APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 5 | 99.75 1 | 98.34 4 | 99.56 10 | 98.72 7 | 99.57 6 | 99.97 7 | 99.53 16 | 99.65 2 | 99.25 15 | 99.84 8 | 99.77 55 |
|
DVP-MVS |  | | 99.45 2 | 99.54 6 | 99.35 1 | 99.72 7 | 99.76 1 | 99.63 11 | 98.37 2 | 99.63 6 | 99.03 3 | 98.95 39 | 99.98 1 | 99.60 7 | 99.60 6 | 99.05 27 | 99.74 46 | 99.79 41 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 99.44 3 | 99.58 3 | 99.28 3 | 99.69 8 | 99.76 1 | 99.62 14 | 98.35 3 | 99.51 16 | 99.05 2 | 99.60 5 | 99.98 1 | 99.28 38 | 99.61 5 | 98.83 46 | 99.70 79 | 99.77 55 |
|
DPE-MVS |  | | 99.39 4 | 99.55 5 | 99.20 4 | 99.63 21 | 99.71 9 | 99.66 6 | 98.33 6 | 99.29 35 | 98.40 12 | 99.64 4 | 99.98 1 | 99.31 34 | 99.56 9 | 98.96 34 | 99.85 6 | 99.70 91 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 99.38 5 | 99.60 2 | 99.12 9 | 99.76 2 | 99.62 28 | 99.39 29 | 98.23 19 | 99.52 15 | 98.03 17 | 99.45 10 | 99.98 1 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 91 | 99.76 60 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 99.34 6 | 99.52 9 | 99.14 8 | 99.68 12 | 99.75 4 | 99.64 8 | 98.31 8 | 99.44 20 | 98.10 14 | 99.28 18 | 99.98 1 | 99.30 36 | 99.34 22 | 99.05 27 | 99.81 18 | 99.79 41 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HFP-MVS | | | 99.32 7 | 99.53 8 | 99.07 13 | 99.69 8 | 99.59 42 | 99.63 11 | 98.31 8 | 99.56 10 | 97.37 26 | 99.27 19 | 99.97 7 | 99.70 3 | 99.35 21 | 99.24 17 | 99.71 70 | 99.76 60 |
|
zzz-MVS | | | 99.31 8 | 99.44 16 | 99.16 6 | 99.73 5 | 99.65 16 | 99.63 11 | 98.26 13 | 99.27 39 | 98.01 18 | 99.27 19 | 99.97 7 | 99.60 7 | 99.59 7 | 98.58 58 | 99.71 70 | 99.73 75 |
|
ACMMPR | | | 99.30 9 | 99.54 6 | 99.03 16 | 99.66 16 | 99.64 21 | 99.68 4 | 98.25 14 | 99.56 10 | 97.12 30 | 99.19 22 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 15 | 99.72 60 | 99.77 55 |
|
TSAR-MVS + MP. | | | 99.27 10 | 99.57 4 | 98.92 23 | 98.78 54 | 99.53 52 | 99.72 2 | 98.11 29 | 99.73 2 | 97.43 25 | 99.15 25 | 99.96 12 | 99.59 10 | 99.73 1 | 99.07 24 | 99.88 4 | 99.82 27 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CP-MVS | | | 99.27 10 | 99.44 16 | 99.08 12 | 99.62 23 | 99.58 45 | 99.53 18 | 98.16 22 | 99.21 48 | 97.79 21 | 99.15 25 | 99.96 12 | 99.59 10 | 99.54 11 | 98.86 42 | 99.78 30 | 99.74 71 |
|
SD-MVS | | | 99.25 12 | 99.50 11 | 98.96 21 | 98.79 53 | 99.55 50 | 99.33 32 | 98.29 11 | 99.75 1 | 97.96 19 | 99.15 25 | 99.95 17 | 99.61 6 | 99.17 31 | 99.06 25 | 99.81 18 | 99.84 22 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 99.25 12 | 99.38 21 | 99.09 11 | 99.69 8 | 99.58 45 | 99.56 17 | 98.32 7 | 98.85 92 | 97.87 20 | 98.91 42 | 99.92 28 | 99.30 36 | 99.45 15 | 99.38 8 | 99.79 27 | 99.58 118 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 99.23 14 | 99.28 31 | 99.17 5 | 99.65 18 | 99.34 82 | 99.46 24 | 98.21 20 | 99.28 36 | 98.47 9 | 98.89 44 | 99.94 25 | 99.50 17 | 99.42 17 | 98.61 56 | 99.73 53 | 99.52 131 |
|
SteuartSystems-ACMMP | | | 99.20 15 | 99.51 10 | 98.83 27 | 99.66 16 | 99.66 15 | 99.71 3 | 98.12 28 | 99.14 58 | 96.62 34 | 99.16 24 | 99.98 1 | 99.12 48 | 99.63 3 | 99.19 21 | 99.78 30 | 99.83 26 |
Skip Steuart: Steuart Systems R&D Blog. |
SF-MVS | | | 99.18 16 | 99.32 27 | 99.03 16 | 99.65 18 | 99.41 70 | 98.87 55 | 98.24 17 | 99.14 58 | 98.73 5 | 99.11 28 | 99.92 28 | 98.92 60 | 99.22 27 | 98.84 44 | 99.76 37 | 99.56 124 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 13 | 98.85 25 | 99.55 29 | 99.37 76 | 99.64 8 | 98.05 32 | 99.53 13 | 96.58 35 | 98.93 40 | 99.92 28 | 99.49 19 | 99.46 14 | 99.32 10 | 99.80 26 | 99.64 112 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 99.15 18 | 99.24 34 | 99.04 15 | 99.52 32 | 99.49 58 | 99.09 44 | 98.07 30 | 99.37 25 | 98.47 9 | 97.79 79 | 99.89 34 | 99.50 17 | 98.93 47 | 99.45 4 | 99.61 119 | 99.76 60 |
|
CPTT-MVS | | | 99.14 19 | 99.20 36 | 99.06 14 | 99.58 26 | 99.53 52 | 99.45 25 | 97.80 37 | 99.19 51 | 98.32 13 | 98.58 56 | 99.95 17 | 99.60 7 | 99.28 25 | 98.20 83 | 99.64 112 | 99.69 95 |
|
MCST-MVS | | | 99.11 20 | 99.27 32 | 98.93 22 | 99.67 13 | 99.33 85 | 99.51 20 | 98.31 8 | 99.28 36 | 96.57 36 | 99.10 31 | 99.90 32 | 99.71 2 | 99.19 30 | 98.35 72 | 99.82 12 | 99.71 89 |
|
HPM-MVS++ |  | | 99.10 21 | 99.30 30 | 98.86 24 | 99.69 8 | 99.48 59 | 99.59 16 | 98.34 4 | 99.26 42 | 96.55 37 | 99.10 31 | 99.96 12 | 99.36 29 | 99.25 26 | 98.37 71 | 99.64 112 | 99.66 105 |
|
PHI-MVS | | | 99.08 22 | 99.43 19 | 98.67 29 | 99.15 46 | 99.59 42 | 99.11 42 | 97.35 40 | 99.14 58 | 97.30 27 | 99.44 11 | 99.96 12 | 99.32 33 | 98.89 52 | 99.39 7 | 99.79 27 | 99.58 118 |
|
MP-MVS |  | | 99.07 23 | 99.36 23 | 98.74 28 | 99.63 21 | 99.57 47 | 99.66 6 | 98.25 14 | 99.00 79 | 95.62 43 | 98.97 37 | 99.94 25 | 99.54 15 | 99.51 12 | 98.79 50 | 99.71 70 | 99.73 75 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
AdaColmap |  | | 99.06 24 | 98.98 51 | 99.15 7 | 99.60 25 | 99.30 88 | 99.38 30 | 98.16 22 | 99.02 77 | 98.55 8 | 98.71 53 | 99.57 56 | 99.58 13 | 99.09 38 | 97.84 101 | 99.64 112 | 99.36 149 |
|
ACMMP_NAP | | | 99.05 25 | 99.45 13 | 98.58 31 | 99.73 5 | 99.60 40 | 99.64 8 | 98.28 12 | 99.23 45 | 94.57 60 | 99.35 15 | 99.97 7 | 99.55 14 | 99.63 3 | 98.66 53 | 99.70 79 | 99.74 71 |
|
NCCC | | | 99.05 25 | 99.08 41 | 99.02 19 | 99.62 23 | 99.38 73 | 99.43 28 | 98.21 20 | 99.36 27 | 97.66 23 | 97.79 79 | 99.90 32 | 99.45 24 | 99.17 31 | 98.43 66 | 99.77 35 | 99.51 135 |
|
CNLPA | | | 99.03 27 | 99.05 44 | 99.01 20 | 99.27 44 | 99.22 95 | 99.03 48 | 97.98 33 | 99.34 29 | 99.00 4 | 98.25 68 | 99.71 49 | 99.31 34 | 98.80 57 | 98.82 48 | 99.48 156 | 99.17 159 |
|
PLC |  | 97.93 2 | 99.02 28 | 98.94 52 | 99.11 10 | 99.46 34 | 99.24 93 | 99.06 46 | 97.96 34 | 99.31 32 | 99.16 1 | 97.90 77 | 99.79 45 | 99.36 29 | 98.71 65 | 98.12 87 | 99.65 108 | 99.52 131 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
