HPM-MVS++ |  | | 94.60 8 | 94.91 10 | 94.24 7 | 97.86 1 | 96.53 32 | 96.14 8 | 92.51 8 | 93.87 15 | 90.76 12 | 93.45 18 | 93.84 4 | 92.62 8 | 95.11 11 | 94.08 18 | 95.58 51 | 97.48 13 |
|
SMA-MVS |  | | 94.70 6 | 95.35 6 | 93.93 12 | 97.57 2 | 97.57 7 | 95.98 11 | 91.91 13 | 94.50 6 | 90.35 14 | 93.46 17 | 92.72 11 | 91.89 18 | 95.89 3 | 95.22 1 | 95.88 28 | 98.10 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
zzz-MVS | | | 93.80 17 | 93.45 25 | 94.20 8 | 97.53 3 | 96.43 36 | 95.88 17 | 91.12 20 | 94.09 11 | 92.74 3 | 87.68 33 | 90.77 25 | 92.04 13 | 94.74 17 | 93.56 28 | 95.91 27 | 96.85 27 |
|
MP-MVS |  | | 93.35 20 | 93.59 23 | 93.08 23 | 97.39 4 | 96.82 22 | 95.38 25 | 90.71 24 | 90.82 36 | 88.07 27 | 92.83 21 | 90.29 29 | 91.32 27 | 94.03 30 | 93.19 39 | 95.61 49 | 97.16 20 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 93.69 19 | 93.66 22 | 93.72 16 | 97.37 5 | 96.66 29 | 95.93 16 | 92.50 9 | 93.40 19 | 88.35 25 | 87.36 35 | 92.33 14 | 92.18 12 | 94.89 13 | 94.09 17 | 96.00 24 | 96.91 26 |
|
CNVR-MVS | | | 94.37 11 | 94.65 11 | 94.04 11 | 97.29 6 | 97.11 10 | 96.00 10 | 92.43 10 | 93.45 16 | 89.85 19 | 90.92 25 | 93.04 8 | 92.59 9 | 95.77 4 | 94.82 5 | 96.11 22 | 97.42 15 |
|
HFP-MVS | | | 94.02 14 | 94.22 17 | 93.78 14 | 97.25 7 | 96.85 20 | 95.81 20 | 90.94 23 | 94.12 10 | 90.29 16 | 94.09 14 | 89.98 31 | 92.52 10 | 93.94 33 | 93.49 33 | 95.87 30 | 97.10 23 |
|
APD-MVS |  | | 94.37 11 | 94.47 15 | 94.26 6 | 97.18 8 | 96.99 16 | 96.53 7 | 92.68 5 | 92.45 24 | 89.96 17 | 94.53 11 | 91.63 20 | 92.89 5 | 94.58 21 | 93.82 22 | 96.31 18 | 97.26 18 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 22 | 97.13 9 | 96.51 33 | 95.35 26 | 91.19 19 | 93.14 21 | 88.14 26 | 85.26 41 | 89.49 35 | 91.45 23 | 95.17 9 | 95.07 2 | 95.85 33 | 96.48 34 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 95.23 4 | 95.69 5 | 94.70 4 | 97.12 10 | 97.81 5 | 97.19 2 | 92.83 3 | 95.06 5 | 90.98 10 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 8 | 94.21 15 | 96.68 8 | 98.17 4 |
|
ACMMPR | | | 93.72 18 | 93.94 19 | 93.48 18 | 97.07 11 | 96.93 17 | 95.78 21 | 90.66 26 | 93.88 14 | 89.24 21 | 93.53 16 | 89.08 38 | 92.24 11 | 93.89 35 | 93.50 31 | 95.88 28 | 96.73 31 |
|
mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 45 | | | | | |
|
ACMMP_NAP | | | 93.94 15 | 94.49 14 | 93.30 20 | 97.03 13 | 97.31 9 | 95.96 12 | 91.30 18 | 93.41 18 | 88.55 24 | 93.00 19 | 90.33 28 | 91.43 26 | 95.53 6 | 94.41 13 | 95.53 53 | 97.47 14 |
