68 | 76.58 68 | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 116 | 58.07 149 | 73.14 78 | 90.07 38 | 44.74 171 | 85.84 97 | 68.20 79 | 81.76 101 | 84.03 156 |
|
RE-MVS-def | | | | 73.71 72 | | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 116 | 58.07 149 | 73.14 78 | 90.07 38 | 43.06 187 | | 68.20 79 | 81.76 101 | 84.03 156 |
|
PHI-MVS | | | 75.87 51 | 75.36 52 | 77.41 52 | 80.62 116 | 55.91 127 | 84.28 40 | 85.78 25 | 56.08 186 | 73.41 72 | 86.58 98 | 50.94 100 | 88.54 28 | 70.79 65 | 89.71 21 | 87.79 31 |
|
HQP_MVS | | | 74.31 69 | 73.73 71 | 76.06 74 | 81.41 101 | 56.31 116 | 84.22 41 | 84.01 55 | 64.52 28 | 69.27 129 | 86.10 108 | 45.26 168 | 87.21 55 | 68.16 81 | 80.58 111 | 84.65 140 |
|
plane_prior2 | | | | | | | | 84.22 41 | | 64.52 28 | | | | | | | |
|
DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 24 | 79.83 6 | 83.60 72 | 61.62 26 | 84.17 43 | 86.85 10 | 63.23 50 | 73.84 67 | 90.25 35 | 57.68 29 | 89.96 13 | 74.62 35 | 89.03 26 | 87.89 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
9.14 | | | | 78.75 16 | | 83.10 78 | | 84.15 44 | 88.26 2 | 59.90 113 | 78.57 27 | 90.36 28 | 57.51 32 | 86.86 66 | 77.39 18 | 89.52 25 | |
|
CPTT-MVS | | | 72.78 83 | 72.08 87 | 74.87 98 | 84.88 65 | 61.41 29 | 84.15 44 | 77.86 189 | 55.27 201 | 67.51 163 | 88.08 72 | 41.93 197 | 81.85 185 | 69.04 77 | 80.01 121 | 81.35 221 |
|
ETH3D-3000-0.1 | | | 78.58 16 | 78.91 14 | 77.61 48 | 83.06 79 | 57.86 92 | 84.14 46 | 88.31 1 | 60.37 101 | 79.14 22 | 90.35 29 | 57.76 28 | 87.00 63 | 77.16 22 | 89.90 18 | 87.97 22 |
|
TSAR-MVS + MP. | | | 78.44 20 | 78.28 21 | 78.90 26 | 84.96 60 | 61.41 29 | 84.03 47 | 83.82 64 | 59.34 126 | 79.37 19 | 89.76 51 | 59.84 16 | 87.62 50 | 76.69 25 | 86.74 58 | 87.68 35 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
API-MVS | | | 72.17 94 | 71.41 94 | 74.45 111 | 81.95 93 | 57.22 103 | 84.03 47 | 80.38 142 | 59.89 116 | 68.40 141 | 82.33 179 | 49.64 108 | 87.83 46 | 51.87 209 | 84.16 78 | 78.30 262 |
|
xxxxxxxxxxxxxcwj | | | 78.37 21 | 78.25 23 | 78.76 29 | 86.17 36 | 61.30 31 | 83.98 49 | 79.95 147 | 59.00 129 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 60 | 77.08 23 | 90.18 15 | 87.87 25 |
|
save fliter | | | | | | 86.17 36 | 61.30 31 | 83.98 49 | 79.66 152 | 59.00 129 | | | | | | | |
|
test_part1 | | | 74.74 62 | 74.42 63 | 75.70 83 | 81.69 96 | 51.26 188 | 83.98 49 | 87.05 8 | 65.31 16 | 73.10 80 | 86.20 105 | 53.94 63 | 88.06 38 | 65.32 107 | 73.17 198 | 87.77 32 |
|
test1172 | | | 75.36 57 | 74.81 59 | 77.02 58 | 85.47 51 | 60.79 45 | 83.94 52 | 81.63 109 | 59.52 123 | 74.66 55 | 90.18 36 | 44.74 171 | 85.84 97 | 70.63 67 | 82.52 93 | 84.42 146 |
|
ACMMP_NAP | | | 78.77 15 | 78.78 15 | 78.74 30 | 85.44 52 | 61.04 36 | 83.84 53 | 85.16 35 | 62.88 57 | 78.10 28 | 91.26 13 | 52.51 78 | 88.39 30 | 79.34 6 | 90.52 13 | 86.78 67 |
|
DROMVSNet | | | 75.84 52 | 75.87 48 | 75.74 80 | 78.86 155 | 52.65 169 | 83.73 54 | 86.08 22 | 63.47 46 | 72.77 86 | 87.25 85 | 53.13 75 | 87.93 42 | 71.97 56 | 85.57 66 | 86.66 69 |
|
APD-MVS_3200maxsize | | | 74.96 58 | 74.39 64 | 76.67 65 | 82.20 88 | 58.24 88 | 83.67 55 | 83.29 80 | 58.41 143 | 73.71 68 | 90.14 37 | 45.62 157 | 85.99 92 | 69.64 71 | 82.85 90 | 85.78 97 |
|
HPM-MVS_fast | | | 74.30 70 | 73.46 76 | 76.80 61 | 84.45 68 | 59.04 74 | 83.65 56 | 81.05 128 | 60.15 109 | 70.43 106 | 89.84 49 | 41.09 213 | 85.59 102 | 67.61 87 | 82.90 88 | 85.77 100 |
|
plane_prior | | | | | | | 56.31 116 | 83.58 57 | | 63.19 52 | | | | | | 80.48 114 | |
|
abl_6 | | | 74.34 68 | 73.50 73 | 76.86 60 | 82.43 86 | 60.16 52 | 83.48 58 | 81.86 103 | 58.81 133 | 73.95 64 | 89.86 48 | 41.87 198 | 86.62 74 | 67.98 83 | 81.23 106 | 83.80 169 |
|
zzz-MVS | | | 77.61 32 | 77.36 32 | 78.35 37 | 86.08 41 | 63.57 2 | 83.37 59 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 120 | 86.66 72 | 77.23 19 | 88.17 38 | 84.81 135 |
|
QAPM | | | 70.05 126 | 68.81 135 | 73.78 122 | 76.54 214 | 53.43 159 | 83.23 60 | 83.48 71 | 52.89 233 | 65.90 192 | 86.29 104 | 41.55 206 | 86.49 81 | 51.01 215 | 78.40 147 | 81.42 217 |
|
MCST-MVS | | | 77.48 33 | 77.45 30 | 77.54 50 | 86.67 22 | 58.36 86 | 83.22 61 | 86.93 9 | 56.91 165 | 74.91 48 | 88.19 69 | 59.15 21 | 87.68 48 | 73.67 45 | 87.45 47 | 86.57 71 |
|
EPNet | | | 73.09 81 | 72.16 85 | 75.90 76 | 75.95 222 | 56.28 118 | 83.05 62 | 72.39 259 | 66.53 12 | 65.27 202 | 87.00 86 | 50.40 103 | 85.47 109 | 62.48 132 | 86.32 62 | 85.94 91 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 18 | 84.92 64 | 60.32 51 | 83.03 63 | 85.33 33 | 62.86 58 | 80.17 17 | 90.03 43 | 61.76 14 | 88.95 24 | 74.21 38 | 88.67 31 | 88.12 18 |
|
CS-MVS-test | | | 76.07 48 | 75.85 49 | 76.73 62 | 80.33 120 | 54.44 147 | 82.95 64 | 86.18 21 | 63.54 45 | 73.32 73 | 84.50 138 | 55.21 48 | 86.44 82 | 71.92 57 | 84.65 70 | 89.32 3 |
|
CSCG | | | 76.92 38 | 76.75 37 | 77.41 52 | 83.96 71 | 59.60 59 | 82.95 64 | 86.50 17 | 60.78 92 | 75.27 41 | 84.83 128 | 60.76 15 | 86.56 77 | 67.86 84 | 87.87 46 | 86.06 89 |
|
MP-MVS-pluss | | | 78.35 22 | 78.46 18 | 78.03 43 | 84.96 60 | 59.52 61 | 82.93 66 | 85.39 31 | 62.15 71 | 76.41 36 | 91.51 11 | 52.47 80 | 86.78 69 | 80.66 2 | 89.64 23 | 87.80 30 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS |  | | 77.28 34 | 76.85 36 | 78.54 34 | 85.00 59 | 60.81 43 | 82.91 67 | 85.08 36 | 62.57 64 | 73.09 81 | 89.97 46 | 50.90 101 | 87.48 51 | 75.30 30 | 86.85 56 | 87.33 52 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVSFormer | | | 71.50 104 | 70.38 112 | 74.88 97 | 78.76 158 | 57.15 108 | 82.79 68 | 78.48 176 | 51.26 252 | 69.49 124 | 83.22 162 | 43.99 180 | 83.24 153 | 66.06 98 | 79.37 129 | 84.23 151 |
|
test_djsdf | | | 69.45 143 | 67.74 150 | 74.58 107 | 74.57 245 | 54.92 142 | 82.79 68 | 78.48 176 | 51.26 252 | 65.41 200 | 83.49 160 | 38.37 233 | 83.24 153 | 66.06 98 | 69.25 254 | 85.56 109 |
|
ACMP | | 63.53 6 | 72.30 91 | 71.20 100 | 75.59 88 | 80.28 121 | 57.54 97 | 82.74 70 | 82.84 91 | 60.58 95 | 65.24 206 | 86.18 106 | 39.25 224 | 86.03 91 | 66.95 94 | 76.79 164 | 83.22 187 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ETH3D cwj APD-0.16 | | | 78.02 25 | 78.13 25 | 77.71 47 | 82.10 89 | 58.65 82 | 82.72 71 | 87.55 5 | 58.33 146 | 78.05 30 | 90.06 40 | 58.35 24 | 87.65 49 | 76.15 28 | 89.86 19 | 86.82 64 |
|
ACMM | | 61.98 7 | 70.80 113 | 69.73 120 | 74.02 117 | 80.59 117 | 58.59 83 | 82.68 72 | 82.02 101 | 55.46 199 | 67.18 168 | 84.39 140 | 38.51 231 | 83.17 155 | 60.65 146 | 76.10 168 | 80.30 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
AdaColmap |  | | 69.99 128 | 68.66 138 | 73.97 119 | 84.94 62 | 57.83 93 | 82.63 73 | 78.71 168 | 56.28 180 | 64.34 219 | 84.14 143 | 41.57 203 | 87.06 62 | 46.45 247 | 78.88 138 | 77.02 279 |
|
OPM-MVS | | | 74.73 63 | 74.25 65 | 76.19 73 | 80.81 112 | 59.01 75 | 82.60 74 | 83.64 67 | 63.74 42 | 72.52 90 | 87.49 79 | 47.18 142 | 85.88 96 | 69.47 73 | 80.78 107 | 83.66 176 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PGM-MVS | | | 76.77 41 | 76.06 43 | 78.88 27 | 86.14 39 | 62.73 12 | 82.55 75 | 83.74 65 | 61.71 80 | 72.45 93 | 90.34 31 | 48.48 124 | 88.13 36 | 72.32 52 | 86.85 56 | 85.78 97 |
|
LPG-MVS_test | | | 72.74 84 | 71.74 89 | 75.76 78 | 80.22 123 | 57.51 99 | 82.55 75 | 83.40 75 | 61.32 84 | 66.67 177 | 87.33 82 | 39.15 226 | 86.59 75 | 67.70 85 | 77.30 157 | 83.19 189 |
|
CANet | | | 76.46 43 | 75.93 46 | 78.06 42 | 81.29 104 | 57.53 98 | 82.35 77 | 83.31 79 | 67.78 3 | 70.09 111 | 86.34 103 | 54.92 52 | 88.90 25 | 72.68 51 | 84.55 72 | 87.76 33 |
|
114514_t | | | 70.83 111 | 69.56 122 | 74.64 104 | 86.21 34 | 54.63 145 | 82.34 78 | 81.81 105 | 48.22 279 | 63.01 232 | 85.83 116 | 40.92 214 | 87.10 59 | 57.91 162 | 79.79 122 | 82.18 207 |
|
HQP-NCC | | | | | | 80.66 113 | | 82.31 79 | | 62.10 73 | 67.85 153 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 113 | | 82.31 79 | | 62.10 73 | 67.85 153 | | | | | | |
|
HQP-MVS | | | 73.45 77 | 72.80 81 | 75.40 89 | 80.66 113 | 54.94 140 | 82.31 79 | 83.90 60 | 62.10 73 | 67.85 153 | 85.54 122 | 45.46 162 | 86.93 64 | 67.04 92 | 80.35 117 | 84.32 148 |
|
MSLP-MVS++ | | | 73.77 76 | 73.47 75 | 74.66 102 | 83.02 81 | 59.29 66 | 82.30 82 | 81.88 102 | 59.34 126 | 71.59 100 | 86.83 87 | 45.94 155 | 83.65 146 | 65.09 110 | 85.22 67 | 81.06 228 |
|
EPP-MVSNet | | | 72.16 95 | 71.31 98 | 74.71 99 | 78.68 161 | 49.70 213 | 82.10 83 | 81.65 108 | 60.40 98 | 65.94 190 | 85.84 115 | 51.74 90 | 86.37 85 | 55.93 172 | 79.55 128 | 88.07 21 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 84 | | | | | | | | | |
|
TSAR-MVS + GP. | | | 74.90 59 | 74.15 66 | 77.17 56 | 82.00 91 | 58.77 80 | 81.80 85 | 78.57 172 | 58.58 139 | 74.32 58 | 84.51 137 | 55.94 42 | 87.22 54 | 67.11 91 | 84.48 74 | 85.52 110 |
|