X-MVS | | | 98.93 29 | 99.37 22 | 98.42 32 | 99.67 13 | 99.62 28 | 99.60 15 | 98.15 24 | 99.08 68 | 93.81 80 | 98.46 61 | 99.95 17 | 99.59 10 | 99.49 13 | 99.21 20 | 99.68 91 | 99.75 67 |
|
CSCG | | | 98.90 30 | 98.93 53 | 98.85 25 | 99.75 3 | 99.72 6 | 99.49 21 | 96.58 43 | 99.38 23 | 98.05 16 | 98.97 37 | 97.87 76 | 99.49 19 | 97.78 123 | 98.92 37 | 99.78 30 | 99.90 6 |
|
PGM-MVS | | | 98.86 31 | 99.35 26 | 98.29 35 | 99.77 1 | 99.63 24 | 99.67 5 | 95.63 46 | 98.66 115 | 95.27 49 | 99.11 28 | 99.82 42 | 99.67 4 | 99.33 23 | 99.19 21 | 99.73 53 | 99.74 71 |
|
OMC-MVS | | | 98.84 32 | 99.01 50 | 98.65 30 | 99.39 36 | 99.23 94 | 99.22 35 | 96.70 42 | 99.40 22 | 97.77 22 | 97.89 78 | 99.80 43 | 99.21 39 | 99.02 42 | 98.65 54 | 99.57 141 | 99.07 166 |
|
TSAR-MVS + ACMM | | | 98.77 33 | 99.45 13 | 97.98 44 | 99.37 37 | 99.46 61 | 99.44 27 | 98.13 27 | 99.65 4 | 92.30 104 | 98.91 42 | 99.95 17 | 99.05 53 | 99.42 17 | 98.95 35 | 99.58 137 | 99.82 27 |
|
ACMMP |  | | 98.74 34 | 99.03 48 | 98.40 33 | 99.36 39 | 99.64 21 | 99.20 36 | 97.75 38 | 98.82 99 | 95.24 50 | 98.85 45 | 99.87 36 | 99.17 45 | 98.74 64 | 97.50 114 | 99.71 70 | 99.76 60 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
train_agg | | | 98.73 35 | 99.11 39 | 98.28 36 | 99.36 39 | 99.35 80 | 99.48 23 | 97.96 34 | 98.83 97 | 93.86 78 | 98.70 54 | 99.86 37 | 99.44 25 | 99.08 40 | 98.38 69 | 99.61 119 | 99.58 118 |
|
3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 44 | 98.32 34 | 99.53 30 | 99.34 82 | 99.06 46 | 94.61 60 | 99.65 4 | 97.49 24 | 96.75 102 | 99.86 37 | 99.44 25 | 98.78 59 | 99.30 11 | 99.81 18 | 99.67 101 |
|
MVS_111021_LR | | | 98.67 37 | 99.41 20 | 97.81 47 | 99.37 37 | 99.53 52 | 98.51 68 | 95.52 48 | 99.27 39 | 94.85 56 | 99.56 7 | 99.69 50 | 99.04 54 | 99.36 20 | 98.88 40 | 99.60 127 | 99.58 118 |
|
3Dnovator | | 96.92 7 | 98.67 37 | 99.05 44 | 98.23 38 | 99.57 27 | 99.45 63 | 99.11 42 | 94.66 59 | 99.69 3 | 96.80 33 | 96.55 112 | 99.61 53 | 99.40 27 | 98.87 54 | 99.49 3 | 99.85 6 | 99.66 105 |
|
TSAR-MVS + GP. | | | 98.66 39 | 99.36 23 | 97.85 46 | 97.16 81 | 99.46 61 | 99.03 48 | 94.59 62 | 99.09 66 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 28 | 98.95 45 | 98.69 52 | 99.75 41 | 99.65 108 |
|
QAPM | | | 98.62 40 | 99.04 47 | 98.13 39 | 99.57 27 | 99.48 59 | 99.17 38 | 94.78 56 | 99.57 9 | 96.16 38 | 96.73 103 | 99.80 43 | 99.33 32 | 98.79 58 | 99.29 13 | 99.75 41 | 99.64 112 |
|
MVS_111021_HR | | | 98.59 41 | 99.36 23 | 97.68 48 | 99.42 35 | 99.61 33 | 98.14 86 | 94.81 55 | 99.31 32 | 95.00 54 | 99.51 8 | 99.79 45 | 99.00 57 | 98.94 46 | 98.83 46 | 99.69 82 | 99.57 123 |
|
CANet | | | 98.46 42 | 99.16 37 | 97.64 49 | 98.48 58 | 99.64 21 | 99.35 31 | 94.71 58 | 99.53 13 | 95.17 51 | 97.63 85 | 99.59 54 | 98.38 84 | 98.88 53 | 98.99 32 | 99.74 46 | 99.86 18 |
|
CDPH-MVS | | | 98.41 43 | 99.10 40 | 97.61 50 | 99.32 43 | 99.36 77 | 99.49 21 | 96.15 45 | 98.82 99 | 91.82 108 | 98.41 62 | 99.66 51 | 99.10 50 | 98.93 47 | 98.97 33 | 99.75 41 | 99.58 118 |
|
TAPA-MVS | | 97.53 5 | 98.41 43 | 98.84 57 | 97.91 45 | 99.08 48 | 99.33 85 | 99.15 39 | 97.13 41 | 99.34 29 | 93.20 89 | 97.75 81 | 99.19 60 | 99.20 40 | 98.66 67 | 98.13 86 | 99.66 104 | 99.48 139 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepPCF-MVS | | 97.74 3 | 98.34 45 | 99.46 12 | 97.04 63 | 98.82 52 | 99.33 85 | 96.28 142 | 97.47 39 | 99.58 8 | 94.70 59 | 98.99 36 | 99.85 40 | 97.24 116 | 99.55 10 | 99.34 9 | 97.73 200 | 99.56 124 |
|
DeepC-MVS | | 97.63 4 | 98.33 46 | 98.57 62 | 98.04 42 | 98.62 57 | 99.65 16 | 99.45 25 | 98.15 24 | 99.51 16 | 92.80 97 | 95.74 127 | 96.44 91 | 99.46 23 | 99.37 19 | 99.50 2 | 99.78 30 | 99.81 32 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DPM-MVS | | | 98.31 47 | 98.53 64 | 98.05 41 | 98.76 55 | 98.77 117 | 99.13 40 | 98.07 30 | 99.10 65 | 94.27 71 | 96.70 104 | 99.84 41 | 98.70 70 | 97.90 117 | 98.11 88 | 99.40 168 | 99.28 152 |
|
MSDG | | | 98.27 48 | 98.29 71 | 98.24 37 | 99.20 45 | 99.22 95 | 99.20 36 | 97.82 36 | 99.37 25 | 94.43 66 | 95.90 123 | 97.31 82 | 99.12 48 | 98.76 61 | 98.35 72 | 99.67 99 | 99.14 163 |
|
DROMVSNet | | | 98.22 49 | 99.44 16 | 96.79 72 | 95.62 116 | 99.56 48 | 99.01 50 | 92.22 95 | 99.17 53 | 94.51 63 | 99.41 12 | 99.62 52 | 99.49 19 | 99.16 34 | 99.26 14 | 99.91 2 | 99.94 1 |
|
DELS-MVS | | | 98.19 50 | 98.77 59 | 97.52 51 | 98.29 61 | 99.71 9 | 99.12 41 | 94.58 63 | 98.80 102 | 95.38 48 | 96.24 117 | 98.24 73 | 97.92 98 | 99.06 41 | 99.52 1 | 99.82 12 | 99.79 41 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PCF-MVS | | 97.50 6 | 98.18 51 | 98.35 70 | 97.99 43 | 98.65 56 | 99.36 77 | 98.94 53 | 98.14 26 | 98.59 117 | 93.62 84 | 96.61 108 | 99.76 48 | 99.03 55 | 97.77 124 | 97.45 119 | 99.57 141 | 98.89 174 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
xxxxxxxxxxxxxcwj | | | 98.14 52 | 97.38 107 | 99.03 16 | 99.65 18 | 99.41 70 | 98.87 55 | 98.24 17 | 99.14 58 | 98.73 5 | 99.11 28 | 86.38 165 | 98.92 60 | 99.22 27 | 98.84 44 | 99.76 37 | 99.56 124 |
|
MVS_0304 | | | 98.14 52 | 99.03 48 | 97.10 60 | 98.05 65 | 99.63 24 | 99.27 34 | 94.33 65 | 99.63 6 | 93.06 92 | 97.32 88 | 99.05 62 | 98.09 91 | 98.82 56 | 98.87 41 | 99.81 18 | 99.89 9 |
|
CS-MVS-test | | | 98.09 54 | 99.32 27 | 96.67 75 | 95.48 126 | 99.61 33 | 99.01 50 | 92.22 95 | 99.32 31 | 93.89 77 | 99.30 17 | 98.77 64 | 99.49 19 | 99.16 34 | 99.16 23 | 99.92 1 | 99.91 5 |
|
ETV-MVS | | | 98.05 55 | 99.25 33 | 96.65 77 | 95.61 117 | 99.61 33 | 98.26 82 | 93.52 81 | 98.90 88 | 93.74 83 | 99.32 16 | 99.20 59 | 98.90 63 | 99.21 29 | 98.72 51 | 99.87 5 | 99.79 41 |
|
CS-MVS | | | 98.05 55 | 99.31 29 | 96.59 81 | 95.44 127 | 99.61 33 | 98.82 59 | 92.19 97 | 99.28 36 | 93.82 79 | 99.41 12 | 98.68 65 | 99.34 31 | 99.17 31 | 99.06 25 | 99.91 2 | 99.94 1 |
|
EPNet | | | 98.05 55 | 98.86 55 | 97.10 60 | 99.02 49 | 99.43 67 | 98.47 69 | 94.73 57 | 99.05 74 | 95.62 43 | 98.93 40 | 97.62 80 | 95.48 163 | 98.59 77 | 98.55 59 | 99.29 175 | 99.84 22 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 280x420 | | | 97.99 58 | 99.24 34 | 96.53 82 | 98.34 60 | 99.61 33 | 98.36 76 | 89.80 142 | 99.27 39 | 95.08 53 | 99.81 1 | 98.58 67 | 98.64 74 | 99.02 42 | 98.92 37 | 98.93 185 | 99.48 139 |
|
OpenMVS |  | 96.23 11 | 97.95 59 | 98.45 67 | 97.35 52 | 99.52 32 | 99.42 68 | 98.91 54 | 94.61 60 | 98.87 89 | 92.24 106 | 94.61 138 | 99.05 62 | 99.10 50 | 98.64 69 | 99.05 27 | 99.74 46 | 99.51 135 |
|
IS_MVSNet | | | 97.86 60 | 98.86 55 | 96.68 74 | 96.02 100 | 99.72 6 | 98.35 77 | 93.37 85 | 98.75 112 | 94.01 72 | 96.88 101 | 98.40 70 | 98.48 82 | 99.09 38 | 99.42 5 | 99.83 11 | 99.80 34 |
|
LS3D | | | 97.79 61 | 98.25 72 | 97.26 57 | 98.40 59 | 99.63 24 | 99.53 18 | 98.63 1 | 99.25 44 | 88.13 125 | 96.93 99 | 94.14 121 | 99.19 41 | 99.14 36 | 99.23 18 | 99.69 82 | 99.42 143 |
|
COLMAP_ROB |  | 96.15 12 | 97.78 62 | 98.17 78 | 97.32 53 | 98.84 51 | 99.45 63 | 99.28 33 | 95.43 49 | 99.48 18 | 91.80 109 | 94.83 137 | 98.36 71 | 98.90 63 | 98.09 101 | 97.85 100 | 99.68 91 | 99.15 160 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PatchMatch-RL | | | 97.77 63 | 98.25 72 | 97.21 58 | 99.11 47 | 99.25 91 | 97.06 126 | 94.09 68 | 98.72 113 | 95.14 52 | 98.47 60 | 96.29 93 | 98.43 83 | 98.65 68 | 97.44 120 | 99.45 160 | 98.94 169 |
|
EPP-MVSNet | | | 97.75 64 | 98.71 60 | 96.63 79 | 95.68 114 | 99.56 48 | 97.51 106 | 93.10 91 | 99.22 46 | 94.99 55 | 97.18 94 | 97.30 83 | 98.65 73 | 98.83 55 | 98.93 36 | 99.84 8 | 99.92 3 |
|
MAR-MVS | | | 97.71 65 | 98.04 84 | 97.32 53 | 99.35 41 | 98.91 110 | 97.65 103 | 91.68 107 | 98.00 145 | 97.01 31 | 97.72 83 | 94.83 111 | 98.85 67 | 98.44 86 | 98.86 42 | 99.41 166 | 99.52 131 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EIA-MVS | | | 97.70 66 | 98.78 58 | 96.44 86 | 95.72 111 | 99.65 16 | 98.14 86 | 93.72 78 | 98.30 133 | 92.31 103 | 98.63 55 | 97.90 75 | 98.97 58 | 98.92 49 | 98.30 78 | 99.78 30 | 99.80 34 |
|
UGNet | | | 97.66 67 | 99.07 43 | 96.01 95 | 97.19 80 | 99.65 16 | 97.09 124 | 93.39 83 | 99.35 28 | 94.40 68 | 98.79 47 | 99.59 54 | 94.24 183 | 98.04 109 | 98.29 79 | 99.73 53 | 99.80 34 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RPSCF | | | 97.61 68 | 98.16 79 | 96.96 71 | 98.10 62 | 99.00 103 | 98.84 58 | 93.76 75 | 99.45 19 | 94.78 58 | 99.39 14 | 99.31 58 | 98.53 81 | 96.61 159 | 95.43 169 | 97.74 198 | 97.93 192 |
|
baseline1 | | | 97.58 69 | 98.05 83 | 97.02 66 | 96.21 97 | 99.45 63 | 97.71 101 | 93.71 79 | 98.47 126 | 95.75 42 | 98.78 48 | 93.20 131 | 98.91 62 | 98.52 81 | 98.44 64 | 99.81 18 | 99.53 128 |
|
DCV-MVSNet | | | 97.56 70 | 98.36 69 | 96.62 80 | 96.44 89 | 98.36 150 | 98.37 74 | 91.73 106 | 99.11 64 | 94.80 57 | 98.36 65 | 96.28 94 | 98.60 77 | 98.12 98 | 98.44 64 | 99.76 37 | 99.87 15 |
|
PMMVS | | | 97.52 71 | 98.39 68 | 96.51 84 | 95.82 108 | 98.73 124 | 97.80 97 | 93.05 92 | 98.76 109 | 94.39 69 | 99.07 34 | 97.03 87 | 98.55 79 | 98.31 90 | 97.61 109 | 99.43 163 | 99.21 158 |
|
PVSNet_BlendedMVS | | | 97.51 72 | 97.71 94 | 97.28 55 | 98.06 63 | 99.61 33 | 97.31 112 | 95.02 52 | 99.08 68 | 95.51 45 | 98.05 72 | 90.11 142 | 98.07 92 | 98.91 50 | 98.40 67 | 99.72 60 | 99.78 47 |
|
PVSNet_Blended | | | 97.51 72 | 97.71 94 | 97.28 55 | 98.06 63 | 99.61 33 | 97.31 112 | 95.02 52 | 99.08 68 | 95.51 45 | 98.05 72 | 90.11 142 | 98.07 92 | 98.91 50 | 98.40 67 | 99.72 60 | 99.78 47 |
|
baseline | | | 97.45 74 | 98.70 61 | 95.99 96 | 95.89 105 | 99.36 77 | 98.29 79 | 91.37 115 | 99.21 48 | 92.99 95 | 98.40 63 | 96.87 88 | 97.96 96 | 98.60 75 | 98.60 57 | 99.42 165 | 99.86 18 |
|
PVSNet_Blended_VisFu | | | 97.41 75 | 98.49 66 | 96.15 90 | 97.49 71 | 99.76 1 | 96.02 146 | 93.75 77 | 99.26 42 | 93.38 88 | 93.73 146 | 99.35 57 | 96.47 138 | 98.96 44 | 98.46 63 | 99.77 35 | 99.90 6 |
|
Vis-MVSNet (Re-imp) | | | 97.40 76 | 98.89 54 | 95.66 103 | 95.99 103 | 99.62 28 | 97.82 96 | 93.22 88 | 98.82 99 | 91.40 111 | 96.94 98 | 98.56 68 | 95.70 155 | 99.14 36 | 99.41 6 | 99.79 27 | 99.75 67 |
|
canonicalmvs | | | 97.31 77 | 97.81 93 | 96.72 73 | 96.20 98 | 99.45 63 | 98.21 83 | 91.60 109 | 99.22 46 | 95.39 47 | 98.48 59 | 90.95 139 | 99.16 46 | 97.66 130 | 99.05 27 | 99.76 37 | 99.90 6 |
|
MVS_Test | | | 97.30 78 | 98.54 63 | 95.87 97 | 95.74 110 | 99.28 89 | 98.19 84 | 91.40 114 | 99.18 52 | 91.59 110 | 98.17 70 | 96.18 96 | 98.63 75 | 98.61 72 | 98.55 59 | 99.66 104 | 99.78 47 |
|
thisisatest0530 | | | 97.23 79 | 98.25 72 | 96.05 92 | 95.60 119 | 99.59 42 | 96.96 128 | 93.23 86 | 99.17 53 | 92.60 100 | 98.75 51 | 96.19 95 | 98.17 86 | 98.19 96 | 96.10 155 | 99.72 60 | 99.77 55 |
|
tttt0517 | | | 97.23 79 | 98.24 75 | 96.04 93 | 95.60 119 | 99.60 40 | 96.94 129 | 93.23 86 | 99.15 55 | 92.56 101 | 98.74 52 | 96.12 98 | 98.17 86 | 98.21 94 | 96.10 155 | 99.73 53 | 99.78 47 |
|
MVSTER | | | 97.16 81 | 97.71 94 | 96.52 83 | 95.97 104 | 98.48 139 | 98.63 65 | 92.10 99 | 98.68 114 | 95.96 41 | 99.23 21 | 91.79 136 | 96.87 124 | 98.76 61 | 97.37 124 | 99.57 141 | 99.68 100 |
|
UA-Net | | | 97.13 82 | 99.14 38 | 94.78 111 | 97.21 79 | 99.38 73 | 97.56 105 | 92.04 100 | 98.48 125 | 88.03 126 | 98.39 64 | 99.91 31 | 94.03 186 | 99.33 23 | 99.23 18 | 99.81 18 | 99.25 155 |
|
Anonymous20231211 | | | 97.10 83 | 97.06 120 | 97.14 59 | 96.32 91 | 99.52 55 | 98.16 85 | 93.76 75 | 98.84 96 | 95.98 40 | 90.92 165 | 94.58 116 | 98.90 63 | 97.72 128 | 98.10 89 | 99.71 70 | 99.75 67 |
|
FC-MVSNet-train | | | 97.04 84 | 97.91 90 | 96.03 94 | 96.00 102 | 98.41 146 | 96.53 137 | 93.42 82 | 99.04 76 | 93.02 94 | 98.03 74 | 94.32 119 | 97.47 112 | 97.93 115 | 97.77 105 | 99.75 41 | 99.88 13 |
|
FMVSNet3 | | | 97.02 85 | 98.12 81 | 95.73 102 | 93.59 157 | 97.98 160 | 98.34 78 | 91.32 116 | 98.80 102 | 93.92 74 | 97.21 91 | 95.94 101 | 97.63 108 | 98.61 72 | 98.62 55 | 99.61 119 | 99.65 108 |
|