test_prior3 | | | 76.89 40 | 76.96 35 | 76.69 63 | 84.20 69 | 57.27 101 | 81.75 86 | 84.88 41 | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 39 | 86.43 83 | 72.19 53 | 88.96 28 | 86.38 73 |
|
test_prior2 | | | | | | | | 81.75 86 | | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 39 | | 72.19 53 | 88.96 28 | |
|
PS-MVSNAJss | | | 72.24 92 | 71.21 99 | 75.31 91 | 78.50 164 | 55.93 126 | 81.63 88 | 82.12 99 | 56.24 181 | 70.02 115 | 85.68 119 | 47.05 144 | 84.34 131 | 65.27 108 | 74.41 179 | 85.67 104 |
|
TEST9 | | | | | | 85.58 49 | 61.59 27 | 81.62 89 | 81.26 123 | 55.65 196 | 74.93 46 | 88.81 65 | 53.70 68 | 84.68 124 | | | |
|
train_agg | | | 76.27 45 | 76.15 42 | 76.64 66 | 85.58 49 | 61.59 27 | 81.62 89 | 81.26 123 | 55.86 188 | 74.93 46 | 88.81 65 | 53.70 68 | 84.68 124 | 75.24 32 | 88.33 35 | 83.65 177 |
|
MG-MVS | | | 73.96 73 | 73.89 69 | 74.16 116 | 85.65 47 | 49.69 215 | 81.59 91 | 81.29 122 | 61.45 83 | 71.05 102 | 88.11 70 | 51.77 89 | 87.73 47 | 61.05 144 | 83.09 82 | 85.05 128 |
|
test_8 | | | | | | 85.40 53 | 60.96 39 | 81.54 92 | 81.18 126 | 55.86 188 | 74.81 49 | 88.80 67 | 53.70 68 | 84.45 129 | | | |
|
agg_prior1 | | | 75.94 50 | 76.01 44 | 75.72 81 | 85.04 57 | 59.96 54 | 81.44 93 | 81.04 129 | 56.14 184 | 74.68 52 | 88.90 63 | 53.91 64 | 84.04 136 | 75.01 33 | 87.92 45 | 83.16 192 |
|
MAR-MVS | | | 71.51 103 | 70.15 115 | 75.60 87 | 81.84 94 | 59.39 63 | 81.38 94 | 82.90 89 | 54.90 213 | 68.08 150 | 78.70 252 | 47.73 130 | 85.51 106 | 51.68 213 | 84.17 77 | 81.88 213 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CDPH-MVS | | | 76.31 44 | 75.67 51 | 78.22 40 | 85.35 55 | 59.14 70 | 81.31 95 | 84.02 54 | 56.32 178 | 74.05 60 | 88.98 62 | 53.34 72 | 87.92 43 | 69.23 75 | 88.42 33 | 87.59 39 |
|
OpenMVS |  | 61.03 9 | 68.85 150 | 67.56 154 | 72.70 155 | 74.26 252 | 53.99 151 | 81.21 96 | 81.34 120 | 52.70 234 | 62.75 235 | 85.55 121 | 38.86 229 | 84.14 134 | 48.41 235 | 83.01 83 | 79.97 245 |
|
DP-MVS Recon | | | 72.15 96 | 70.73 106 | 76.40 70 | 86.57 26 | 57.99 91 | 81.15 97 | 82.96 86 | 57.03 162 | 66.78 173 | 85.56 120 | 44.50 175 | 88.11 37 | 51.77 211 | 80.23 120 | 83.10 193 |
|
Vis-MVSNet |  | | 72.18 93 | 71.37 96 | 74.61 105 | 81.29 104 | 55.41 137 | 80.90 98 | 78.28 185 | 60.73 93 | 69.23 132 | 88.09 71 | 44.36 177 | 82.65 172 | 57.68 163 | 81.75 103 | 85.77 100 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
jajsoiax | | | 68.25 167 | 66.45 182 | 73.66 130 | 75.62 228 | 55.49 135 | 80.82 99 | 78.51 175 | 52.33 238 | 64.33 220 | 84.11 144 | 28.28 321 | 81.81 187 | 63.48 125 | 70.62 227 | 83.67 174 |
|
mvs_tets | | | 68.18 169 | 66.36 188 | 73.63 133 | 75.61 229 | 55.35 138 | 80.77 100 | 78.56 173 | 52.48 237 | 64.27 222 | 84.10 145 | 27.45 327 | 81.84 186 | 63.45 126 | 70.56 229 | 83.69 173 |
|
DP-MVS | | | 65.68 211 | 63.66 222 | 71.75 169 | 84.93 63 | 56.87 113 | 80.74 101 | 73.16 254 | 53.06 230 | 59.09 273 | 82.35 178 | 36.79 253 | 85.94 95 | 32.82 332 | 69.96 240 | 72.45 324 |
|
3Dnovator | | 64.47 5 | 72.49 88 | 71.39 95 | 75.79 77 | 77.70 186 | 58.99 76 | 80.66 102 | 83.15 84 | 62.24 70 | 65.46 199 | 86.59 97 | 42.38 193 | 85.52 105 | 59.59 156 | 84.72 69 | 82.85 198 |
|
mvs-test1 | | | 70.44 119 | 68.19 146 | 77.18 55 | 76.10 219 | 63.22 6 | 80.59 103 | 76.06 216 | 59.83 117 | 66.32 184 | 79.87 233 | 41.56 204 | 85.53 104 | 60.60 147 | 72.77 203 | 82.80 199 |
|
RRT_MVS | | | 68.77 154 | 66.71 178 | 74.95 95 | 75.93 223 | 58.55 84 | 80.50 104 | 75.84 218 | 56.09 185 | 68.17 146 | 83.74 154 | 28.50 319 | 82.98 158 | 65.67 104 | 65.91 284 | 83.33 183 |
|
ACMH+ | | 57.40 11 | 66.12 208 | 64.06 214 | 72.30 164 | 77.79 185 | 52.83 167 | 80.39 105 | 78.03 187 | 57.30 158 | 57.47 287 | 82.55 174 | 27.68 325 | 84.17 133 | 45.54 257 | 69.78 244 | 79.90 246 |
|
canonicalmvs | | | 74.67 64 | 74.98 56 | 73.71 128 | 78.94 154 | 50.56 201 | 80.23 106 | 83.87 62 | 60.30 107 | 77.15 33 | 86.56 99 | 59.65 17 | 82.00 183 | 66.01 100 | 82.12 96 | 88.58 8 |
|
IS-MVSNet | | | 71.57 102 | 71.00 103 | 73.27 144 | 78.86 155 | 45.63 264 | 80.22 107 | 78.69 169 | 64.14 38 | 66.46 181 | 87.36 81 | 49.30 111 | 85.60 101 | 50.26 220 | 83.71 80 | 88.59 7 |
|
Effi-MVS+-dtu | | | 69.64 138 | 67.53 157 | 75.95 75 | 76.10 219 | 62.29 18 | 80.20 108 | 76.06 216 | 59.83 117 | 65.26 205 | 77.09 273 | 41.56 204 | 84.02 139 | 60.60 147 | 71.09 224 | 81.53 216 |
|
nrg030 | | | 72.96 82 | 73.01 79 | 72.84 151 | 75.41 233 | 50.24 204 | 80.02 109 | 82.89 90 | 58.36 145 | 74.44 56 | 86.73 90 | 58.90 22 | 80.83 210 | 65.84 102 | 74.46 177 | 87.44 45 |
|
Anonymous20231211 | | | 69.28 144 | 68.47 141 | 71.73 170 | 80.28 121 | 47.18 246 | 79.98 110 | 82.37 95 | 54.61 215 | 67.24 166 | 84.01 147 | 39.43 222 | 82.41 178 | 55.45 179 | 72.83 202 | 85.62 108 |
|
DPM-MVS | | | 75.47 55 | 75.00 54 | 76.88 59 | 81.38 103 | 59.16 67 | 79.94 111 | 85.71 27 | 56.59 173 | 72.46 91 | 86.76 88 | 56.89 33 | 87.86 45 | 66.36 96 | 88.91 30 | 83.64 178 |
|
PVSNet_Blended_VisFu | | | 71.45 105 | 70.39 111 | 74.65 103 | 82.01 90 | 58.82 79 | 79.93 112 | 80.35 143 | 55.09 206 | 65.82 195 | 82.16 185 | 49.17 114 | 82.64 173 | 60.34 149 | 78.62 145 | 82.50 203 |
|
PAPM_NR | | | 72.63 86 | 71.80 88 | 75.13 94 | 81.72 95 | 53.42 160 | 79.91 113 | 83.28 81 | 59.14 128 | 66.31 185 | 85.90 114 | 51.86 88 | 86.06 89 | 57.45 164 | 80.62 109 | 85.91 93 |
|
LS3D | | | 64.71 225 | 62.50 235 | 71.34 183 | 79.72 137 | 55.71 129 | 79.82 114 | 74.72 237 | 48.50 276 | 56.62 291 | 84.62 132 | 33.59 279 | 82.34 179 | 29.65 350 | 75.23 175 | 75.97 287 |
|
UGNet | | | 68.81 151 | 67.39 162 | 73.06 147 | 78.33 170 | 54.47 146 | 79.77 115 | 75.40 225 | 60.45 97 | 63.22 229 | 84.40 139 | 32.71 291 | 80.91 209 | 51.71 212 | 80.56 113 | 83.81 165 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 71.78 99 | 71.59 90 | 72.32 163 | 83.40 76 | 46.38 251 | 79.75 116 | 71.08 266 | 64.18 35 | 72.80 85 | 88.64 68 | 42.58 190 | 83.72 144 | 57.41 165 | 84.49 73 | 86.86 62 |
|
OMC-MVS | | | 71.40 106 | 70.60 107 | 73.78 122 | 76.60 212 | 53.15 163 | 79.74 117 | 79.78 149 | 58.37 144 | 68.75 136 | 86.45 101 | 45.43 164 | 80.60 215 | 62.58 130 | 77.73 151 | 87.58 40 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 118 | 74.30 243 | 48.40 278 | | | | 80.78 212 | 53.62 193 | | 79.03 258 |
|
Effi-MVS+ | | | 73.31 79 | 72.54 83 | 75.62 86 | 77.87 183 | 53.64 154 | 79.62 119 | 79.61 153 | 61.63 81 | 72.02 96 | 82.61 172 | 56.44 37 | 85.97 94 | 63.99 119 | 79.07 137 | 87.25 53 |
|
PAPR | | | 71.72 101 | 70.82 105 | 74.41 112 | 81.20 108 | 51.17 189 | 79.55 120 | 83.33 78 | 55.81 191 | 66.93 172 | 84.61 133 | 50.95 99 | 86.06 89 | 55.79 175 | 79.20 134 | 86.00 90 |
|
Regformer-1 | | | 75.47 55 | 74.93 57 | 77.09 57 | 80.43 118 | 57.70 96 | 79.50 121 | 82.13 98 | 67.84 1 | 75.73 40 | 80.75 217 | 56.50 36 | 86.07 88 | 71.07 64 | 80.38 115 | 87.50 42 |
|
Regformer-2 | | | 75.63 54 | 74.99 55 | 77.54 50 | 80.43 118 | 58.32 87 | 79.50 121 | 82.92 87 | 67.84 1 | 75.94 37 | 80.75 217 | 55.73 44 | 86.80 67 | 71.44 63 | 80.38 115 | 87.50 42 |
|
ACMH | | 55.70 15 | 65.20 221 | 63.57 223 | 70.07 207 | 78.07 178 | 52.01 184 | 79.48 123 | 79.69 150 | 55.75 193 | 56.59 292 | 80.98 209 | 27.12 329 | 80.94 206 | 42.90 281 | 71.58 219 | 77.25 277 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 74.46 67 | 73.84 70 | 76.33 72 | 79.27 145 | 55.24 139 | 79.22 124 | 85.00 40 | 64.97 24 | 72.65 88 | 79.46 244 | 53.65 71 | 87.87 44 | 67.45 89 | 82.91 87 | 85.89 94 |
|
原ACMM2 | | | | | | | | 79.02 125 | | | | | | | | | |
|
GeoE | | | 71.01 109 | 70.15 115 | 73.60 134 | 79.57 139 | 52.17 179 | 78.93 126 | 78.12 186 | 58.02 151 | 67.76 161 | 83.87 150 | 52.36 82 | 82.72 170 | 56.90 167 | 75.79 170 | 85.92 92 |
|
UA-Net | | | 73.13 80 | 72.93 80 | 73.76 124 | 83.58 73 | 51.66 186 | 78.75 127 | 77.66 193 | 67.75 4 | 72.61 89 | 89.42 54 | 49.82 106 | 83.29 152 | 53.61 195 | 83.14 81 | 86.32 81 |
|
VDDNet | | | 71.81 98 | 71.33 97 | 73.26 145 | 82.80 85 | 47.60 242 | 78.74 128 | 75.27 226 | 59.59 122 | 72.94 83 | 89.40 55 | 41.51 207 | 83.91 141 | 58.75 160 | 82.99 84 | 88.26 12 |
|
v10 | | | 70.21 124 | 69.02 132 | 73.81 121 | 73.51 257 | 50.92 193 | 78.74 128 | 81.39 115 | 60.05 111 | 66.39 183 | 81.83 192 | 47.58 134 | 85.41 112 | 62.80 129 | 68.86 261 | 85.09 127 |
|
CANet_DTU | | | 68.18 169 | 67.71 153 | 69.59 216 | 74.83 239 | 46.24 254 | 78.66 130 | 76.85 206 | 59.60 119 | 63.45 228 | 82.09 188 | 35.25 261 | 77.41 263 | 59.88 153 | 78.76 142 | 85.14 124 |
|
v8 | | | 70.33 122 | 69.28 128 | 73.49 136 | 73.15 260 | 50.22 205 | 78.62 131 | 80.78 136 | 60.79 91 | 66.45 182 | 82.11 187 | 49.35 110 | 84.98 117 | 63.58 124 | 68.71 262 | 85.28 121 |
|
alignmvs | | | 73.86 75 | 73.99 67 | 73.45 138 | 78.20 173 | 50.50 202 | 78.57 132 | 82.43 94 | 59.40 124 | 76.57 34 | 86.71 92 | 56.42 38 | 81.23 200 | 65.84 102 | 81.79 99 | 88.62 6 |
|
PLC |  | 56.13 14 | 65.09 222 | 63.21 227 | 70.72 197 | 81.04 110 | 54.87 143 | 78.57 132 | 77.47 196 | 48.51 275 | 55.71 296 | 81.89 190 | 33.71 276 | 79.71 226 | 41.66 290 | 70.37 232 | 77.58 271 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v7n | | | 69.01 149 | 67.36 164 | 73.98 118 | 72.51 273 | 52.65 169 | 78.54 134 | 81.30 121 | 60.26 108 | 62.67 236 | 81.62 195 | 43.61 182 | 84.49 128 | 57.01 166 | 68.70 263 | 84.79 137 |
|
Regformer-3 | | | 73.89 74 | 73.28 78 | 75.71 82 | 79.75 133 | 55.48 136 | 78.54 134 | 79.93 148 | 66.58 11 | 73.62 69 | 80.30 225 | 54.87 53 | 84.54 127 | 69.09 76 | 76.84 162 | 87.10 57 |
|
Regformer-4 | | | 74.25 71 | 73.48 74 | 76.57 69 | 79.75 133 | 56.54 115 | 78.54 134 | 81.49 113 | 66.93 7 | 73.90 65 | 80.30 225 | 53.84 66 | 85.98 93 | 69.76 70 | 76.84 162 | 87.17 54 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 261 | 58.81 263 | 68.64 229 | 74.63 243 | 52.51 174 | 78.42 137 | 73.30 252 | 49.92 265 | 50.96 331 | 81.51 199 | 23.06 346 | 79.40 231 | 31.63 340 | 65.85 285 | 74.01 312 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CLD-MVS | | | 73.33 78 | 72.68 82 | 75.29 93 | 78.82 157 | 53.33 161 | 78.23 138 | 84.79 44 | 61.30 86 | 70.41 107 | 81.04 207 | 52.41 81 | 87.12 58 | 64.61 115 | 82.49 95 | 85.41 118 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
casdiffmvs | | | 74.80 60 | 74.89 58 | 74.53 109 | 75.59 230 | 50.37 203 | 78.17 139 | 85.06 37 | 62.80 62 | 74.40 57 | 87.86 76 | 57.88 27 | 83.61 147 | 69.46 74 | 82.79 91 | 89.59 2 |
|
F-COLMAP | | | 63.05 242 | 60.87 255 | 69.58 218 | 76.99 206 | 53.63 155 | 78.12 140 | 76.16 213 | 47.97 283 | 52.41 326 | 81.61 196 | 27.87 323 | 78.11 253 | 40.07 296 | 66.66 279 | 77.00 280 |
|
EG-PatchMatch MVS | | | 64.71 225 | 62.87 230 | 70.22 203 | 77.68 187 | 53.48 158 | 77.99 141 | 78.82 164 | 53.37 228 | 56.03 295 | 77.41 272 | 24.75 344 | 84.04 136 | 46.37 248 | 73.42 192 | 73.14 316 |
|
tttt0517 | | | 67.83 177 | 65.66 201 | 74.33 114 | 76.69 209 | 50.82 195 | 77.86 142 | 73.99 247 | 54.54 218 | 64.64 217 | 82.53 175 | 35.06 263 | 85.50 107 | 55.71 176 | 69.91 241 | 86.67 68 |
|
v1144 | | | 70.42 120 | 69.31 127 | 73.76 124 | 73.22 258 | 50.64 198 | 77.83 143 | 81.43 114 | 58.58 139 | 69.40 127 | 81.16 204 | 47.53 135 | 85.29 114 | 64.01 118 | 70.64 226 | 85.34 119 |
|
CNLPA | | | 65.43 216 | 64.02 215 | 69.68 214 | 78.73 160 | 58.07 90 | 77.82 144 | 70.71 270 | 51.49 247 | 61.57 253 | 83.58 158 | 38.23 236 | 70.82 296 | 43.90 270 | 70.10 238 | 80.16 241 |
|
VDD-MVS | | | 72.50 87 | 72.09 86 | 73.75 126 | 81.58 97 | 49.69 215 | 77.76 145 | 77.63 194 | 63.21 51 | 73.21 76 | 89.02 61 | 42.14 194 | 83.32 151 | 61.72 139 | 82.50 94 | 88.25 13 |
|
v1192 | | | 69.97 129 | 68.68 137 | 73.85 120 | 73.19 259 | 50.94 191 | 77.68 146 | 81.36 116 | 57.51 157 | 68.95 135 | 80.85 214 | 45.28 167 | 85.33 113 | 62.97 128 | 70.37 232 | 85.27 122 |
|
v2v482 | | | 70.50 118 | 69.45 126 | 73.66 130 | 72.62 270 | 50.03 209 | 77.58 147 | 80.51 140 | 59.90 113 | 69.52 123 | 82.14 186 | 47.53 135 | 84.88 122 | 65.07 111 | 70.17 236 | 86.09 88 |
|
WR-MVS_H | | | 67.02 193 | 66.92 176 | 67.33 245 | 77.95 182 | 37.75 323 | 77.57 148 | 82.11 100 | 62.03 77 | 62.65 237 | 82.48 176 | 50.57 102 | 79.46 230 | 42.91 280 | 64.01 297 | 84.79 137 |
|
Anonymous20240529 | | | 69.91 130 | 69.02 132 | 72.56 157 | 80.19 126 | 47.65 240 | 77.56 149 | 80.99 131 | 55.45 200 | 69.88 119 | 86.76 88 | 39.24 225 | 82.18 181 | 54.04 189 | 77.10 159 | 87.85 27 |
|
v144192 | | | 69.71 133 | 68.51 139 | 73.33 143 | 73.10 261 | 50.13 207 | 77.54 150 | 80.64 137 | 56.65 167 | 68.57 139 | 80.55 219 | 46.87 149 | 84.96 119 | 62.98 127 | 69.66 248 | 84.89 133 |
|
baseline | | | 74.61 65 | 74.70 60 | 74.34 113 | 75.70 226 | 49.99 210 | 77.54 150 | 84.63 45 | 62.73 63 | 73.98 61 | 87.79 78 | 57.67 30 | 83.82 143 | 69.49 72 | 82.74 92 | 89.20 5 |
|
Fast-Effi-MVS+-dtu | | | 67.37 183 | 65.33 206 | 73.48 137 | 72.94 265 | 57.78 95 | 77.47 152 | 76.88 205 | 57.60 156 | 61.97 247 | 76.85 277 | 39.31 223 | 80.49 219 | 54.72 184 | 70.28 235 | 82.17 209 |
|
v1921920 | | | 69.47 142 | 68.17 147 | 73.36 142 | 73.06 262 | 50.10 208 | 77.39 153 | 80.56 138 | 56.58 174 | 68.59 137 | 80.37 221 | 44.72 173 | 84.98 117 | 62.47 133 | 69.82 243 | 85.00 129 |
|
GBi-Net | | | 67.21 185 | 66.55 180 | 69.19 221 | 77.63 189 | 43.33 282 | 77.31 154 | 77.83 190 | 56.62 170 | 65.04 210 | 82.70 168 | 41.85 199 | 80.33 221 | 47.18 241 | 72.76 204 | 83.92 160 |
|
test1 | | | 67.21 185 | 66.55 180 | 69.19 221 | 77.63 189 | 43.33 282 | 77.31 154 | 77.83 190 | 56.62 170 | 65.04 210 | 82.70 168 | 41.85 199 | 80.33 221 | 47.18 241 | 72.76 204 | 83.92 160 |
|
FMVSNet1 | | | 66.70 200 | 65.87 197 | 69.19 221 | 77.49 196 | 43.33 282 | 77.31 154 | 77.83 190 | 56.45 175 | 64.60 218 | 82.70 168 | 38.08 238 | 80.33 221 | 46.08 250 | 72.31 212 | 83.92 160 |
|
MVS_111021_HR | | | 74.02 72 | 73.46 76 | 75.69 84 | 83.01 82 | 60.63 47 | 77.29 157 | 78.40 183 | 61.18 87 | 70.58 105 | 85.97 112 | 54.18 60 | 84.00 140 | 67.52 88 | 82.98 86 | 82.45 204 |
|
EIA-MVS | | | 71.78 99 | 70.60 107 | 75.30 92 | 79.85 132 | 53.54 157 | 77.27 158 | 83.26 82 | 57.92 153 | 66.49 180 | 79.39 245 | 52.07 86 | 86.69 71 | 60.05 151 | 79.14 136 | 85.66 105 |
|
v1240 | | | 69.24 146 | 67.91 149 | 73.25 146 | 73.02 264 | 49.82 211 | 77.21 159 | 80.54 139 | 56.43 176 | 68.34 143 | 80.51 220 | 43.33 185 | 84.99 115 | 62.03 137 | 69.77 246 | 84.95 132 |
|
jason | | | 69.65 137 | 68.39 144 | 73.43 140 | 78.27 172 | 56.88 112 | 77.12 160 | 73.71 250 | 46.53 297 | 69.34 128 | 83.22 162 | 43.37 184 | 79.18 235 | 64.77 112 | 79.20 134 | 84.23 151 |
jason: jason. |
PAPM | | | 67.92 175 | 66.69 179 | 71.63 174 | 78.09 177 | 49.02 223 | 77.09 161 | 81.24 125 | 51.04 254 | 60.91 256 | 83.98 148 | 47.71 131 | 84.99 115 | 40.81 293 | 79.32 132 | 80.90 230 |
|
EI-MVSNet-Vis-set | | | 72.42 90 | 71.59 90 | 74.91 96 | 78.47 166 | 54.02 150 | 77.05 162 | 79.33 159 | 65.03 22 | 71.68 99 | 79.35 247 | 52.75 76 | 84.89 120 | 66.46 95 | 74.23 180 | 85.83 96 |
|
PEN-MVS | | | 66.60 202 | 66.45 182 | 67.04 246 | 77.11 202 | 36.56 333 | 77.03 163 | 80.42 141 | 62.95 54 | 62.51 242 | 84.03 146 | 46.69 150 | 79.07 241 | 44.22 265 | 63.08 306 | 85.51 111 |
|
FIs | | | 70.82 112 | 71.43 93 | 68.98 225 | 78.33 170 | 38.14 320 | 76.96 164 | 83.59 69 | 61.02 88 | 67.33 165 | 86.73 90 | 55.07 50 | 81.64 189 | 54.61 187 | 79.22 133 | 87.14 56 |
|
PS-CasMVS | | | 66.42 206 | 66.32 190 | 66.70 250 | 77.60 195 | 36.30 338 | 76.94 165 | 79.61 153 | 62.36 69 | 62.43 244 | 83.66 155 | 45.69 156 | 78.37 249 | 45.35 262 | 63.26 304 | 85.42 117 |
|
h-mvs33 | | | 72.71 85 | 71.49 92 | 76.40 70 | 81.99 92 | 59.58 60 | 76.92 166 | 76.74 209 | 60.40 98 | 74.81 49 | 85.95 113 | 45.54 160 | 85.76 100 | 70.41 68 | 70.61 228 | 83.86 164 |
|
thisisatest0530 | | | 67.92 175 | 65.78 199 | 74.33 114 | 76.29 216 | 51.03 190 | 76.89 167 | 74.25 244 | 53.67 225 | 65.59 197 | 81.76 193 | 35.15 262 | 85.50 107 | 55.94 171 | 72.47 208 | 86.47 72 |
|
test_0402 | | | 63.25 239 | 61.01 252 | 69.96 208 | 80.00 130 | 54.37 148 | 76.86 168 | 72.02 261 | 54.58 217 | 58.71 276 | 80.79 216 | 35.00 264 | 84.36 130 | 26.41 358 | 64.71 293 | 71.15 336 |
|
CP-MVSNet | | | 66.49 205 | 66.41 186 | 66.72 248 | 77.67 188 | 36.33 336 | 76.83 169 | 79.52 155 | 62.45 67 | 62.54 240 | 83.47 161 | 46.32 152 | 78.37 249 | 45.47 260 | 63.43 303 | 85.45 114 |
|
EI-MVSNet-UG-set | | | 71.92 97 | 71.06 102 | 74.52 110 | 77.98 181 | 53.56 156 | 76.62 170 | 79.16 160 | 64.40 30 | 71.18 101 | 78.95 251 | 52.19 84 | 84.66 126 | 65.47 106 | 73.57 188 | 85.32 120 |
|
lupinMVS | | | 69.57 139 | 68.28 145 | 73.44 139 | 78.76 158 | 57.15 108 | 76.57 171 | 73.29 253 | 46.19 300 | 69.49 124 | 82.18 182 | 43.99 180 | 79.23 234 | 64.66 113 | 79.37 129 | 83.93 159 |
|
TranMVSNet+NR-MVSNet | | | 70.36 121 | 70.10 117 | 71.17 188 | 78.64 162 | 42.97 286 | 76.53 172 | 81.16 127 | 66.95 6 | 68.53 140 | 85.42 124 | 51.61 91 | 83.07 156 | 52.32 203 | 69.70 247 | 87.46 44 |
|
TAPA-MVS | | 59.36 10 | 66.60 202 | 65.20 208 | 70.81 194 | 76.63 211 | 48.75 227 | 76.52 173 | 80.04 146 | 50.64 258 | 65.24 206 | 84.93 127 | 39.15 226 | 78.54 248 | 36.77 312 | 76.88 161 | 85.14 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DTE-MVSNet | | | 65.58 213 | 65.34 205 | 66.31 253 | 76.06 221 | 34.79 342 | 76.43 174 | 79.38 158 | 62.55 65 | 61.66 251 | 83.83 151 | 45.60 158 | 79.15 239 | 41.64 292 | 60.88 320 | 85.00 129 |
|
RRT_test8_iter05 | | | 68.17 171 | 66.86 177 | 72.07 165 | 75.81 224 | 46.33 252 | 76.41 175 | 81.81 105 | 56.43 176 | 66.52 179 | 81.30 203 | 31.90 299 | 84.25 132 | 63.77 123 | 67.83 270 | 85.64 107 |
|
anonymousdsp | | | 67.00 194 | 64.82 211 | 73.57 135 | 70.09 305 | 56.13 121 | 76.35 176 | 77.35 200 | 48.43 277 | 64.99 213 | 80.84 215 | 33.01 284 | 80.34 220 | 64.66 113 | 67.64 273 | 84.23 151 |