GBi-Net | | | 96.98 86 | 98.00 87 | 95.78 98 | 93.81 151 | 97.98 160 | 98.09 88 | 91.32 116 | 98.80 102 | 93.92 74 | 97.21 91 | 95.94 101 | 97.89 99 | 98.07 104 | 98.34 74 | 99.68 91 | 99.67 101 |
|
test1 | | | 96.98 86 | 98.00 87 | 95.78 98 | 93.81 151 | 97.98 160 | 98.09 88 | 91.32 116 | 98.80 102 | 93.92 74 | 97.21 91 | 95.94 101 | 97.89 99 | 98.07 104 | 98.34 74 | 99.68 91 | 99.67 101 |
|
casdiffmvs | | | 96.93 88 | 97.43 105 | 96.34 87 | 95.70 112 | 99.50 57 | 97.75 100 | 93.22 88 | 98.98 81 | 92.64 98 | 94.97 134 | 91.71 137 | 98.93 59 | 98.62 71 | 98.52 62 | 99.82 12 | 99.72 86 |
|
DI_MVS_plusplus_trai | | | 96.90 89 | 97.49 100 | 96.21 89 | 95.61 117 | 99.40 72 | 98.72 63 | 92.11 98 | 99.14 58 | 92.98 96 | 93.08 157 | 95.14 107 | 98.13 90 | 98.05 108 | 97.91 97 | 99.74 46 | 99.73 75 |
|
diffmvs | | | 96.83 90 | 97.33 110 | 96.25 88 | 95.76 109 | 99.34 82 | 98.06 92 | 93.22 88 | 99.43 21 | 92.30 104 | 96.90 100 | 89.83 147 | 98.55 79 | 98.00 112 | 98.14 85 | 99.64 112 | 99.70 91 |
|
TSAR-MVS + COLMAP | | | 96.79 91 | 96.55 131 | 97.06 62 | 97.70 70 | 98.46 141 | 99.07 45 | 96.23 44 | 99.38 23 | 91.32 112 | 98.80 46 | 85.61 171 | 98.69 72 | 97.64 133 | 96.92 131 | 99.37 170 | 99.06 167 |
|
thres200 | | | 96.76 92 | 96.53 132 | 97.03 64 | 96.31 92 | 99.67 12 | 98.37 74 | 93.99 71 | 97.68 161 | 94.49 64 | 95.83 126 | 86.77 159 | 99.18 43 | 98.26 91 | 97.82 102 | 99.82 12 | 99.66 105 |
|
tfpn200view9 | | | 96.75 93 | 96.51 134 | 97.03 64 | 96.31 92 | 99.67 12 | 98.41 71 | 93.99 71 | 97.35 166 | 94.52 61 | 95.90 123 | 86.93 157 | 99.14 47 | 98.26 91 | 97.80 103 | 99.82 12 | 99.70 91 |
|
CLD-MVS | | | 96.74 94 | 96.51 134 | 97.01 68 | 96.71 86 | 98.62 130 | 98.73 62 | 94.38 64 | 98.94 84 | 94.46 65 | 97.33 87 | 87.03 155 | 98.07 92 | 97.20 149 | 96.87 132 | 99.72 60 | 99.54 127 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thres100view900 | | | 96.72 95 | 96.47 137 | 97.00 69 | 96.31 92 | 99.52 55 | 98.28 80 | 94.01 69 | 97.35 166 | 94.52 61 | 95.90 123 | 86.93 157 | 99.09 52 | 98.07 104 | 97.87 99 | 99.81 18 | 99.63 114 |
|
thres400 | | | 96.71 96 | 96.45 139 | 97.02 66 | 96.28 95 | 99.63 24 | 98.41 71 | 94.00 70 | 97.82 156 | 94.42 67 | 95.74 127 | 86.26 166 | 99.18 43 | 98.20 95 | 97.79 104 | 99.81 18 | 99.70 91 |
|
thres600view7 | | | 96.69 97 | 96.43 141 | 97.00 69 | 96.28 95 | 99.67 12 | 98.41 71 | 93.99 71 | 97.85 155 | 94.29 70 | 95.96 121 | 85.91 169 | 99.19 41 | 98.26 91 | 97.63 108 | 99.82 12 | 99.73 75 |
|
test0.0.03 1 | | | 96.69 97 | 98.12 81 | 95.01 109 | 95.49 124 | 98.99 105 | 95.86 148 | 90.82 124 | 98.38 129 | 92.54 102 | 96.66 106 | 97.33 81 | 95.75 153 | 97.75 126 | 98.34 74 | 99.60 127 | 99.40 147 |
|
ACMM | | 96.26 9 | 96.67 99 | 96.69 128 | 96.66 76 | 97.29 78 | 98.46 141 | 96.48 138 | 95.09 51 | 99.21 48 | 93.19 90 | 98.78 48 | 86.73 160 | 98.17 86 | 97.84 121 | 96.32 147 | 99.74 46 | 99.49 138 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 96.64 100 | 99.08 41 | 93.81 126 | 97.10 82 | 99.42 68 | 98.85 57 | 90.01 136 | 99.31 32 | 79.98 177 | 99.78 2 | 99.10 61 | 97.42 113 | 98.35 88 | 98.05 91 | 99.47 158 | 99.53 128 |
|
FMVSNet2 | | | 96.64 100 | 97.50 99 | 95.63 104 | 93.81 151 | 97.98 160 | 98.09 88 | 90.87 122 | 98.99 80 | 93.48 86 | 93.17 154 | 95.25 106 | 97.89 99 | 98.63 70 | 98.80 49 | 99.68 91 | 99.67 101 |
|
ACMP | | 96.25 10 | 96.62 102 | 96.72 127 | 96.50 85 | 96.96 84 | 98.75 121 | 97.80 97 | 94.30 66 | 98.85 92 | 93.12 91 | 98.78 48 | 86.61 162 | 97.23 117 | 97.73 127 | 96.61 139 | 99.62 117 | 99.71 89 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CDS-MVSNet | | | 96.59 103 | 98.02 86 | 94.92 110 | 94.45 144 | 98.96 108 | 97.46 108 | 91.75 105 | 97.86 154 | 90.07 117 | 96.02 120 | 97.25 84 | 96.21 142 | 98.04 109 | 98.38 69 | 99.60 127 | 99.65 108 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CHOSEN 1792x2688 | | | 96.41 104 | 96.99 122 | 95.74 101 | 98.01 66 | 99.72 6 | 97.70 102 | 90.78 126 | 99.13 63 | 90.03 118 | 87.35 193 | 95.36 105 | 98.33 85 | 98.59 77 | 98.91 39 | 99.59 133 | 99.87 15 |
|
HQP-MVS | | | 96.37 105 | 96.58 129 | 96.13 91 | 97.31 77 | 98.44 143 | 98.45 70 | 95.22 50 | 98.86 90 | 88.58 123 | 98.33 66 | 87.00 156 | 97.67 107 | 97.23 147 | 96.56 141 | 99.56 144 | 99.62 115 |
|
baseline2 | | | 96.36 106 | 97.82 92 | 94.65 113 | 94.60 143 | 99.09 101 | 96.45 139 | 89.63 144 | 98.36 131 | 91.29 113 | 97.60 86 | 94.13 122 | 96.37 139 | 98.45 84 | 97.70 106 | 99.54 150 | 99.41 144 |
|
EPNet_dtu | | | 96.30 107 | 98.53 64 | 93.70 130 | 98.97 50 | 98.24 154 | 97.36 110 | 94.23 67 | 98.85 92 | 79.18 181 | 99.19 22 | 98.47 69 | 94.09 185 | 97.89 118 | 98.21 82 | 98.39 191 | 98.85 175 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LGP-MVS_train | | | 96.23 108 | 96.89 124 | 95.46 105 | 97.32 75 | 98.77 117 | 98.81 60 | 93.60 80 | 98.58 118 | 85.52 143 | 99.08 33 | 86.67 161 | 97.83 105 | 97.87 119 | 97.51 113 | 99.69 82 | 99.73 75 |
|
OPM-MVS | | | 96.22 109 | 95.85 150 | 96.65 77 | 97.75 68 | 98.54 136 | 99.00 52 | 95.53 47 | 96.88 179 | 89.88 119 | 95.95 122 | 86.46 164 | 98.07 92 | 97.65 132 | 96.63 138 | 99.67 99 | 98.83 176 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ET-MVSNet_ETH3D | | | 96.17 110 | 96.99 122 | 95.21 107 | 88.53 207 | 98.54 136 | 98.28 80 | 92.61 93 | 98.85 92 | 93.60 85 | 99.06 35 | 90.39 141 | 98.63 75 | 95.98 181 | 96.68 136 | 99.61 119 | 99.41 144 |
|
Vis-MVSNet |  | | 96.16 111 | 98.22 76 | 93.75 127 | 95.33 131 | 99.70 11 | 97.27 114 | 90.85 123 | 98.30 133 | 85.51 144 | 95.72 129 | 96.45 89 | 93.69 192 | 98.70 66 | 99.00 31 | 99.84 8 | 99.69 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IterMVS-LS | | | 96.12 112 | 97.48 101 | 94.53 114 | 95.19 133 | 97.56 185 | 97.15 120 | 89.19 149 | 99.08 68 | 88.23 124 | 94.97 134 | 94.73 113 | 97.84 104 | 97.86 120 | 98.26 80 | 99.60 127 | 99.88 13 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 96.07 113 | 97.94 89 | 93.89 124 | 93.60 156 | 98.67 127 | 96.62 134 | 90.30 135 | 98.76 109 | 88.62 122 | 95.57 132 | 97.63 79 | 94.48 179 | 97.97 113 | 97.48 117 | 99.71 70 | 99.52 131 |