|
MVP-Stereo | | | 65.41 217 | 63.80 219 | 70.22 203 | 77.62 193 | 55.53 134 | 76.30 177 | 78.53 174 | 50.59 259 | 56.47 293 | 78.65 254 | 39.84 218 | 82.68 171 | 44.10 269 | 72.12 214 | 72.44 325 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS_Test | | | 72.45 89 | 72.46 84 | 72.42 162 | 74.88 238 | 48.50 230 | 76.28 178 | 83.14 85 | 59.40 124 | 72.46 91 | 84.68 130 | 55.66 45 | 81.12 201 | 65.98 101 | 79.66 125 | 87.63 37 |
|
IterMVS-LS | | | 69.22 147 | 68.48 140 | 71.43 179 | 74.44 248 | 49.40 219 | 76.23 179 | 77.55 195 | 59.60 119 | 65.85 194 | 81.59 198 | 51.28 94 | 81.58 192 | 59.87 154 | 69.90 242 | 83.30 184 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
æ–°å‡ ä½•2 | | | | | | | | 76.12 180 | | | | | | | | | |
|
FMVSNet2 | | | 66.93 195 | 66.31 191 | 68.79 228 | 77.63 189 | 42.98 285 | 76.11 181 | 77.47 196 | 56.62 170 | 65.22 208 | 82.17 184 | 41.85 199 | 80.18 224 | 47.05 244 | 72.72 207 | 83.20 188 |
|
旧先验2 | | | | | | | | 76.08 182 | | 45.32 307 | 76.55 35 | | | 65.56 323 | 58.75 160 | | |
|
BH-untuned | | | 68.27 166 | 67.29 166 | 71.21 185 | 79.74 135 | 53.22 162 | 76.06 183 | 77.46 198 | 57.19 160 | 66.10 187 | 81.61 196 | 45.37 166 | 83.50 149 | 45.42 261 | 76.68 166 | 76.91 283 |
|
FC-MVSNet-test | | | 69.80 132 | 70.58 109 | 67.46 241 | 77.61 194 | 34.73 345 | 76.05 184 | 83.19 83 | 60.84 90 | 65.88 193 | 86.46 100 | 54.52 57 | 80.76 214 | 52.52 202 | 78.12 148 | 86.91 60 |
|
PCF-MVS | | 61.88 8 | 70.95 110 | 69.49 124 | 75.35 90 | 77.63 189 | 55.71 129 | 76.04 185 | 81.81 105 | 50.30 260 | 69.66 122 | 85.40 125 | 52.51 78 | 84.89 120 | 51.82 210 | 80.24 119 | 85.45 114 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_NR-MVSNet | | | 71.11 107 | 71.00 103 | 71.44 177 | 79.20 147 | 44.13 275 | 76.02 186 | 82.60 93 | 66.48 13 | 68.20 144 | 84.60 134 | 56.82 34 | 82.82 168 | 54.62 185 | 70.43 230 | 87.36 51 |
|
UniMVSNet (Re) | | | 70.63 115 | 70.20 113 | 71.89 166 | 78.55 163 | 45.29 266 | 75.94 187 | 82.92 87 | 63.68 43 | 68.16 147 | 83.59 157 | 53.89 65 | 83.49 150 | 53.97 190 | 71.12 223 | 86.89 61 |
|
EPNet_dtu | | | 61.90 252 | 61.97 241 | 61.68 294 | 72.89 266 | 39.78 307 | 75.85 188 | 65.62 305 | 55.09 206 | 54.56 311 | 79.36 246 | 37.59 241 | 67.02 315 | 39.80 299 | 76.95 160 | 78.25 263 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v148 | | | 68.24 168 | 67.19 172 | 71.40 180 | 70.43 299 | 47.77 239 | 75.76 189 | 77.03 204 | 58.91 131 | 67.36 164 | 80.10 230 | 48.60 123 | 81.89 184 | 60.01 152 | 66.52 281 | 84.53 142 |
|
SixPastTwentyTwo | | | 61.65 256 | 58.80 264 | 70.20 205 | 75.80 225 | 47.22 245 | 75.59 190 | 69.68 277 | 54.61 215 | 54.11 315 | 79.26 248 | 27.07 330 | 82.96 159 | 43.27 275 | 49.79 351 | 80.41 237 |
|
DELS-MVS | | | 74.76 61 | 74.46 62 | 75.65 85 | 77.84 184 | 52.25 178 | 75.59 190 | 84.17 52 | 63.76 41 | 73.15 77 | 82.79 167 | 59.58 19 | 86.80 67 | 67.24 90 | 86.04 63 | 87.89 23 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Baseline_NR-MVSNet | | | 67.05 192 | 67.56 154 | 65.50 268 | 75.65 227 | 37.70 324 | 75.42 192 | 74.65 238 | 59.90 113 | 68.14 148 | 83.15 165 | 49.12 117 | 77.20 265 | 52.23 204 | 69.78 244 | 81.60 215 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 265 | 58.14 271 | 65.69 267 | 70.47 298 | 44.82 268 | 75.33 193 | 70.86 269 | 45.04 308 | 56.06 294 | 76.00 289 | 26.89 332 | 79.65 227 | 35.36 324 | 67.29 274 | 72.60 321 |
|
xiu_mvs_v1_base_debu | | | 68.58 158 | 67.28 167 | 72.48 159 | 78.19 174 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 243 | 70.04 112 | 81.41 200 | 32.79 287 | 79.02 242 | 63.81 120 | 77.31 154 | 81.22 223 |
|
xiu_mvs_v1_base | | | 68.58 158 | 67.28 167 | 72.48 159 | 78.19 174 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 243 | 70.04 112 | 81.41 200 | 32.79 287 | 79.02 242 | 63.81 120 | 77.31 154 | 81.22 223 |
|
xiu_mvs_v1_base_debi | | | 68.58 158 | 67.28 167 | 72.48 159 | 78.19 174 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 243 | 70.04 112 | 81.41 200 | 32.79 287 | 79.02 242 | 63.81 120 | 77.31 154 | 81.22 223 |
|
EI-MVSNet | | | 69.27 145 | 68.44 143 | 71.73 170 | 74.47 246 | 49.39 220 | 75.20 197 | 78.45 179 | 59.60 119 | 69.16 133 | 76.51 283 | 51.29 93 | 82.50 175 | 59.86 155 | 71.45 221 | 83.30 184 |
|
CVMVSNet | | | 59.63 269 | 59.14 262 | 61.08 299 | 74.47 246 | 38.84 315 | 75.20 197 | 68.74 287 | 31.15 356 | 58.24 282 | 76.51 283 | 32.39 296 | 68.58 308 | 49.77 222 | 65.84 286 | 75.81 290 |
|
ET-MVSNet_ETH3D | | | 67.96 174 | 65.72 200 | 74.68 101 | 76.67 210 | 55.62 133 | 75.11 199 | 74.74 236 | 52.91 232 | 60.03 261 | 80.12 229 | 33.68 277 | 82.64 173 | 61.86 138 | 76.34 167 | 85.78 97 |
|
xiu_mvs_v2_base | | | 70.52 116 | 69.75 119 | 72.84 151 | 81.21 107 | 55.63 132 | 75.11 199 | 78.92 163 | 54.92 212 | 69.96 118 | 79.68 239 | 47.00 148 | 82.09 182 | 61.60 141 | 79.37 129 | 80.81 232 |
|
K. test v3 | | | 60.47 264 | 57.11 276 | 70.56 199 | 73.74 256 | 48.22 233 | 75.10 201 | 62.55 324 | 58.27 147 | 53.62 320 | 76.31 287 | 27.81 324 | 81.59 191 | 47.42 238 | 39.18 362 | 81.88 213 |
|
Fast-Effi-MVS+ | | | 70.28 123 | 69.12 131 | 73.73 127 | 78.50 164 | 51.50 187 | 75.01 202 | 79.46 157 | 56.16 183 | 68.59 137 | 79.55 242 | 53.97 61 | 84.05 135 | 53.34 197 | 77.53 153 | 85.65 106 |
|
DU-MVS | | | 70.01 127 | 69.53 123 | 71.44 177 | 78.05 179 | 44.13 275 | 75.01 202 | 81.51 112 | 64.37 31 | 68.20 144 | 84.52 135 | 49.12 117 | 82.82 168 | 54.62 185 | 70.43 230 | 87.37 49 |
|
FMVSNet3 | | | 66.32 207 | 65.61 202 | 68.46 231 | 76.48 215 | 42.34 289 | 74.98 204 | 77.15 203 | 55.83 190 | 65.04 210 | 81.16 204 | 39.91 217 | 80.14 225 | 47.18 241 | 72.76 204 | 82.90 197 |
|
MTAPA | | | 76.90 39 | 76.42 41 | 78.35 37 | 86.08 41 | 63.57 2 | 74.92 205 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 120 | 86.66 72 | 77.23 19 | 88.17 38 | 84.81 135 |
|
PS-MVSNAJ | | | 70.51 117 | 69.70 121 | 72.93 149 | 81.52 98 | 55.79 128 | 74.92 205 | 79.00 162 | 55.04 211 | 69.88 119 | 78.66 253 | 47.05 144 | 82.19 180 | 61.61 140 | 79.58 126 | 80.83 231 |
|
MVS_111021_LR | | | 69.50 141 | 68.78 136 | 71.65 173 | 78.38 167 | 59.33 64 | 74.82 207 | 70.11 274 | 58.08 148 | 67.83 157 | 84.68 130 | 41.96 196 | 76.34 275 | 65.62 105 | 77.54 152 | 79.30 256 |
|
ECVR-MVS |  | | 67.72 178 | 67.51 158 | 68.35 233 | 79.46 141 | 36.29 339 | 74.79 208 | 66.93 297 | 58.72 135 | 67.19 167 | 88.05 73 | 36.10 255 | 81.38 195 | 52.07 206 | 84.25 75 | 87.39 47 |
|
test_yl | | | 69.69 134 | 69.13 129 | 71.36 181 | 78.37 168 | 45.74 260 | 74.71 209 | 80.20 144 | 57.91 154 | 70.01 116 | 83.83 151 | 42.44 191 | 82.87 164 | 54.97 181 | 79.72 123 | 85.48 112 |
|
DCV-MVSNet | | | 69.69 134 | 69.13 129 | 71.36 181 | 78.37 168 | 45.74 260 | 74.71 209 | 80.20 144 | 57.91 154 | 70.01 116 | 83.83 151 | 42.44 191 | 82.87 164 | 54.97 181 | 79.72 123 | 85.48 112 |
|
TransMVSNet (Re) | | | 64.72 224 | 64.33 213 | 65.87 265 | 75.22 235 | 38.56 317 | 74.66 211 | 75.08 235 | 58.90 132 | 61.79 250 | 82.63 171 | 51.18 95 | 78.07 254 | 43.63 273 | 55.87 336 | 80.99 229 |
|
BH-w/o | | | 66.85 196 | 65.83 198 | 69.90 212 | 79.29 143 | 52.46 175 | 74.66 211 | 76.65 210 | 54.51 219 | 64.85 214 | 78.12 259 | 45.59 159 | 82.95 160 | 43.26 276 | 75.54 173 | 74.27 309 |
|
PVSNet_BlendedMVS | | | 68.56 161 | 67.72 151 | 71.07 191 | 77.03 204 | 50.57 199 | 74.50 213 | 81.52 110 | 53.66 226 | 64.22 224 | 79.72 238 | 49.13 115 | 82.87 164 | 55.82 173 | 73.92 183 | 79.77 251 |
|
c3_l | | | 68.33 165 | 67.56 154 | 70.62 198 | 70.87 293 | 46.21 255 | 74.47 214 | 78.80 166 | 56.22 182 | 66.19 186 | 78.53 258 | 51.88 87 | 81.40 194 | 62.08 134 | 69.04 257 | 84.25 150 |
|
test2506 | | | 65.33 219 | 64.61 212 | 67.50 240 | 79.46 141 | 34.19 348 | 74.43 215 | 51.92 355 | 58.72 135 | 66.75 175 | 88.05 73 | 25.99 337 | 80.92 208 | 51.94 208 | 84.25 75 | 87.39 47 |
|
BH-RMVSNet | | | 68.81 151 | 67.42 161 | 72.97 148 | 80.11 129 | 52.53 173 | 74.26 216 | 76.29 212 | 58.48 142 | 68.38 142 | 84.20 141 | 42.59 189 | 83.83 142 | 46.53 246 | 75.91 169 | 82.56 200 |
|
NR-MVSNet | | | 69.54 140 | 68.85 134 | 71.59 175 | 78.05 179 | 43.81 279 | 74.20 217 | 80.86 135 | 65.18 17 | 62.76 234 | 84.52 135 | 52.35 83 | 83.59 148 | 50.96 216 | 70.78 225 | 87.37 49 |
|
UniMVSNet_ETH3D | | | 67.60 180 | 67.07 175 | 69.18 224 | 77.39 198 | 42.29 290 | 74.18 218 | 75.59 222 | 60.37 101 | 66.77 174 | 86.06 110 | 37.64 240 | 78.93 247 | 52.16 205 | 73.49 190 | 86.32 81 |
|
VPA-MVSNet | | | 69.02 148 | 69.47 125 | 67.69 239 | 77.42 197 | 41.00 303 | 74.04 219 | 79.68 151 | 60.06 110 | 69.26 131 | 84.81 129 | 51.06 98 | 77.58 261 | 54.44 188 | 74.43 178 | 84.48 144 |
|
miper_ehance_all_eth | | | 68.03 172 | 67.24 171 | 70.40 202 | 70.54 297 | 46.21 255 | 73.98 220 | 78.68 170 | 55.07 209 | 66.05 188 | 77.80 267 | 52.16 85 | 81.31 197 | 61.53 143 | 69.32 251 | 83.67 174 |