|
MS-PatchMatch | | | 95.99 114 | 97.26 115 | 94.51 115 | 97.46 72 | 98.76 120 | 97.27 114 | 86.97 170 | 99.09 66 | 89.83 120 | 93.51 149 | 97.78 77 | 96.18 144 | 97.53 137 | 95.71 166 | 99.35 171 | 98.41 182 |
|
HyFIR lowres test | | | 95.99 114 | 96.56 130 | 95.32 106 | 97.99 67 | 99.65 16 | 96.54 135 | 88.86 151 | 98.44 127 | 89.77 121 | 84.14 203 | 97.05 86 | 99.03 55 | 98.55 79 | 98.19 84 | 99.73 53 | 99.86 18 |
|
GeoE | | | 95.98 116 | 97.24 116 | 94.51 115 | 95.02 136 | 99.38 73 | 98.02 93 | 87.86 165 | 98.37 130 | 87.86 129 | 92.99 159 | 93.54 126 | 98.56 78 | 98.61 72 | 97.92 95 | 99.73 53 | 99.85 21 |
|
Effi-MVS+ | | | 95.81 117 | 97.31 114 | 94.06 122 | 95.09 134 | 99.35 80 | 97.24 116 | 88.22 160 | 98.54 121 | 85.38 145 | 98.52 57 | 88.68 149 | 98.70 70 | 98.32 89 | 97.93 94 | 99.74 46 | 99.84 22 |
|
FMVSNet1 | | | 95.77 118 | 96.41 142 | 95.03 108 | 93.42 158 | 97.86 167 | 97.11 123 | 89.89 139 | 98.53 122 | 92.00 107 | 89.17 177 | 93.23 130 | 98.15 89 | 98.07 104 | 98.34 74 | 99.61 119 | 99.69 95 |
|
Effi-MVS+-dtu | | | 95.74 119 | 98.04 84 | 93.06 144 | 93.92 147 | 99.16 98 | 97.90 94 | 88.16 162 | 99.07 73 | 82.02 165 | 98.02 75 | 94.32 119 | 96.74 128 | 98.53 80 | 97.56 111 | 99.61 119 | 99.62 115 |
|
testgi | | | 95.67 120 | 97.48 101 | 93.56 133 | 95.07 135 | 99.00 103 | 95.33 159 | 88.47 157 | 98.80 102 | 86.90 135 | 97.30 89 | 92.33 133 | 95.97 150 | 97.66 130 | 97.91 97 | 99.60 127 | 99.38 148 |
|
MDTV_nov1_ep13 | | | 95.57 121 | 97.48 101 | 93.35 141 | 95.43 128 | 98.97 107 | 97.19 119 | 83.72 191 | 98.92 87 | 87.91 128 | 97.75 81 | 96.12 98 | 97.88 102 | 96.84 158 | 95.64 167 | 97.96 196 | 98.10 188 |
|
test_part1 | | | 95.56 122 | 95.38 154 | 95.78 98 | 96.07 99 | 98.16 157 | 97.57 104 | 90.78 126 | 97.43 165 | 93.04 93 | 89.12 180 | 89.41 148 | 97.93 97 | 96.38 167 | 97.38 123 | 99.29 175 | 99.78 47 |
|
TAMVS | | | 95.53 123 | 96.50 136 | 94.39 118 | 93.86 150 | 99.03 102 | 96.67 132 | 89.55 146 | 97.33 168 | 90.64 115 | 93.02 158 | 91.58 138 | 96.21 142 | 97.72 128 | 97.43 121 | 99.43 163 | 99.36 149 |
|
test-LLR | | | 95.50 124 | 97.32 111 | 93.37 139 | 95.49 124 | 98.74 122 | 96.44 140 | 90.82 124 | 98.18 138 | 82.75 160 | 96.60 109 | 94.67 114 | 95.54 161 | 98.09 101 | 96.00 157 | 99.20 179 | 98.93 170 |
|
FMVSNet5 | | | 95.42 125 | 96.47 137 | 94.20 119 | 92.26 170 | 95.99 206 | 95.66 151 | 87.15 169 | 97.87 153 | 93.46 87 | 96.68 105 | 93.79 125 | 97.52 109 | 97.10 153 | 97.21 126 | 99.11 182 | 96.62 206 |
|
ACMH+ | | 95.51 13 | 95.40 126 | 96.00 144 | 94.70 112 | 96.33 90 | 98.79 114 | 96.79 130 | 91.32 116 | 98.77 108 | 87.18 133 | 95.60 131 | 85.46 172 | 96.97 121 | 97.15 150 | 96.59 140 | 99.59 133 | 99.65 108 |
|
Fast-Effi-MVS+-dtu | | | 95.38 127 | 98.20 77 | 92.09 155 | 93.91 148 | 98.87 111 | 97.35 111 | 85.01 184 | 99.08 68 | 81.09 169 | 98.10 71 | 96.36 92 | 95.62 158 | 98.43 87 | 97.03 128 | 99.55 146 | 99.50 137 |
|
Fast-Effi-MVS+ | | | 95.38 127 | 96.52 133 | 94.05 123 | 94.15 146 | 99.14 100 | 97.24 116 | 86.79 171 | 98.53 122 | 87.62 131 | 94.51 139 | 87.06 154 | 98.76 68 | 98.60 75 | 98.04 92 | 99.72 60 | 99.77 55 |
|
CVMVSNet | | | 95.33 129 | 97.09 118 | 93.27 142 | 95.23 132 | 98.39 148 | 95.49 155 | 92.58 94 | 97.71 160 | 83.00 159 | 94.44 141 | 93.28 129 | 93.92 189 | 97.79 122 | 98.54 61 | 99.41 166 | 99.45 141 |
|
ACMH | | 95.42 14 | 95.27 130 | 95.96 146 | 94.45 117 | 96.83 85 | 98.78 116 | 94.72 173 | 91.67 108 | 98.95 82 | 86.82 136 | 96.42 114 | 83.67 182 | 97.00 120 | 97.48 139 | 96.68 136 | 99.69 82 | 99.76 60 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 95.09 131 | 95.90 147 | 94.14 120 | 92.29 169 | 97.70 171 | 95.45 156 | 90.31 133 | 98.60 116 | 90.70 114 | 93.25 152 | 89.90 145 | 96.67 131 | 97.13 151 | 95.42 170 | 99.44 162 | 99.28 152 |
|
EPMVS | | | 95.05 132 | 96.86 126 | 92.94 146 | 95.84 107 | 98.96 108 | 96.68 131 | 79.87 198 | 99.05 74 | 90.15 116 | 97.12 95 | 95.99 100 | 97.49 111 | 95.17 190 | 94.75 188 | 97.59 202 | 96.96 202 |
|
IB-MVS | | 93.96 15 | 95.02 133 | 96.44 140 | 93.36 140 | 97.05 83 | 99.28 89 | 90.43 200 | 93.39 83 | 98.02 144 | 96.02 39 | 94.92 136 | 92.07 135 | 83.52 209 | 95.38 186 | 95.82 163 | 99.72 60 | 99.59 117 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
SCA | | | 94.95 134 | 97.44 104 | 92.04 156 | 95.55 121 | 99.16 98 | 96.26 143 | 79.30 202 | 99.02 77 | 85.73 142 | 98.18 69 | 97.13 85 | 97.69 106 | 96.03 179 | 94.91 183 | 97.69 201 | 97.65 194 |
|
TESTMET0.1,1 | | | 94.95 134 | 97.32 111 | 92.20 153 | 92.62 162 | 98.74 122 | 96.44 140 | 86.67 173 | 98.18 138 | 82.75 160 | 96.60 109 | 94.67 114 | 95.54 161 | 98.09 101 | 96.00 157 | 99.20 179 | 98.93 170 |
|
IterMVS-SCA-FT | | | 94.89 136 | 97.87 91 | 91.42 169 | 94.86 140 | 97.70 171 | 97.24 116 | 84.88 185 | 98.93 85 | 75.74 193 | 94.26 142 | 98.25 72 | 96.69 129 | 98.52 81 | 97.68 107 | 99.10 183 | 99.73 75 |
|
test-mter | | | 94.86 137 | 97.32 111 | 92.00 158 | 92.41 167 | 98.82 113 | 96.18 145 | 86.35 177 | 98.05 143 | 82.28 163 | 96.48 113 | 94.39 118 | 95.46 165 | 98.17 97 | 96.20 151 | 99.32 173 | 99.13 164 |
|
IterMVS | | | 94.81 138 | 97.71 94 | 91.42 169 | 94.83 141 | 97.63 178 | 97.38 109 | 85.08 182 | 98.93 85 | 75.67 194 | 94.02 143 | 97.64 78 | 96.66 132 | 98.45 84 | 97.60 110 | 98.90 186 | 99.72 86 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 94.70 139 | 97.08 119 | 91.92 161 | 95.53 122 | 98.85 112 | 95.77 149 | 79.54 200 | 98.95 82 | 85.98 139 | 98.52 57 | 96.45 89 | 97.39 114 | 95.32 187 | 94.09 193 | 97.32 204 | 97.38 197 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
RPMNet | | | 94.66 140 | 97.16 117 | 91.75 165 | 94.98 137 | 98.59 133 | 97.00 127 | 78.37 209 | 97.98 146 | 83.78 150 | 96.27 116 | 94.09 124 | 96.91 123 | 97.36 142 | 96.73 134 | 99.48 156 | 99.09 165 |
|
ADS-MVSNet | | | 94.65 141 | 97.04 121 | 91.88 164 | 95.68 114 | 98.99 105 | 95.89 147 | 79.03 205 | 99.15 55 | 85.81 141 | 96.96 97 | 98.21 74 | 97.10 118 | 94.48 198 | 94.24 192 | 97.74 198 | 97.21 198 |
|
dps | | | 94.63 142 | 95.31 157 | 93.84 125 | 95.53 122 | 98.71 125 | 96.54 135 | 80.12 197 | 97.81 158 | 97.21 28 | 96.98 96 | 92.37 132 | 96.34 141 | 92.46 205 | 91.77 205 | 97.26 206 | 97.08 200 |
|
thisisatest0515 | | | 94.61 143 | 96.89 124 | 91.95 160 | 92.00 174 | 98.47 140 | 92.01 195 | 90.73 128 | 98.18 138 | 83.96 147 | 94.51 139 | 95.13 108 | 93.38 193 | 97.38 141 | 94.74 189 | 99.61 119 | 99.79 41 |
|
UniMVSNet_NR-MVSNet | | | 94.59 144 | 95.47 153 | 93.55 134 | 91.85 179 | 97.89 166 | 95.03 161 | 92.00 101 | 97.33 168 | 86.12 137 | 93.19 153 | 87.29 153 | 96.60 134 | 96.12 176 | 96.70 135 | 99.72 60 | 99.80 34 |
|
UniMVSNet (Re) | | | 94.58 145 | 95.34 155 | 93.71 129 | 92.25 171 | 98.08 159 | 94.97 163 | 91.29 120 | 97.03 177 | 87.94 127 | 93.97 145 | 86.25 167 | 96.07 147 | 96.27 173 | 95.97 160 | 99.72 60 | 99.79 41 |
|
CR-MVSNet | | | 94.57 146 | 97.34 109 | 91.33 172 | 94.90 138 | 98.59 133 | 97.15 120 | 79.14 203 | 97.98 146 | 80.42 173 | 96.59 111 | 93.50 128 | 96.85 125 | 98.10 99 | 97.49 115 | 99.50 155 | 99.15 160 |
|
MIMVSNet | | | 94.49 147 | 97.59 98 | 90.87 181 | 91.74 182 | 98.70 126 | 94.68 175 | 78.73 207 | 97.98 146 | 83.71 153 | 97.71 84 | 94.81 112 | 96.96 122 | 97.97 113 | 97.92 95 | 99.40 168 | 98.04 189 |
|
pm-mvs1 | | | 94.27 148 | 95.57 152 | 92.75 147 | 92.58 163 | 98.13 158 | 94.87 168 | 90.71 129 | 96.70 185 | 83.78 150 | 89.94 173 | 89.85 146 | 94.96 176 | 97.58 135 | 97.07 127 | 99.61 119 | 99.72 86 |
|
USDC | | | 94.26 149 | 94.83 161 | 93.59 132 | 96.02 100 | 98.44 143 | 97.84 95 | 88.65 155 | 98.86 90 | 82.73 162 | 94.02 143 | 80.56 198 | 96.76 127 | 97.28 146 | 96.15 154 | 99.55 146 | 98.50 180 |
|
CostFormer | | | 94.25 150 | 94.88 160 | 93.51 136 | 95.43 128 | 98.34 151 | 96.21 144 | 80.64 195 | 97.94 150 | 94.01 72 | 98.30 67 | 86.20 168 | 97.52 109 | 92.71 203 | 92.69 199 | 97.23 207 | 98.02 190 |
|
tpm cat1 | | | 94.06 151 | 94.90 159 | 93.06 144 | 95.42 130 | 98.52 138 | 96.64 133 | 80.67 194 | 97.82 156 | 92.63 99 | 93.39 151 | 95.00 109 | 96.06 148 | 91.36 208 | 91.58 207 | 96.98 208 | 96.66 205 |
|
NR-MVSNet | | | 94.01 152 | 94.51 167 | 93.44 137 | 92.56 164 | 97.77 168 | 95.67 150 | 91.57 110 | 97.17 172 | 85.84 140 | 93.13 155 | 80.53 199 | 95.29 169 | 97.01 154 | 96.17 152 | 99.69 82 | 99.75 67 |
|
TinyColmap | | | 94.00 153 | 94.35 170 | 93.60 131 | 95.89 105 | 98.26 152 | 97.49 107 | 88.82 152 | 98.56 120 | 83.21 156 | 91.28 164 | 80.48 200 | 96.68 130 | 97.34 143 | 96.26 150 | 99.53 152 | 98.24 186 |
|
DU-MVS | | | 93.98 154 | 94.44 169 | 93.44 137 | 91.66 184 | 97.77 168 | 95.03 161 | 91.57 110 | 97.17 172 | 86.12 137 | 93.13 155 | 81.13 197 | 96.60 134 | 95.10 192 | 97.01 130 | 99.67 99 | 99.80 34 |
|
PatchT | | | 93.96 155 | 97.36 108 | 90.00 188 | 94.76 142 | 98.65 128 | 90.11 203 | 78.57 208 | 97.96 149 | 80.42 173 | 96.07 119 | 94.10 123 | 96.85 125 | 98.10 99 | 97.49 115 | 99.26 177 | 99.15 160 |
|
GA-MVS | | | 93.93 156 | 96.31 143 | 91.16 176 | 93.61 155 | 98.79 114 | 95.39 158 | 90.69 130 | 98.25 136 | 73.28 202 | 96.15 118 | 88.42 150 | 94.39 181 | 97.76 125 | 95.35 171 | 99.58 137 | 99.45 141 |
|
Baseline_NR-MVSNet | | | 93.87 157 | 93.98 179 | 93.75 127 | 91.66 184 | 97.02 198 | 95.53 154 | 91.52 113 | 97.16 174 | 87.77 130 | 87.93 191 | 83.69 181 | 96.35 140 | 95.10 192 | 97.23 125 | 99.68 91 | 99.73 75 |
|
tpmrst | | | 93.86 158 | 95.88 148 | 91.50 168 | 95.69 113 | 98.62 130 | 95.64 152 | 79.41 201 | 98.80 102 | 83.76 152 | 95.63 130 | 96.13 97 | 97.25 115 | 92.92 202 | 92.31 201 | 97.27 205 | 96.74 203 |
|
tfpnnormal | | | 93.85 159 | 94.12 174 | 93.54 135 | 93.22 159 | 98.24 154 | 95.45 156 | 91.96 103 | 94.61 205 | 83.91 148 | 90.74 167 | 81.75 195 | 97.04 119 | 97.49 138 | 96.16 153 | 99.68 91 | 99.84 22 |
|
TranMVSNet+NR-MVSNet | | | 93.67 160 | 94.14 172 | 93.13 143 | 91.28 198 | 97.58 183 | 95.60 153 | 91.97 102 | 97.06 175 | 84.05 146 | 90.64 170 | 82.22 192 | 96.17 145 | 94.94 195 | 96.78 133 | 99.69 82 | 99.78 47 |
|
WR-MVS_H | | | 93.54 161 | 94.67 165 | 92.22 151 | 91.95 175 | 97.91 165 | 94.58 179 | 88.75 153 | 96.64 186 | 83.88 149 | 90.66 169 | 85.13 175 | 94.40 180 | 96.54 163 | 95.91 162 | 99.73 53 | 99.89 9 |
|
TransMVSNet (Re) | | | 93.45 162 | 94.08 175 | 92.72 148 | 92.83 160 | 97.62 181 | 94.94 164 | 91.54 112 | 95.65 202 | 83.06 158 | 88.93 181 | 83.53 183 | 94.25 182 | 97.41 140 | 97.03 128 | 99.67 99 | 98.40 185 |
|
SixPastTwentyTwo | | | 93.44 163 | 95.32 156 | 91.24 174 | 92.11 172 | 98.40 147 | 92.77 191 | 88.64 156 | 98.09 142 | 77.83 186 | 93.51 149 | 85.74 170 | 96.52 137 | 96.91 156 | 94.89 186 | 99.59 133 | 99.73 75 |
|
WR-MVS | | | 93.43 164 | 94.48 168 | 92.21 152 | 91.52 191 | 97.69 173 | 94.66 177 | 89.98 137 | 96.86 180 | 83.43 154 | 90.12 171 | 85.03 176 | 93.94 188 | 96.02 180 | 95.82 163 | 99.71 70 | 99.82 27 |
|
CP-MVSNet | | | 93.25 165 | 94.00 178 | 92.38 150 | 91.65 186 | 97.56 185 | 94.38 182 | 89.20 148 | 96.05 196 | 83.16 157 | 89.51 175 | 81.97 193 | 96.16 146 | 96.43 165 | 96.56 141 | 99.71 70 | 99.89 9 |
|
UniMVSNet_ETH3D | | | 93.15 166 | 92.33 199 | 94.11 121 | 93.91 148 | 98.61 132 | 94.81 170 | 90.98 121 | 97.06 175 | 87.51 132 | 82.27 207 | 76.33 213 | 97.87 103 | 94.79 196 | 97.47 118 | 99.56 144 | 99.81 32 |
|
anonymousdsp | | | 93.12 167 | 95.86 149 | 89.93 190 | 91.09 199 | 98.25 153 | 95.12 160 | 85.08 182 | 97.44 164 | 73.30 201 | 90.89 166 | 90.78 140 | 95.25 171 | 97.91 116 | 95.96 161 | 99.71 70 | 99.82 27 |
|
V42 | | | 93.05 168 | 93.90 182 | 92.04 156 | 91.91 176 | 97.66 175 | 94.91 165 | 89.91 138 | 96.85 181 | 80.58 172 | 89.66 174 | 83.43 185 | 95.37 167 | 95.03 194 | 94.90 184 | 99.59 133 | 99.78 47 |
|