|
hse-mvs2 | | | 71.04 108 | 69.86 118 | 74.60 106 | 79.58 138 | 57.12 110 | 73.96 221 | 75.25 227 | 60.40 98 | 74.81 49 | 81.95 189 | 45.54 160 | 82.90 161 | 70.41 68 | 66.83 278 | 83.77 170 |
|
1314 | | | 64.61 227 | 63.21 227 | 68.80 227 | 71.87 283 | 47.46 243 | 73.95 222 | 78.39 184 | 42.88 329 | 59.97 262 | 76.60 282 | 38.11 237 | 79.39 232 | 54.84 183 | 72.32 211 | 79.55 252 |
|
1121 | | | 68.53 162 | 67.16 173 | 72.63 156 | 85.64 48 | 61.14 34 | 73.95 222 | 66.46 300 | 44.61 312 | 70.28 109 | 86.68 93 | 41.42 208 | 80.78 212 | 53.62 193 | 81.79 99 | 75.97 287 |
|
MVS | | | 67.37 183 | 66.33 189 | 70.51 201 | 75.46 232 | 50.94 191 | 73.95 222 | 81.85 104 | 41.57 336 | 62.54 240 | 78.57 257 | 47.98 127 | 85.47 109 | 52.97 200 | 82.05 97 | 75.14 296 |
|
AUN-MVS | | | 68.45 164 | 66.41 186 | 74.57 108 | 79.53 140 | 57.08 111 | 73.93 225 | 75.23 228 | 54.44 220 | 66.69 176 | 81.85 191 | 37.10 249 | 82.89 162 | 62.07 135 | 66.84 277 | 83.75 171 |
|
OurMVSNet-221017-0 | | | 61.37 260 | 58.63 266 | 69.61 215 | 72.05 279 | 48.06 235 | 73.93 225 | 72.51 258 | 47.23 293 | 54.74 308 | 80.92 211 | 21.49 353 | 81.24 199 | 48.57 234 | 56.22 335 | 79.53 253 |
|
test1111 | | | 67.21 185 | 67.14 174 | 67.42 242 | 79.24 146 | 34.76 344 | 73.89 227 | 65.65 304 | 58.71 137 | 66.96 171 | 87.95 75 | 36.09 256 | 80.53 216 | 52.03 207 | 83.79 79 | 86.97 59 |
|
cl22 | | | 67.47 182 | 66.45 182 | 70.54 200 | 69.85 310 | 46.49 250 | 73.85 228 | 77.35 200 | 55.07 209 | 65.51 198 | 77.92 263 | 47.64 133 | 81.10 202 | 61.58 142 | 69.32 251 | 84.01 158 |
|
TAMVS | | | 66.78 199 | 65.27 207 | 71.33 184 | 79.16 150 | 53.67 153 | 73.84 229 | 69.59 279 | 52.32 239 | 65.28 201 | 81.72 194 | 44.49 176 | 77.40 264 | 42.32 284 | 78.66 144 | 82.92 195 |
|
WR-MVS | | | 68.47 163 | 68.47 141 | 68.44 232 | 80.20 125 | 39.84 306 | 73.75 230 | 76.07 215 | 64.68 25 | 68.11 149 | 83.63 156 | 50.39 104 | 79.14 240 | 49.78 221 | 69.66 248 | 86.34 78 |
|
eth_miper_zixun_eth | | | 67.63 179 | 66.28 192 | 71.67 172 | 71.60 285 | 48.33 232 | 73.68 231 | 77.88 188 | 55.80 192 | 65.91 191 | 78.62 256 | 47.35 141 | 82.88 163 | 59.45 157 | 66.25 282 | 83.81 165 |
|
TR-MVS | | | 66.59 204 | 65.07 209 | 71.17 188 | 79.18 148 | 49.63 217 | 73.48 232 | 75.20 230 | 52.95 231 | 67.90 151 | 80.33 224 | 39.81 219 | 83.68 145 | 43.20 277 | 73.56 189 | 80.20 240 |
|
cl____ | | | 67.18 188 | 66.26 193 | 69.94 209 | 70.20 302 | 45.74 260 | 73.30 233 | 76.83 207 | 55.10 204 | 65.27 202 | 79.57 241 | 47.39 139 | 80.53 216 | 59.41 159 | 69.22 255 | 83.53 180 |
|
DIV-MVS_self_test | | | 67.18 188 | 66.26 193 | 69.94 209 | 70.20 302 | 45.74 260 | 73.29 234 | 76.83 207 | 55.10 204 | 65.27 202 | 79.58 240 | 47.38 140 | 80.53 216 | 59.43 158 | 69.22 255 | 83.54 179 |
|
CDS-MVSNet | | | 66.80 198 | 65.37 204 | 71.10 190 | 78.98 153 | 53.13 165 | 73.27 235 | 71.07 267 | 52.15 240 | 64.72 215 | 80.23 228 | 43.56 183 | 77.10 266 | 45.48 259 | 78.88 138 | 83.05 194 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
pmmvs6 | | | 63.69 233 | 62.82 232 | 66.27 255 | 70.63 296 | 39.27 312 | 73.13 236 | 75.47 224 | 52.69 235 | 59.75 267 | 82.30 180 | 39.71 220 | 77.03 268 | 47.40 239 | 64.35 296 | 82.53 201 |
|
IB-MVS | | 56.42 12 | 65.40 218 | 62.73 233 | 73.40 141 | 74.89 237 | 52.78 168 | 73.09 237 | 75.13 231 | 55.69 194 | 58.48 281 | 73.73 310 | 32.86 286 | 86.32 86 | 50.63 217 | 70.11 237 | 81.10 227 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
diffmvs | | | 70.69 114 | 70.43 110 | 71.46 176 | 69.45 314 | 48.95 225 | 72.93 238 | 78.46 178 | 57.27 159 | 71.69 98 | 83.97 149 | 51.48 92 | 77.92 256 | 70.70 66 | 77.95 150 | 87.53 41 |
|
V42 | | | 68.65 156 | 67.35 165 | 72.56 157 | 68.93 319 | 50.18 206 | 72.90 239 | 79.47 156 | 56.92 164 | 69.45 126 | 80.26 227 | 46.29 153 | 82.99 157 | 64.07 116 | 67.82 271 | 84.53 142 |
|
miper_enhance_ethall | | | 67.11 191 | 66.09 195 | 70.17 206 | 69.21 316 | 45.98 258 | 72.85 240 | 78.41 182 | 51.38 249 | 65.65 196 | 75.98 292 | 51.17 96 | 81.25 198 | 60.82 145 | 69.32 251 | 83.29 186 |
|
thres100view900 | | | 63.28 238 | 62.41 236 | 65.89 264 | 77.31 199 | 38.66 316 | 72.65 241 | 69.11 285 | 57.07 161 | 62.45 243 | 81.03 208 | 37.01 251 | 79.17 236 | 31.84 336 | 73.25 195 | 79.83 248 |
|
testdata1 | | | | | | | | 72.65 241 | | 60.50 96 | | | | | | | |
|
pm-mvs1 | | | 65.24 220 | 64.97 210 | 66.04 261 | 72.38 274 | 39.40 311 | 72.62 243 | 75.63 221 | 55.53 198 | 62.35 246 | 83.18 164 | 47.45 137 | 76.47 273 | 49.06 230 | 66.54 280 | 82.24 206 |
|
test222 | | | | | | 83.14 77 | 58.68 81 | 72.57 244 | 63.45 318 | 41.78 332 | 67.56 162 | 86.12 107 | 37.13 248 | | | 78.73 143 | 74.98 300 |
|
PVSNet_Blended | | | 68.59 157 | 67.72 151 | 71.19 186 | 77.03 204 | 50.57 199 | 72.51 245 | 81.52 110 | 51.91 241 | 64.22 224 | 77.77 269 | 49.13 115 | 82.87 164 | 55.82 173 | 79.58 126 | 80.14 242 |
|
EU-MVSNet | | | 55.61 293 | 54.41 296 | 59.19 305 | 65.41 340 | 33.42 352 | 72.44 246 | 71.91 262 | 28.81 358 | 51.27 329 | 73.87 309 | 24.76 343 | 69.08 306 | 43.04 278 | 58.20 329 | 75.06 297 |
|
thres600view7 | | | 63.30 237 | 62.27 237 | 66.41 252 | 77.18 201 | 38.87 314 | 72.35 247 | 69.11 285 | 56.98 163 | 62.37 245 | 80.96 210 | 37.01 251 | 79.00 245 | 31.43 343 | 73.05 200 | 81.36 219 |
|
pmmvs-eth3d | | | 58.81 271 | 56.31 284 | 66.30 254 | 67.61 326 | 52.42 177 | 72.30 248 | 64.76 311 | 43.55 323 | 54.94 306 | 74.19 307 | 28.95 316 | 72.60 288 | 43.31 274 | 57.21 331 | 73.88 313 |
|
cascas | | | 65.98 209 | 63.42 225 | 73.64 132 | 77.26 200 | 52.58 172 | 72.26 249 | 77.21 202 | 48.56 274 | 61.21 255 | 74.60 304 | 32.57 295 | 85.82 99 | 50.38 219 | 76.75 165 | 82.52 202 |
|
VPNet | | | 67.52 181 | 68.11 148 | 65.74 266 | 79.18 148 | 36.80 331 | 72.17 250 | 72.83 256 | 62.04 76 | 67.79 159 | 85.83 116 | 48.88 119 | 76.60 272 | 51.30 214 | 72.97 201 | 83.81 165 |
|
MS-PatchMatch | | | 62.42 246 | 61.46 246 | 65.31 272 | 75.21 236 | 52.10 180 | 72.05 251 | 74.05 246 | 46.41 298 | 57.42 288 | 74.36 305 | 34.35 271 | 77.57 262 | 45.62 256 | 73.67 185 | 66.26 349 |
|
mvs_anonymous | | | 68.03 172 | 67.51 158 | 69.59 216 | 72.08 278 | 44.57 273 | 71.99 252 | 75.23 228 | 51.67 242 | 67.06 169 | 82.57 173 | 54.68 55 | 77.94 255 | 56.56 168 | 75.71 172 | 86.26 85 |
|
patch_mono-2 | | | 69.85 131 | 71.09 101 | 66.16 257 | 79.11 151 | 54.80 144 | 71.97 253 | 74.31 242 | 53.50 227 | 70.90 103 | 84.17 142 | 57.63 31 | 63.31 328 | 66.17 97 | 82.02 98 | 80.38 238 |
|
tfpn200view9 | | | 63.18 240 | 62.18 239 | 66.21 256 | 76.85 207 | 39.62 308 | 71.96 254 | 69.44 281 | 56.63 168 | 62.61 238 | 79.83 234 | 37.18 245 | 79.17 236 | 31.84 336 | 73.25 195 | 79.83 248 |
|
thres400 | | | 63.31 236 | 62.18 239 | 66.72 248 | 76.85 207 | 39.62 308 | 71.96 254 | 69.44 281 | 56.63 168 | 62.61 238 | 79.83 234 | 37.18 245 | 79.17 236 | 31.84 336 | 73.25 195 | 81.36 219 |
|
baseline1 | | | 63.81 232 | 63.87 218 | 63.62 280 | 76.29 216 | 36.36 334 | 71.78 256 | 67.29 294 | 56.05 187 | 64.23 223 | 82.95 166 | 47.11 143 | 74.41 283 | 47.30 240 | 61.85 314 | 80.10 243 |
|
baseline2 | | | 63.42 235 | 61.26 249 | 69.89 213 | 72.55 272 | 47.62 241 | 71.54 257 | 68.38 289 | 50.11 261 | 54.82 307 | 75.55 296 | 43.06 187 | 80.96 205 | 48.13 236 | 67.16 276 | 81.11 226 |
|
pmmvs4 | | | 61.48 259 | 59.39 260 | 67.76 238 | 71.57 286 | 53.86 152 | 71.42 258 | 65.34 307 | 44.20 317 | 59.46 268 | 77.92 263 | 35.90 257 | 74.71 281 | 43.87 271 | 64.87 292 | 74.71 305 |
|
bset_n11_16_dypcd | | | 65.57 214 | 63.69 221 | 71.19 186 | 70.84 295 | 51.79 185 | 71.37 259 | 70.48 272 | 53.33 229 | 65.19 209 | 76.41 286 | 31.46 301 | 81.76 188 | 65.12 109 | 69.04 257 | 80.01 244 |
|
1112_ss | | | 64.00 231 | 63.36 226 | 65.93 263 | 79.28 144 | 42.58 288 | 71.35 260 | 72.36 260 | 46.41 298 | 60.55 258 | 77.89 265 | 46.27 154 | 73.28 286 | 46.18 249 | 69.97 239 | 81.92 212 |
|
thisisatest0515 | | | 65.83 210 | 63.50 224 | 72.82 153 | 73.75 255 | 49.50 218 | 71.32 261 | 73.12 255 | 49.39 267 | 63.82 226 | 76.50 285 | 34.95 265 | 84.84 123 | 53.20 199 | 75.49 174 | 84.13 155 |
|
CostFormer | | | 64.04 230 | 62.51 234 | 68.61 230 | 71.88 282 | 45.77 259 | 71.30 262 | 70.60 271 | 47.55 287 | 64.31 221 | 76.61 281 | 41.63 202 | 79.62 229 | 49.74 223 | 69.00 259 | 80.42 236 |
|
tfpnnormal | | | 62.47 245 | 61.63 244 | 64.99 274 | 74.81 240 | 39.01 313 | 71.22 263 | 73.72 249 | 55.22 203 | 60.21 259 | 80.09 231 | 41.26 212 | 76.98 269 | 30.02 348 | 68.09 267 | 78.97 259 |
|
IterMVS | | | 62.79 243 | 61.27 248 | 67.35 244 | 69.37 315 | 52.04 183 | 71.17 264 | 68.24 290 | 52.63 236 | 59.82 265 | 76.91 276 | 37.32 244 | 72.36 289 | 52.80 201 | 63.19 305 | 77.66 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Vis-MVSNet (Re-imp) | | | 63.69 233 | 63.88 217 | 63.14 285 | 74.75 241 | 31.04 359 | 71.16 265 | 63.64 317 | 56.32 178 | 59.80 266 | 84.99 126 | 44.51 174 | 75.46 278 | 39.12 301 | 80.62 109 | 82.92 195 |
|
IterMVS-SCA-FT | | | 62.49 244 | 61.52 245 | 65.40 270 | 71.99 280 | 50.80 196 | 71.15 266 | 69.63 278 | 45.71 306 | 60.61 257 | 77.93 262 | 37.45 242 | 65.99 321 | 55.67 177 | 63.50 302 | 79.42 254 |
|
Anonymous202405211 | | | 66.84 197 | 65.99 196 | 69.40 220 | 80.19 126 | 42.21 291 | 71.11 267 | 71.31 265 | 58.80 134 | 67.90 151 | 86.39 102 | 29.83 311 | 79.65 227 | 49.60 227 | 78.78 141 | 86.33 79 |
|
Anonymous20240521 | | | 55.30 294 | 54.41 296 | 57.96 313 | 60.92 360 | 41.73 296 | 71.09 268 | 71.06 268 | 41.18 337 | 48.65 340 | 73.31 312 | 16.93 357 | 59.25 342 | 42.54 282 | 64.01 297 | 72.90 318 |
|
tpm2 | | | 62.07 250 | 60.10 258 | 67.99 236 | 72.79 267 | 43.86 278 | 71.05 269 | 66.85 298 | 43.14 327 | 62.77 233 | 75.39 298 | 38.32 234 | 80.80 211 | 41.69 289 | 68.88 260 | 79.32 255 |
|
DWT-MVSNet_test | | | 61.90 252 | 59.93 259 | 67.83 237 | 71.98 281 | 46.09 257 | 71.03 270 | 69.71 275 | 50.09 262 | 58.51 280 | 70.62 326 | 30.21 308 | 77.63 260 | 49.28 228 | 67.91 268 | 79.78 250 |
|
TDRefinement | | | 53.44 306 | 50.72 314 | 61.60 295 | 64.31 345 | 46.96 247 | 70.89 271 | 65.27 309 | 41.78 332 | 44.61 352 | 77.98 260 | 11.52 365 | 66.36 319 | 28.57 353 | 51.59 346 | 71.49 333 |
|
XVG-ACMP-BASELINE | | | 64.36 229 | 62.23 238 | 70.74 196 | 72.35 275 | 52.45 176 | 70.80 272 | 78.45 179 | 53.84 224 | 59.87 264 | 81.10 206 | 16.24 358 | 79.32 233 | 55.64 178 | 71.76 216 | 80.47 235 |
|
XVG-OURS-SEG-HR | | | 68.81 151 | 67.47 160 | 72.82 153 | 74.40 249 | 56.87 113 | 70.59 273 | 79.04 161 | 54.77 214 | 66.99 170 | 86.01 111 | 39.57 221 | 78.21 252 | 62.54 131 | 73.33 193 | 83.37 182 |
|
VNet | | | 69.68 136 | 70.19 114 | 68.16 235 | 79.73 136 | 41.63 299 | 70.53 274 | 77.38 199 | 60.37 101 | 70.69 104 | 86.63 95 | 51.08 97 | 77.09 267 | 53.61 195 | 81.69 105 | 85.75 102 |
|
GA-MVS | | | 65.53 215 | 63.70 220 | 71.02 192 | 70.87 293 | 48.10 234 | 70.48 275 | 74.40 240 | 56.69 166 | 64.70 216 | 76.77 278 | 33.66 278 | 81.10 202 | 55.42 180 | 70.32 234 | 83.87 163 |
|
MSDG | | | 61.81 255 | 59.23 261 | 69.55 219 | 72.64 269 | 52.63 171 | 70.45 276 | 75.81 219 | 51.38 249 | 53.70 318 | 76.11 288 | 29.52 312 | 81.08 204 | 37.70 307 | 65.79 287 | 74.93 301 |
|
ab-mvs | | | 66.65 201 | 66.42 185 | 67.37 243 | 76.17 218 | 41.73 296 | 70.41 277 | 76.14 214 | 53.99 222 | 65.98 189 | 83.51 159 | 49.48 109 | 76.24 276 | 48.60 233 | 73.46 191 | 84.14 154 |
|
EGC-MVSNET | | | 42.47 326 | 38.48 332 | 54.46 327 | 74.33 250 | 48.73 228 | 70.33 278 | 51.10 356 | 0.03 375 | 0.18 376 | 67.78 342 | 13.28 361 | 66.49 318 | 18.91 363 | 50.36 350 | 48.15 360 |
|
MVSTER | | | 67.16 190 | 65.58 203 | 71.88 167 | 70.37 301 | 49.70 213 | 70.25 279 | 78.45 179 | 51.52 246 | 69.16 133 | 80.37 221 | 38.45 232 | 82.50 175 | 60.19 150 | 71.46 220 | 83.44 181 |
|
XVG-OURS | | | 68.76 155 | 67.37 163 | 72.90 150 | 74.32 251 | 57.22 103 | 70.09 280 | 78.81 165 | 55.24 202 | 67.79 159 | 85.81 118 | 36.54 254 | 78.28 251 | 62.04 136 | 75.74 171 | 83.19 189 |
|
HY-MVS | | 56.14 13 | 64.55 228 | 63.89 216 | 66.55 251 | 74.73 242 | 41.02 301 | 69.96 281 | 74.43 239 | 49.29 268 | 61.66 251 | 80.92 211 | 47.43 138 | 76.68 271 | 44.91 264 | 71.69 217 | 81.94 211 |
|
AllTest | | | 57.08 284 | 54.65 293 | 64.39 277 | 71.44 287 | 49.03 221 | 69.92 282 | 67.30 292 | 45.97 303 | 47.16 344 | 79.77 236 | 17.47 355 | 67.56 312 | 33.65 329 | 59.16 326 | 76.57 284 |
|
thres200 | | | 62.20 249 | 61.16 251 | 65.34 271 | 75.38 234 | 39.99 305 | 69.60 283 | 69.29 283 | 55.64 197 | 61.87 249 | 76.99 274 | 37.07 250 | 78.96 246 | 31.28 344 | 73.28 194 | 77.06 278 |
|
tpmrst | | | 58.24 275 | 58.70 265 | 56.84 317 | 66.97 329 | 34.32 347 | 69.57 284 | 61.14 330 | 47.17 294 | 58.58 279 | 71.60 320 | 41.28 211 | 60.41 338 | 49.20 229 | 62.84 307 | 75.78 291 |
|
PatchmatchNet |  | | 59.84 267 | 58.24 269 | 64.65 276 | 73.05 263 | 46.70 249 | 69.42 285 | 62.18 326 | 47.55 287 | 58.88 275 | 71.96 319 | 34.49 269 | 69.16 305 | 42.99 279 | 63.60 301 | 78.07 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVS_0304 | | | 58.51 272 | 57.36 275 | 61.96 293 | 70.04 306 | 41.83 294 | 69.40 286 | 65.46 306 | 50.73 255 | 53.30 324 | 74.06 308 | 22.65 347 | 70.18 303 | 42.16 285 | 68.44 264 | 73.86 314 |
|
GG-mvs-BLEND | | | | | 62.34 290 | 71.36 291 | 37.04 329 | 69.20 287 | 57.33 342 | | 54.73 309 | 65.48 349 | 30.37 305 | 77.82 257 | 34.82 325 | 74.93 176 | 72.17 330 |
|
HyFIR lowres test | | | 65.67 212 | 63.01 229 | 73.67 129 | 79.97 131 | 55.65 131 | 69.07 288 | 75.52 223 | 42.68 330 | 63.53 227 | 77.95 261 | 40.43 215 | 81.64 189 | 46.01 251 | 71.91 215 | 83.73 172 |
|
test_post1 | | | | | | | | 68.67 289 | | | | 3.64 373 | 32.39 296 | 69.49 304 | 44.17 266 | | |
|
Test_1112_low_res | | | 62.32 247 | 61.77 242 | 64.00 279 | 79.08 152 | 39.53 310 | 68.17 290 | 70.17 273 | 43.25 325 | 59.03 274 | 79.90 232 | 44.08 178 | 71.24 295 | 43.79 272 | 68.42 265 | 81.25 222 |
|
tpm cat1 | | | 59.25 270 | 56.95 279 | 66.15 258 | 72.19 277 | 46.96 247 | 68.09 291 | 65.76 303 | 40.03 344 | 57.81 285 | 70.56 327 | 38.32 234 | 74.51 282 | 38.26 305 | 61.50 317 | 77.00 280 |
|
ppachtmachnet_test | | | 58.06 278 | 55.38 289 | 66.10 260 | 69.51 312 | 48.99 224 | 68.01 292 | 66.13 302 | 44.50 314 | 54.05 316 | 70.74 325 | 32.09 298 | 72.34 290 | 36.68 315 | 56.71 334 | 76.99 282 |
|
tpmvs | | | 58.47 273 | 56.95 279 | 63.03 287 | 70.20 302 | 41.21 300 | 67.90 293 | 67.23 295 | 49.62 266 | 54.73 309 | 70.84 324 | 34.14 272 | 76.24 276 | 36.64 316 | 61.29 318 | 71.64 332 |
|
CL-MVSNet_self_test | | | 61.53 257 | 60.94 253 | 63.30 283 | 68.95 318 | 36.93 330 | 67.60 294 | 72.80 257 | 55.67 195 | 59.95 263 | 76.63 279 | 45.01 170 | 72.22 292 | 39.74 300 | 62.09 313 | 80.74 233 |
|
tpm | | | 57.34 282 | 58.16 270 | 54.86 324 | 71.80 284 | 34.77 343 | 67.47 295 | 56.04 348 | 48.20 280 | 60.10 260 | 76.92 275 | 37.17 247 | 53.41 360 | 40.76 294 | 65.01 291 | 76.40 286 |
|
gg-mvs-nofinetune | | | 57.86 279 | 56.43 283 | 62.18 291 | 72.62 270 | 35.35 341 | 66.57 296 | 56.33 345 | 50.65 257 | 57.64 286 | 57.10 357 | 30.65 303 | 76.36 274 | 37.38 309 | 78.88 138 | 74.82 303 |
|
TinyColmap | | | 54.14 299 | 51.72 309 | 61.40 297 | 66.84 331 | 41.97 292 | 66.52 297 | 68.51 288 | 44.81 309 | 42.69 356 | 75.77 293 | 11.66 364 | 72.94 287 | 31.96 334 | 56.77 333 | 69.27 345 |
|
pmmvs5 | | | 56.47 286 | 55.68 287 | 58.86 307 | 61.41 355 | 36.71 332 | 66.37 298 | 62.75 323 | 40.38 342 | 53.70 318 | 76.62 280 | 34.56 267 | 67.05 314 | 40.02 298 | 65.27 289 | 72.83 319 |
|
CHOSEN 1792x2688 | | | 65.08 223 | 62.84 231 | 71.82 168 | 81.49 100 | 56.26 119 | 66.32 299 | 74.20 245 | 40.53 341 | 63.16 231 | 78.65 254 | 41.30 209 | 77.80 258 | 45.80 253 | 74.09 181 | 81.40 218 |
|
our_test_3 | | | 56.49 285 | 54.42 295 | 62.68 289 | 69.51 312 | 45.48 265 | 66.08 300 | 61.49 329 | 44.11 320 | 50.73 335 | 69.60 336 | 33.05 283 | 68.15 309 | 38.38 304 | 56.86 332 | 74.40 307 |
|
PM-MVS | | | 52.33 310 | 50.19 315 | 58.75 308 | 62.10 352 | 45.14 267 | 65.75 301 | 40.38 370 | 43.60 322 | 53.52 321 | 72.65 314 | 9.16 370 | 65.87 322 | 50.41 218 | 54.18 341 | 65.24 351 |
|
D2MVS | | | 62.30 248 | 60.29 257 | 68.34 234 | 66.46 334 | 48.42 231 | 65.70 302 | 73.42 251 | 47.71 285 | 58.16 283 | 75.02 300 | 30.51 304 | 77.71 259 | 53.96 191 | 71.68 218 | 78.90 260 |
|
MIMVSNet1 | | | 55.17 297 | 54.31 298 | 57.77 315 | 70.03 307 | 32.01 356 | 65.68 303 | 64.81 310 | 49.19 269 | 46.75 347 | 76.00 289 | 25.53 340 | 64.04 326 | 28.65 352 | 62.13 312 | 77.26 276 |
|
PatchMatch-RL | | | 56.25 289 | 54.55 294 | 61.32 298 | 77.06 203 | 56.07 123 | 65.57 304 | 54.10 353 | 44.13 319 | 53.49 323 | 71.27 323 | 25.20 341 | 66.78 316 | 36.52 318 | 63.66 300 | 61.12 352 |
|
test-LLR | | | 58.15 277 | 58.13 272 | 58.22 310 | 68.57 320 | 44.80 269 | 65.46 305 | 57.92 339 | 50.08 263 | 55.44 299 | 69.82 334 | 32.62 292 | 57.44 347 | 49.66 225 | 73.62 186 | 72.41 326 |
|
TESTMET0.1,1 | | | 55.28 295 | 54.90 292 | 56.42 318 | 66.56 333 | 43.67 280 | 65.46 305 | 56.27 346 | 39.18 347 | 53.83 317 | 67.44 343 | 24.21 345 | 55.46 357 | 48.04 237 | 73.11 199 | 70.13 341 |
|
test-mter | | | 56.42 287 | 55.82 286 | 58.22 310 | 68.57 320 | 44.80 269 | 65.46 305 | 57.92 339 | 39.94 345 | 55.44 299 | 69.82 334 | 21.92 350 | 57.44 347 | 49.66 225 | 73.62 186 | 72.41 326 |
|
CR-MVSNet | | | 59.91 266 | 57.90 273 | 65.96 262 | 69.96 308 | 52.07 181 | 65.31 308 | 63.15 321 | 42.48 331 | 59.36 269 | 74.84 301 | 35.83 258 | 70.75 297 | 45.50 258 | 64.65 294 | 75.06 297 |
|
RPMNet | | | 61.53 257 | 58.42 267 | 70.86 193 | 69.96 308 | 52.07 181 | 65.31 308 | 81.36 116 | 43.20 326 | 59.36 269 | 70.15 332 | 35.37 260 | 85.47 109 | 36.42 319 | 64.65 294 | 75.06 297 |
|