TDRefinement | | | 93.04 169 | 93.57 186 | 92.41 149 | 96.58 87 | 98.77 117 | 97.78 99 | 91.96 103 | 98.12 141 | 80.84 170 | 89.13 179 | 79.87 205 | 87.78 205 | 96.44 164 | 94.50 191 | 99.54 150 | 98.15 187 |
|
v8 | | | 92.87 170 | 93.87 183 | 91.72 167 | 92.05 173 | 97.50 188 | 94.79 171 | 88.20 161 | 96.85 181 | 80.11 176 | 90.01 172 | 82.86 189 | 95.48 163 | 95.15 191 | 94.90 184 | 99.66 104 | 99.80 34 |
|
LTVRE_ROB | | 93.20 16 | 92.84 171 | 94.92 158 | 90.43 185 | 92.83 160 | 98.63 129 | 97.08 125 | 87.87 164 | 97.91 151 | 68.42 211 | 93.54 148 | 79.46 207 | 96.62 133 | 97.55 136 | 97.40 122 | 99.74 46 | 99.92 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v1144 | | | 92.81 172 | 94.03 177 | 91.40 171 | 91.68 183 | 97.60 182 | 94.73 172 | 88.40 158 | 96.71 184 | 78.48 184 | 88.14 188 | 84.46 180 | 95.45 166 | 96.31 172 | 95.22 175 | 99.65 108 | 99.76 60 |
|
EU-MVSNet | | | 92.80 173 | 94.76 163 | 90.51 183 | 91.88 177 | 96.74 203 | 92.48 193 | 88.69 154 | 96.21 191 | 79.00 182 | 91.51 161 | 87.82 151 | 91.83 201 | 95.87 183 | 96.27 148 | 99.21 178 | 98.92 173 |
|
v10 | | | 92.79 174 | 94.06 176 | 91.31 173 | 91.78 181 | 97.29 197 | 94.87 168 | 86.10 178 | 96.97 178 | 79.82 178 | 88.16 187 | 84.56 179 | 95.63 157 | 96.33 171 | 95.31 172 | 99.65 108 | 99.80 34 |
|
v2v482 | | | 92.77 175 | 93.52 189 | 91.90 163 | 91.59 189 | 97.63 178 | 94.57 180 | 90.31 133 | 96.80 183 | 79.22 180 | 88.74 183 | 81.55 196 | 96.04 149 | 95.26 188 | 94.97 182 | 99.66 104 | 99.69 95 |
|
PS-CasMVS | | | 92.72 176 | 93.36 190 | 91.98 159 | 91.62 188 | 97.52 187 | 94.13 186 | 88.98 150 | 95.94 199 | 81.51 168 | 87.35 193 | 79.95 204 | 95.91 151 | 96.37 168 | 96.49 143 | 99.70 79 | 99.89 9 |
|
PEN-MVS | | | 92.72 176 | 93.20 192 | 92.15 154 | 91.29 196 | 97.31 195 | 94.67 176 | 89.81 140 | 96.19 192 | 81.83 166 | 88.58 184 | 79.06 208 | 95.61 159 | 95.21 189 | 96.27 148 | 99.72 60 | 99.82 27 |
|
pmmvs5 | | | 92.71 178 | 94.27 171 | 90.90 180 | 91.42 193 | 97.74 170 | 93.23 188 | 86.66 174 | 95.99 198 | 78.96 183 | 91.45 162 | 83.44 184 | 95.55 160 | 97.30 145 | 95.05 180 | 99.58 137 | 98.93 170 |
|
MVS-HIRNet | | | 92.51 179 | 95.97 145 | 88.48 196 | 93.73 154 | 98.37 149 | 90.33 201 | 75.36 215 | 98.32 132 | 77.78 187 | 89.15 178 | 94.87 110 | 95.14 173 | 97.62 134 | 96.39 145 | 98.51 188 | 97.11 199 |
|
EG-PatchMatch MVS | | | 92.45 180 | 93.92 181 | 90.72 182 | 92.56 164 | 98.43 145 | 94.88 167 | 84.54 187 | 97.18 171 | 79.55 179 | 86.12 200 | 83.23 186 | 93.15 196 | 97.22 148 | 96.00 157 | 99.67 99 | 99.27 154 |
|
pmnet_mix02 | | | 92.44 181 | 94.68 164 | 89.83 191 | 92.46 166 | 97.65 177 | 89.92 205 | 90.49 132 | 98.76 109 | 73.05 204 | 91.78 160 | 90.08 144 | 94.86 177 | 94.53 197 | 91.94 204 | 98.21 194 | 98.01 191 |
|
MDTV_nov1_ep13_2view | | | 92.44 181 | 95.66 151 | 88.68 194 | 91.05 200 | 97.92 164 | 92.17 194 | 79.64 199 | 98.83 97 | 76.20 191 | 91.45 162 | 93.51 127 | 95.04 174 | 95.68 185 | 93.70 196 | 97.96 196 | 98.53 179 |
|
v1192 | | | 92.43 183 | 93.61 185 | 91.05 177 | 91.53 190 | 97.43 191 | 94.61 178 | 87.99 163 | 96.60 187 | 76.72 189 | 87.11 195 | 82.74 190 | 95.85 152 | 96.35 170 | 95.30 173 | 99.60 127 | 99.74 71 |
|
DTE-MVSNet | | | 92.42 184 | 92.85 195 | 91.91 162 | 90.87 201 | 96.97 199 | 94.53 181 | 89.81 140 | 95.86 201 | 81.59 167 | 88.83 182 | 77.88 211 | 95.01 175 | 94.34 199 | 96.35 146 | 99.64 112 | 99.73 75 |
|
v144192 | | | 92.38 185 | 93.55 188 | 91.00 178 | 91.44 192 | 97.47 190 | 94.27 183 | 87.41 168 | 96.52 189 | 78.03 185 | 87.50 192 | 82.65 191 | 95.32 168 | 95.82 184 | 95.15 177 | 99.55 146 | 99.78 47 |
|
tpm | | | 92.38 185 | 94.79 162 | 89.56 192 | 94.30 145 | 97.50 188 | 94.24 185 | 78.97 206 | 97.72 159 | 74.93 198 | 97.97 76 | 82.91 187 | 96.60 134 | 93.65 201 | 94.81 187 | 98.33 192 | 98.98 168 |
|
v1921920 | | | 92.36 187 | 93.57 186 | 90.94 179 | 91.39 194 | 97.39 193 | 94.70 174 | 87.63 167 | 96.60 187 | 76.63 190 | 86.98 196 | 82.89 188 | 95.75 153 | 96.26 174 | 95.14 178 | 99.55 146 | 99.73 75 |
|
v148 | | | 92.36 187 | 92.88 194 | 91.75 165 | 91.63 187 | 97.66 175 | 92.64 192 | 90.55 131 | 96.09 194 | 83.34 155 | 88.19 186 | 80.00 202 | 92.74 197 | 93.98 200 | 94.58 190 | 99.58 137 | 99.69 95 |
|
N_pmnet | | | 92.21 189 | 94.60 166 | 89.42 193 | 91.88 177 | 97.38 194 | 89.15 207 | 89.74 143 | 97.89 152 | 73.75 200 | 87.94 190 | 92.23 134 | 93.85 190 | 96.10 177 | 93.20 198 | 98.15 195 | 97.43 196 |
|
v1240 | | | 91.99 190 | 93.33 191 | 90.44 184 | 91.29 196 | 97.30 196 | 94.25 184 | 86.79 171 | 96.43 190 | 75.49 196 | 86.34 199 | 81.85 194 | 95.29 169 | 96.42 166 | 95.22 175 | 99.52 153 | 99.73 75 |
|
pmmvs6 | | | 91.90 191 | 92.53 198 | 91.17 175 | 91.81 180 | 97.63 178 | 93.23 188 | 88.37 159 | 93.43 210 | 80.61 171 | 77.32 211 | 87.47 152 | 94.12 184 | 96.58 161 | 95.72 165 | 98.88 187 | 99.53 128 |
|
v7n | | | 91.61 192 | 92.95 193 | 90.04 187 | 90.56 202 | 97.69 173 | 93.74 187 | 85.59 180 | 95.89 200 | 76.95 188 | 86.60 198 | 78.60 210 | 93.76 191 | 97.01 154 | 94.99 181 | 99.65 108 | 99.87 15 |
|
gg-mvs-nofinetune | | | 90.85 193 | 94.14 172 | 87.02 199 | 94.89 139 | 99.25 91 | 98.64 64 | 76.29 213 | 88.24 214 | 57.50 218 | 79.93 209 | 95.45 104 | 95.18 172 | 98.77 60 | 98.07 90 | 99.62 117 | 99.24 156 |
|
CMPMVS |  | 70.31 18 | 90.74 194 | 91.06 202 | 90.36 186 | 97.32 75 | 97.43 191 | 92.97 190 | 87.82 166 | 93.50 209 | 75.34 197 | 83.27 205 | 84.90 177 | 92.19 200 | 92.64 204 | 91.21 208 | 96.50 211 | 94.46 209 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20231206 | | | 90.70 195 | 93.93 180 | 86.92 200 | 90.21 205 | 96.79 201 | 90.30 202 | 86.61 175 | 96.05 196 | 69.25 209 | 88.46 185 | 84.86 178 | 85.86 207 | 97.11 152 | 96.47 144 | 99.30 174 | 97.80 193 |
|
test20.03 | | | 90.65 196 | 93.71 184 | 87.09 198 | 90.44 203 | 96.24 204 | 89.74 206 | 85.46 181 | 95.59 203 | 72.99 205 | 90.68 168 | 85.33 173 | 84.41 208 | 95.94 182 | 95.10 179 | 99.52 153 | 97.06 201 |