USDC | | | 56.35 288 | 54.24 299 | 62.69 288 | 64.74 342 | 40.31 304 | 65.05 310 | 73.83 248 | 43.93 321 | 47.58 342 | 77.71 270 | 15.36 360 | 75.05 280 | 38.19 306 | 61.81 315 | 72.70 320 |
|
MDTV_nov1_ep13 | | | | 57.00 278 | | 72.73 268 | 38.26 319 | 65.02 311 | 64.73 312 | 44.74 310 | 55.46 298 | 72.48 315 | 32.61 294 | 70.47 298 | 37.47 308 | 67.75 272 | |
|
CMPMVS |  | 42.80 21 | 57.81 280 | 55.97 285 | 63.32 282 | 60.98 358 | 47.38 244 | 64.66 312 | 69.50 280 | 32.06 355 | 46.83 346 | 77.80 267 | 29.50 313 | 71.36 294 | 48.68 232 | 73.75 184 | 71.21 335 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
RPSCF | | | 55.80 292 | 54.22 300 | 60.53 300 | 65.13 341 | 42.91 287 | 64.30 313 | 57.62 341 | 36.84 350 | 58.05 284 | 82.28 181 | 28.01 322 | 56.24 354 | 37.14 310 | 58.61 328 | 82.44 205 |
|
XXY-MVS | | | 60.68 262 | 61.67 243 | 57.70 316 | 70.43 299 | 38.45 318 | 64.19 314 | 66.47 299 | 48.05 282 | 63.22 229 | 80.86 213 | 49.28 112 | 60.47 337 | 45.25 263 | 67.28 275 | 74.19 310 |
|
FMVSNet5 | | | 55.86 291 | 54.93 291 | 58.66 309 | 71.05 292 | 36.35 335 | 64.18 315 | 62.48 325 | 46.76 296 | 50.66 336 | 74.73 303 | 25.80 338 | 64.04 326 | 33.11 331 | 65.57 288 | 75.59 293 |
|
SCA | | | 60.49 263 | 58.38 268 | 66.80 247 | 74.14 254 | 48.06 235 | 63.35 316 | 63.23 320 | 49.13 270 | 59.33 272 | 72.10 317 | 37.45 242 | 74.27 284 | 44.17 266 | 62.57 309 | 78.05 266 |
|
Patchmtry | | | 57.16 283 | 56.47 282 | 59.23 303 | 69.17 317 | 34.58 346 | 62.98 317 | 63.15 321 | 44.53 313 | 56.83 290 | 74.84 301 | 35.83 258 | 68.71 307 | 40.03 297 | 60.91 319 | 74.39 308 |
|
Anonymous20231206 | | | 55.10 298 | 55.30 290 | 54.48 326 | 69.81 311 | 33.94 350 | 62.91 318 | 62.13 327 | 41.08 338 | 55.18 303 | 75.65 294 | 32.75 290 | 56.59 352 | 30.32 347 | 67.86 269 | 72.91 317 |
|
MIMVSNet | | | 57.35 281 | 57.07 277 | 58.22 310 | 74.21 253 | 37.18 325 | 62.46 319 | 60.88 331 | 48.88 272 | 55.29 302 | 75.99 291 | 31.68 300 | 62.04 333 | 31.87 335 | 72.35 210 | 75.43 295 |
|
dp | | | 51.89 312 | 51.60 310 | 52.77 334 | 68.44 323 | 32.45 355 | 62.36 320 | 54.57 350 | 44.16 318 | 49.31 339 | 67.91 339 | 28.87 318 | 56.61 351 | 33.89 328 | 54.89 338 | 69.24 346 |
|
EPMVS | | | 53.96 300 | 53.69 303 | 54.79 325 | 66.12 337 | 31.96 357 | 62.34 321 | 49.05 360 | 44.42 316 | 55.54 297 | 71.33 322 | 30.22 307 | 56.70 350 | 41.65 291 | 62.54 310 | 75.71 292 |
|
pmmvs3 | | | 44.92 324 | 41.95 328 | 53.86 328 | 52.58 367 | 43.55 281 | 62.11 322 | 46.90 366 | 26.05 362 | 40.63 358 | 60.19 355 | 11.08 367 | 57.91 346 | 31.83 339 | 46.15 355 | 60.11 353 |
|
PVSNet | | 50.76 19 | 58.40 274 | 57.39 274 | 61.42 296 | 75.53 231 | 44.04 277 | 61.43 323 | 63.45 318 | 47.04 295 | 56.91 289 | 73.61 311 | 27.00 331 | 64.76 324 | 39.12 301 | 72.40 209 | 75.47 294 |
|
LCM-MVSNet-Re | | | 61.88 254 | 61.35 247 | 63.46 281 | 74.58 244 | 31.48 358 | 61.42 324 | 58.14 338 | 58.71 137 | 53.02 325 | 79.55 242 | 43.07 186 | 76.80 270 | 45.69 254 | 77.96 149 | 82.11 210 |
|
test20.03 | | | 53.87 302 | 54.02 301 | 53.41 331 | 61.47 354 | 28.11 364 | 61.30 325 | 59.21 334 | 51.34 251 | 52.09 327 | 77.43 271 | 33.29 282 | 58.55 344 | 29.76 349 | 60.27 323 | 73.58 315 |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 367 | 61.22 326 | | 40.10 343 | 51.10 330 | | 32.97 285 | | 38.49 303 | | 78.61 261 |
|
PMMVS | | | 53.96 300 | 53.26 306 | 56.04 319 | 62.60 351 | 50.92 193 | 61.17 327 | 56.09 347 | 32.81 354 | 53.51 322 | 66.84 345 | 34.04 273 | 59.93 340 | 44.14 268 | 68.18 266 | 57.27 357 |
|
WTY-MVS | | | 59.75 268 | 60.39 256 | 57.85 314 | 72.32 276 | 37.83 322 | 61.05 328 | 64.18 315 | 45.95 305 | 61.91 248 | 79.11 250 | 47.01 147 | 60.88 336 | 42.50 283 | 69.49 250 | 74.83 302 |
|
Patchmatch-RL test | | | 58.16 276 | 55.49 288 | 66.15 258 | 67.92 325 | 48.89 226 | 60.66 329 | 51.07 357 | 47.86 284 | 59.36 269 | 62.71 354 | 34.02 274 | 72.27 291 | 56.41 169 | 59.40 325 | 77.30 274 |
|
LTVRE_ROB | | 55.42 16 | 63.15 241 | 61.23 250 | 68.92 226 | 76.57 213 | 47.80 237 | 59.92 330 | 76.39 211 | 54.35 221 | 58.67 277 | 82.46 177 | 29.44 314 | 81.49 193 | 42.12 286 | 71.14 222 | 77.46 272 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test0.0.03 1 | | | 53.32 307 | 53.59 304 | 52.50 335 | 62.81 350 | 29.45 362 | 59.51 331 | 54.11 352 | 50.08 263 | 54.40 313 | 74.31 306 | 32.62 292 | 55.92 355 | 30.50 346 | 63.95 299 | 72.15 331 |
|
UnsupCasMVSNet_eth | | | 53.16 309 | 52.47 307 | 55.23 322 | 59.45 362 | 33.39 353 | 59.43 332 | 69.13 284 | 45.98 302 | 50.35 338 | 72.32 316 | 29.30 315 | 58.26 345 | 42.02 288 | 44.30 357 | 74.05 311 |
|
MVS-HIRNet | | | 45.52 323 | 44.48 326 | 48.65 341 | 68.49 322 | 34.05 349 | 59.41 333 | 44.50 367 | 27.03 360 | 37.96 361 | 50.47 363 | 26.16 336 | 64.10 325 | 26.74 357 | 59.52 324 | 47.82 361 |
|
testgi | | | 51.90 311 | 52.37 308 | 50.51 340 | 60.39 361 | 23.55 371 | 58.42 334 | 58.15 337 | 49.03 271 | 51.83 328 | 79.21 249 | 22.39 348 | 55.59 356 | 29.24 351 | 62.64 308 | 72.40 328 |
|
PatchT | | | 53.17 308 | 53.44 305 | 52.33 336 | 68.29 324 | 25.34 369 | 58.21 335 | 54.41 351 | 44.46 315 | 54.56 311 | 69.05 337 | 33.32 281 | 60.94 335 | 36.93 311 | 61.76 316 | 70.73 338 |
|
sss | | | 56.17 290 | 56.57 281 | 54.96 323 | 66.93 330 | 36.32 337 | 57.94 336 | 61.69 328 | 41.67 334 | 58.64 278 | 75.32 299 | 38.72 230 | 56.25 353 | 42.04 287 | 66.19 283 | 72.31 329 |
|
KD-MVS_self_test | | | 55.22 296 | 53.89 302 | 59.21 304 | 57.80 365 | 27.47 365 | 57.75 337 | 74.32 241 | 47.38 289 | 50.90 332 | 70.00 333 | 28.45 320 | 70.30 301 | 40.44 295 | 57.92 330 | 79.87 247 |
|
UnsupCasMVSNet_bld | | | 50.07 317 | 48.87 318 | 53.66 329 | 60.97 359 | 33.67 351 | 57.62 338 | 64.56 313 | 39.47 346 | 47.38 343 | 64.02 352 | 27.47 326 | 59.32 341 | 34.69 326 | 43.68 358 | 67.98 348 |
|
ANet_high | | | 41.38 328 | 37.47 333 | 53.11 332 | 39.73 374 | 24.45 370 | 56.94 339 | 69.69 276 | 47.65 286 | 26.04 365 | 52.32 359 | 12.44 362 | 62.38 332 | 21.80 361 | 10.61 372 | 72.49 323 |
|
MDA-MVSNet-bldmvs | | | 53.87 302 | 50.81 313 | 63.05 286 | 66.25 335 | 48.58 229 | 56.93 340 | 63.82 316 | 48.09 281 | 41.22 357 | 70.48 330 | 30.34 306 | 68.00 311 | 34.24 327 | 45.92 356 | 72.57 322 |
|
test123 | | | 4.73 344 | 6.30 347 | 0.02 358 | 0.01 381 | 0.01 382 | 56.36 341 | 0.00 382 | 0.01 376 | 0.04 377 | 0.21 377 | 0.01 381 | 0.00 377 | 0.03 376 | 0.00 375 | 0.04 373 |
|
miper_lstm_enhance | | | 62.03 251 | 60.88 254 | 65.49 269 | 66.71 332 | 46.25 253 | 56.29 342 | 75.70 220 | 50.68 256 | 61.27 254 | 75.48 297 | 40.21 216 | 68.03 310 | 56.31 170 | 65.25 290 | 82.18 207 |
|
KD-MVS_2432*1600 | | | 53.45 304 | 51.50 311 | 59.30 301 | 62.82 348 | 37.14 326 | 55.33 343 | 71.79 263 | 47.34 291 | 55.09 304 | 70.52 328 | 21.91 351 | 70.45 299 | 35.72 322 | 42.97 359 | 70.31 339 |
|
miper_refine_blended | | | 53.45 304 | 51.50 311 | 59.30 301 | 62.82 348 | 37.14 326 | 55.33 343 | 71.79 263 | 47.34 291 | 55.09 304 | 70.52 328 | 21.91 351 | 70.45 299 | 35.72 322 | 42.97 359 | 70.31 339 |
|
LF4IMVS | | | 42.95 325 | 42.26 327 | 45.04 344 | 48.30 369 | 32.50 354 | 54.80 345 | 48.49 362 | 28.03 359 | 40.51 359 | 70.16 331 | 9.24 369 | 43.89 366 | 31.63 340 | 49.18 353 | 58.72 354 |
|
PMVS |  | 28.69 22 | 36.22 332 | 33.29 336 | 45.02 345 | 36.82 376 | 35.98 340 | 54.68 346 | 48.74 361 | 26.31 361 | 21.02 366 | 51.61 361 | 2.88 378 | 60.10 339 | 9.99 371 | 47.58 354 | 38.99 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PVSNet_0 | | 43.31 20 | 47.46 322 | 45.64 325 | 52.92 333 | 67.60 327 | 44.65 271 | 54.06 347 | 54.64 349 | 41.59 335 | 46.15 348 | 58.75 356 | 30.99 302 | 58.66 343 | 32.18 333 | 24.81 365 | 55.46 358 |
|
testmvs | | | 4.52 345 | 6.03 348 | 0.01 359 | 0.01 381 | 0.00 383 | 53.86 348 | 0.00 382 | 0.01 376 | 0.04 377 | 0.27 376 | 0.00 382 | 0.00 377 | 0.04 375 | 0.00 375 | 0.03 374 |
|
YYNet1 | | | 50.73 315 | 48.96 316 | 56.03 320 | 61.10 357 | 41.78 295 | 51.94 349 | 56.44 344 | 40.94 340 | 44.84 350 | 67.80 341 | 30.08 309 | 55.08 358 | 36.77 312 | 50.71 348 | 71.22 334 |
|
MDA-MVSNet_test_wron | | | 50.71 316 | 48.95 317 | 56.00 321 | 61.17 356 | 41.84 293 | 51.90 350 | 56.45 343 | 40.96 339 | 44.79 351 | 67.84 340 | 30.04 310 | 55.07 359 | 36.71 314 | 50.69 349 | 71.11 337 |
|
ADS-MVSNet2 | | | 51.33 314 | 48.76 319 | 59.07 306 | 66.02 338 | 44.60 272 | 50.90 351 | 59.76 333 | 36.90 348 | 50.74 333 | 66.18 347 | 26.38 333 | 63.11 329 | 27.17 354 | 54.76 339 | 69.50 343 |
|
ADS-MVSNet | | | 48.48 319 | 47.77 321 | 50.63 339 | 66.02 338 | 29.92 361 | 50.90 351 | 50.87 359 | 36.90 348 | 50.74 333 | 66.18 347 | 26.38 333 | 52.47 361 | 27.17 354 | 54.76 339 | 69.50 343 |
|
FPMVS | | | 42.18 327 | 41.11 329 | 45.39 343 | 58.03 364 | 41.01 302 | 49.50 353 | 53.81 354 | 30.07 357 | 33.71 362 | 64.03 350 | 11.69 363 | 52.08 362 | 14.01 367 | 55.11 337 | 43.09 363 |
|
N_pmnet | | | 39.35 330 | 40.28 330 | 36.54 348 | 63.76 346 | 1.62 381 | 49.37 354 | 0.76 381 | 34.62 353 | 43.61 354 | 66.38 346 | 26.25 335 | 42.57 367 | 26.02 359 | 51.77 345 | 65.44 350 |
|
new-patchmatchnet | | | 47.56 321 | 47.73 322 | 47.06 342 | 58.81 363 | 9.37 377 | 48.78 355 | 59.21 334 | 43.28 324 | 44.22 353 | 68.66 338 | 25.67 339 | 57.20 349 | 31.57 342 | 49.35 352 | 74.62 306 |
|
JIA-IIPM | | | 51.56 313 | 47.68 323 | 63.21 284 | 64.61 343 | 50.73 197 | 47.71 356 | 58.77 336 | 42.90 328 | 48.46 341 | 51.72 360 | 24.97 342 | 70.24 302 | 36.06 321 | 53.89 342 | 68.64 347 |
|
ambc | | | | | 65.13 273 | 63.72 347 | 37.07 328 | 47.66 357 | 78.78 167 | | 54.37 314 | 71.42 321 | 11.24 366 | 80.94 206 | 45.64 255 | 53.85 343 | 77.38 273 |
|
Patchmatch-test | | | 49.08 318 | 48.28 320 | 51.50 338 | 64.40 344 | 30.85 360 | 45.68 358 | 48.46 363 | 35.60 351 | 46.10 349 | 72.10 317 | 34.47 270 | 46.37 364 | 27.08 356 | 60.65 322 | 77.27 275 |
|
DSMNet-mixed | | | 39.30 331 | 38.72 331 | 41.03 347 | 51.22 368 | 19.66 373 | 45.53 359 | 31.35 374 | 15.83 369 | 39.80 360 | 67.42 344 | 22.19 349 | 45.13 365 | 22.43 360 | 52.69 344 | 58.31 355 |
|
LCM-MVSNet | | | 40.30 329 | 35.88 334 | 53.57 330 | 42.24 371 | 29.15 363 | 45.21 360 | 60.53 332 | 22.23 366 | 28.02 364 | 50.98 362 | 3.72 376 | 61.78 334 | 31.22 345 | 38.76 363 | 69.78 342 |
|
new_pmnet | | | 34.13 334 | 34.29 335 | 33.64 349 | 52.63 366 | 18.23 375 | 44.43 361 | 33.90 373 | 22.81 365 | 30.89 363 | 53.18 358 | 10.48 368 | 35.72 371 | 20.77 362 | 39.51 361 | 46.98 362 |
|
E-PMN | | | 23.77 336 | 22.73 340 | 26.90 352 | 42.02 372 | 20.67 372 | 42.66 362 | 35.70 371 | 17.43 367 | 10.28 373 | 25.05 369 | 6.42 372 | 42.39 368 | 10.28 370 | 14.71 369 | 17.63 368 |
|
EMVS | | | 22.97 337 | 21.84 341 | 26.36 353 | 40.20 373 | 19.53 374 | 41.95 363 | 34.64 372 | 17.09 368 | 9.73 374 | 22.83 370 | 7.29 371 | 42.22 369 | 9.18 372 | 13.66 370 | 17.32 369 |
|
CHOSEN 280x420 | | | 47.83 320 | 46.36 324 | 52.24 337 | 67.37 328 | 49.78 212 | 38.91 364 | 43.11 368 | 35.00 352 | 43.27 355 | 63.30 353 | 28.95 316 | 49.19 363 | 36.53 317 | 60.80 321 | 57.76 356 |
|
PMMVS2 | | | 27.40 335 | 25.91 338 | 31.87 351 | 39.46 375 | 6.57 378 | 31.17 365 | 28.52 375 | 23.96 363 | 20.45 367 | 48.94 364 | 4.20 375 | 37.94 370 | 16.51 364 | 19.97 367 | 51.09 359 |
|
wuyk23d | | | 13.32 341 | 12.52 344 | 15.71 355 | 47.54 370 | 26.27 366 | 31.06 366 | 1.98 380 | 4.93 372 | 5.18 375 | 1.94 375 | 0.45 380 | 18.54 374 | 6.81 374 | 12.83 371 | 2.33 372 |
|
Gipuma |  | | 34.77 333 | 31.91 337 | 43.33 346 | 62.05 353 | 37.87 321 | 20.39 367 | 67.03 296 | 23.23 364 | 18.41 368 | 25.84 368 | 4.24 374 | 62.73 330 | 14.71 366 | 51.32 347 | 29.38 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 17.77 23 | 21.41 338 | 17.77 343 | 32.34 350 | 34.34 377 | 25.44 368 | 16.11 368 | 24.11 376 | 11.19 370 | 13.22 370 | 31.92 366 | 1.58 379 | 30.95 372 | 10.47 369 | 17.03 368 | 40.62 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 9.43 342 | 11.14 345 | 4.30 357 | 2.38 380 | 4.40 379 | 13.62 369 | 16.08 378 | 0.39 374 | 15.89 369 | 13.06 371 | 15.80 359 | 5.54 376 | 12.63 368 | 10.46 373 | 2.95 371 |
|
test_method | | | 19.68 339 | 18.10 342 | 24.41 354 | 13.68 379 | 3.11 380 | 12.06 370 | 42.37 369 | 2.00 373 | 11.97 371 | 36.38 365 | 5.77 373 | 29.35 373 | 15.06 365 | 23.65 366 | 40.76 364 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
cdsmvs_eth3d_5k | | | 17.50 340 | 23.34 339 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 78.63 171 | 0.00 378 | 0.00 379 | 82.18 182 | 49.25 113 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
pcd_1.5k_mvsjas | | | 3.92 346 | 5.23 349 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 47.05 144 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
ab-mvs-re | | | 6.49 343 | 8.65 346 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 77.89 265 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 383 | 0.00 371 | 0.00 382 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 382 | 0.00 377 | 0.00 377 | 0.00 375 | 0.00 375 |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 28 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
PC_three_1452 | | | | | | | | | | 55.09 206 | 84.46 4 | 89.84 49 | 66.68 5 | 89.41 17 | 74.24 37 | 91.38 2 | 88.42 9 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 28 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 65 | | 86.84 11 | 65.01 23 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 86.64 23 | 60.38 50 | | 82.70 92 | 57.95 152 | 78.10 28 | 90.06 40 | 56.12 41 | 88.84 26 | 74.05 40 | 87.00 55 | |
|
IU-MVS | | | | | | 87.77 4 | 59.15 68 | | 85.53 30 | 53.93 223 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 11 |
|
test_241102_TWO | | | | | | | | | 86.73 16 | 64.18 35 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 36 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 77 | | 86.78 14 | 64.20 34 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 19 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 266 |
|
test_part2 | | | | | | 87.58 9 | 60.47 49 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 266 | | | | 78.05 266 |
|
sam_mvs | | | | | | | | | | | | | 33.43 280 | | | | |
|
MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
test_post | | | | | | | | | | | | 3.55 374 | 33.90 275 | 66.52 317 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 350 | 34.50 268 | 74.27 284 | | | |
|
gm-plane-assit | | | | | | 71.40 290 | 41.72 298 | | | 48.85 273 | | 73.31 312 | | 82.48 177 | 48.90 231 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 31 | 88.31 37 | 83.81 165 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 50 | 87.93 44 | 84.33 147 |
|
agg_prior | | | | | | 85.04 57 | 59.96 54 | | 81.04 129 | | 74.68 52 | | | 84.04 136 | | | |
|
TestCases | | | | | 64.39 277 | 71.44 287 | 49.03 221 | | 67.30 292 | 45.97 303 | 47.16 344 | 79.77 236 | 17.47 355 | 67.56 312 | 33.65 329 | 59.16 326 | 76.57 284 |
|
test_prior | | | | | 76.69 63 | 84.20 69 | 57.27 101 | | 84.88 41 | | | | | 86.43 83 | | | 86.38 73 |
|
æ–°å‡ ä½•1 | | | | | 70.76 195 | 85.66 46 | 61.13 35 | | 66.43 301 | 44.68 311 | 70.29 108 | 86.64 94 | 41.29 210 | 75.23 279 | 49.72 224 | 81.75 103 | 75.93 289 |
|
旧先验1 | | | | | | 83.04 80 | 53.15 163 | | 67.52 291 | | | 87.85 77 | 44.08 178 | | | 80.76 108 | 78.03 269 |
|
原ACMM1 | | | | | 74.69 100 | 85.39 54 | 59.40 62 | | 83.42 74 | 51.47 248 | 70.27 110 | 86.61 96 | 48.61 122 | 86.51 80 | 53.85 192 | 87.96 43 | 78.16 264 |
|
testdata2 | | | | | | | | | | | | | | 72.18 293 | 46.95 245 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 59 | | | | |
|
testdata | | | | | 64.66 275 | 81.52 98 | 52.93 166 | | 65.29 308 | 46.09 301 | 73.88 66 | 87.46 80 | 38.08 238 | 66.26 320 | 53.31 198 | 78.48 146 | 74.78 304 |
|
test12 | | | | | 77.76 46 | 84.52 66 | 58.41 85 | | 83.36 77 | | 72.93 84 | | 54.61 56 | 88.05 39 | | 88.12 40 | 86.81 65 |
|
plane_prior7 | | | | | | 81.41 101 | 55.96 125 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 108 | 56.24 120 | | | | | | 45.26 168 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 55 | | | | | 87.21 55 | 68.16 81 | 80.58 111 | 84.65 140 |
|
plane_prior4 | | | | | | | | | | | | 86.10 108 | | | | | |
|
plane_prior3 | | | | | | | 56.09 122 | | | 63.92 39 | 69.27 129 | | | | | | |
|
plane_prior1 | | | | | | 81.27 106 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 365 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 211 | 71.42 289 | 47.80 237 | | 50.90 358 | | 50.39 337 | 75.56 295 | 27.43 328 | 81.33 196 | 45.91 252 | 34.10 364 | 80.59 234 |
|
LGP-MVS_train | | | | | 75.76 78 | 80.22 123 | 57.51 99 | | 83.40 75 | 61.32 84 | 66.67 177 | 87.33 82 | 39.15 226 | 86.59 75 | 67.70 85 | 77.30 157 | 83.19 189 |
|
test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
door | | | | | | | | | 47.60 364 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 140 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 92 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 153 | | | 86.93 64 | | | 84.32 148 |
|
HQP3-MVS | | | | | | | | | 83.90 60 | | | | | | | 80.35 117 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 162 | | | | |
|
NP-MVS | | | | | | 80.98 111 | 56.05 124 | | | | | 85.54 122 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 182 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 213 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 125 | | | | |
|
ITE_SJBPF | | | | | 62.09 292 | 66.16 336 | 44.55 274 | | 64.32 314 | 47.36 290 | 55.31 301 | 80.34 223 | 19.27 354 | 62.68 331 | 36.29 320 | 62.39 311 | 79.04 257 |
|
DeepMVS_CX |  | | | | 12.03 356 | 17.97 378 | 10.91 376 | | 10.60 379 | 7.46 371 | 11.07 372 | 28.36 367 | 3.28 377 | 11.29 375 | 8.01 373 | 9.74 374 | 13.89 370 |
|