|
new_pmnet | | | 90.45 197 | 92.84 196 | 87.66 197 | 88.96 206 | 96.16 205 | 88.71 208 | 84.66 186 | 97.56 162 | 71.91 208 | 85.60 201 | 86.58 163 | 93.28 194 | 96.07 178 | 93.54 197 | 98.46 189 | 94.39 210 |
|
pmmvs-eth3d | | | 89.81 198 | 89.65 205 | 90.00 188 | 86.94 209 | 95.38 208 | 91.08 196 | 86.39 176 | 94.57 206 | 82.27 164 | 83.03 206 | 64.94 216 | 93.96 187 | 96.57 162 | 93.82 195 | 99.35 171 | 99.24 156 |
|
PM-MVS | | | 89.55 199 | 90.30 204 | 88.67 195 | 87.06 208 | 95.60 207 | 90.88 198 | 84.51 188 | 96.14 193 | 75.75 192 | 86.89 197 | 63.47 219 | 94.64 178 | 96.85 157 | 93.89 194 | 99.17 181 | 99.29 151 |
|
gm-plane-assit | | | 89.44 200 | 92.82 197 | 85.49 203 | 91.37 195 | 95.34 209 | 79.55 217 | 82.12 192 | 91.68 213 | 64.79 215 | 87.98 189 | 80.26 201 | 95.66 156 | 98.51 83 | 97.56 111 | 99.45 160 | 98.41 182 |
|
MIMVSNet1 | | | 88.61 201 | 90.68 203 | 86.19 202 | 81.56 214 | 95.30 210 | 87.78 209 | 85.98 179 | 94.19 208 | 72.30 207 | 78.84 210 | 78.90 209 | 90.06 202 | 96.59 160 | 95.47 168 | 99.46 159 | 95.49 208 |
|
pmmvs3 | | | 88.19 202 | 91.27 201 | 84.60 205 | 85.60 211 | 93.66 212 | 85.68 212 | 81.13 193 | 92.36 212 | 63.66 217 | 89.51 175 | 77.10 212 | 93.22 195 | 96.37 168 | 92.40 200 | 98.30 193 | 97.46 195 |
|
MDA-MVSNet-bldmvs | | | 87.84 203 | 89.22 206 | 86.23 201 | 81.74 213 | 96.77 202 | 83.74 213 | 89.57 145 | 94.50 207 | 72.83 206 | 96.64 107 | 64.47 218 | 92.71 198 | 81.43 213 | 92.28 202 | 96.81 209 | 98.47 181 |
|
test_method | | | 87.27 204 | 91.58 200 | 82.25 207 | 75.65 218 | 87.52 217 | 86.81 211 | 72.60 216 | 97.51 163 | 73.20 203 | 85.07 202 | 79.97 203 | 88.69 204 | 97.31 144 | 95.24 174 | 96.53 210 | 98.41 182 |
|
new-patchmatchnet | | | 86.12 205 | 87.30 207 | 84.74 204 | 86.92 210 | 95.19 211 | 83.57 214 | 84.42 189 | 92.67 211 | 65.66 212 | 80.32 208 | 64.72 217 | 89.41 203 | 92.33 207 | 89.21 209 | 98.43 190 | 96.69 204 |
|
FPMVS | | | 83.82 206 | 84.61 208 | 82.90 206 | 90.39 204 | 90.71 214 | 90.85 199 | 84.10 190 | 95.47 204 | 65.15 213 | 83.44 204 | 74.46 214 | 75.48 211 | 81.63 212 | 79.42 214 | 91.42 216 | 87.14 214 |
|
Gipuma |  | | 81.40 207 | 81.78 209 | 80.96 209 | 83.21 212 | 85.61 218 | 79.73 216 | 76.25 214 | 97.33 168 | 64.21 216 | 55.32 215 | 55.55 220 | 86.04 206 | 92.43 206 | 92.20 203 | 96.32 212 | 93.99 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 77.26 208 | 79.47 211 | 74.70 211 | 76.00 217 | 88.37 216 | 74.22 218 | 76.34 212 | 78.31 216 | 54.13 219 | 69.96 213 | 52.50 221 | 70.14 215 | 84.83 211 | 88.71 210 | 97.35 203 | 93.58 212 |
|
PMVS |  | 72.60 17 | 76.39 209 | 77.66 212 | 74.92 210 | 81.04 215 | 69.37 222 | 68.47 219 | 80.54 196 | 85.39 215 | 65.07 214 | 73.52 212 | 72.91 215 | 65.67 217 | 80.35 214 | 76.81 215 | 88.71 217 | 85.25 217 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
GG-mvs-BLEND | | | 69.11 210 | 98.13 80 | 35.26 215 | 3.49 224 | 98.20 156 | 94.89 166 | 2.38 221 | 98.42 128 | 5.82 225 | 96.37 115 | 98.60 66 | 5.97 220 | 98.75 63 | 97.98 93 | 99.01 184 | 98.61 177 |
|
E-PMN | | | 68.30 211 | 68.43 213 | 68.15 212 | 74.70 220 | 71.56 221 | 55.64 221 | 77.24 210 | 77.48 218 | 39.46 221 | 51.95 218 | 41.68 223 | 73.28 213 | 70.65 216 | 79.51 213 | 88.61 218 | 86.20 216 |
|
EMVS | | | 68.12 212 | 68.11 214 | 68.14 213 | 75.51 219 | 71.76 220 | 55.38 222 | 77.20 211 | 77.78 217 | 37.79 222 | 53.59 216 | 43.61 222 | 74.72 212 | 67.05 217 | 76.70 216 | 88.27 219 | 86.24 215 |
|
MVE |  | 67.97 19 | 65.53 213 | 67.43 215 | 63.31 214 | 59.33 221 | 74.20 219 | 53.09 223 | 70.43 217 | 66.27 219 | 43.13 220 | 45.98 219 | 30.62 224 | 70.65 214 | 79.34 215 | 86.30 211 | 83.25 220 | 89.33 213 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 31.24 214 | 40.15 216 | 20.86 216 | 12.61 222 | 17.99 223 | 25.16 224 | 13.30 219 | 48.42 220 | 24.82 223 | 53.07 217 | 30.13 226 | 28.47 218 | 42.73 218 | 37.65 217 | 20.79 221 | 51.04 218 |
|
test123 | | | 26.75 215 | 34.25 217 | 18.01 217 | 7.93 223 | 17.18 224 | 24.85 225 | 12.36 220 | 44.83 221 | 16.52 224 | 41.80 220 | 18.10 227 | 28.29 219 | 33.08 219 | 34.79 218 | 18.10 222 | 49.95 219 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 69.05 210 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.79 45 | | | | | |
|
SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
Anonymous202405211 | | | | 97.40 106 | | 96.45 88 | 99.54 51 | 98.08 91 | 93.79 74 | 98.24 137 | | 93.55 147 | 94.41 117 | 98.88 66 | 98.04 109 | 98.24 81 | 99.75 41 | 99.76 60 |
|
our_test_3 | | | | | | 92.30 168 | 97.58 183 | 90.09 204 | | | | | | | | | | |
|
ambc | | | | 80.99 210 | | 80.04 216 | 90.84 213 | 90.91 197 | | 96.09 194 | 74.18 199 | 62.81 214 | 30.59 225 | 82.44 210 | 96.25 175 | 91.77 205 | 95.91 213 | 98.56 178 |
|
MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 7 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 12 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 220 | | | | | | | | | | |
|
tmp_tt | | | | | 82.25 207 | 97.73 69 | 88.71 215 | 80.18 215 | 68.65 218 | 99.15 55 | 86.98 134 | 99.47 9 | 85.31 174 | 68.35 216 | 87.51 210 | 83.81 212 | 91.64 215 | |
|
XVS | | | | | | 97.42 73 | 99.62 28 | 98.59 66 | | | 93.81 80 | | 99.95 17 | | | | 99.69 82 | |
|
X-MVStestdata | | | | | | 97.42 73 | 99.62 28 | 98.59 66 | | | 93.81 80 | | 99.95 17 | | | | 99.69 82 | |
|
abl_6 | | | | | 98.09 40 | 99.33 42 | 99.22 95 | 98.79 61 | 94.96 54 | 98.52 124 | 97.00 32 | 97.30 89 | 99.86 37 | 98.76 68 | | | 99.69 82 | 99.41 144 |
|
mPP-MVS | | | | | | 99.53 30 | | | | | | | 99.89 34 | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 119 | | | | | | | | |
|
Patchmtry | | | | | | | 98.59 133 | 97.15 120 | 79.14 203 | | 80.42 173 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.85 200 | 87.43 210 | 89.27 147 | 98.30 133 | 75.55 195 | 95.05 133 | 79.47 206 | 92.62 199 | 89.48 209 | | 95.18 214 | 95.96 207 |
|