|
PGM-MVS | | | 92.76 26 | 93.03 28 | 92.45 28 | 97.03 13 | 96.67 28 | 95.73 23 | 87.92 42 | 90.15 43 | 86.53 36 | 92.97 20 | 88.33 44 | 91.69 21 | 93.62 38 | 93.03 40 | 95.83 34 | 96.41 37 |
|
SteuartSystems-ACMMP | | | 94.06 13 | 94.65 11 | 93.38 19 | 96.97 15 | 97.36 8 | 96.12 9 | 91.78 14 | 92.05 28 | 87.34 30 | 94.42 12 | 90.87 24 | 91.87 19 | 95.47 7 | 94.59 10 | 96.21 20 | 97.77 10 |
Skip Steuart: Steuart Systems R&D Blog. |
DVP-MVS | | | 95.56 2 | 96.26 2 | 94.73 2 | 96.93 16 | 98.19 1 | 96.62 6 | 92.81 4 | 96.15 1 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 2 | 94.77 7 | 96.90 4 | 98.46 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
X-MVS | | | 92.36 30 | 92.75 30 | 91.90 33 | 96.89 17 | 96.70 25 | 95.25 27 | 90.48 29 | 91.50 33 | 83.95 48 | 88.20 31 | 88.82 40 | 89.11 38 | 93.75 36 | 93.43 35 | 95.75 40 | 96.83 29 |
|
train_agg | | | 92.87 25 | 93.53 24 | 92.09 30 | 96.88 18 | 95.38 49 | 95.94 14 | 90.59 28 | 90.65 38 | 83.65 51 | 94.31 13 | 91.87 19 | 90.30 31 | 93.38 40 | 92.42 47 | 95.17 70 | 96.73 31 |
|
SED-MVS | | | 95.61 1 | 96.36 1 | 94.73 2 | 96.84 19 | 98.15 2 | 97.08 3 | 92.92 2 | 95.64 2 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 6 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 2 |
|
CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 21 | 96.84 19 | 96.51 33 | 95.52 24 | 90.61 27 | 92.37 25 | 88.88 22 | 90.91 26 | 89.52 34 | 91.91 17 | 93.64 37 | 92.78 46 | 95.69 42 | 97.09 24 |
|
MSP-MVS | | | 95.12 5 | 95.83 4 | 94.30 5 | 96.82 21 | 97.94 4 | 96.98 4 | 92.37 11 | 95.40 3 | 90.59 13 | 96.16 3 | 93.71 5 | 92.70 7 | 94.80 15 | 94.77 7 | 96.37 15 | 97.99 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.53 3 | 96.13 3 | 94.82 1 | 96.81 22 | 98.05 3 | 97.42 1 | 93.09 1 | 94.31 8 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 5 | 94.58 11 | 96.86 6 | 98.25 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MCST-MVS | | | 93.81 16 | 94.06 18 | 93.53 17 | 96.79 23 | 96.85 20 | 95.95 13 | 91.69 16 | 92.20 26 | 87.17 32 | 90.83 27 | 93.41 6 | 91.96 14 | 94.49 24 | 93.50 31 | 97.61 1 | 97.12 22 |
|
xxxxxxxxxxxxxcwj | | | 92.95 24 | 91.88 33 | 94.20 8 | 96.75 24 | 97.07 11 | 95.82 18 | 92.60 6 | 93.98 12 | 91.09 8 | 95.89 5 | 71.01 127 | 91.93 15 | 94.40 27 | 93.56 28 | 97.04 2 | 97.27 16 |
|
SF-MVS | | | 94.61 7 | 94.96 9 | 94.20 8 | 96.75 24 | 97.07 11 | 95.82 18 | 92.60 6 | 93.98 12 | 91.09 8 | 95.89 5 | 92.54 12 | 91.93 15 | 94.40 27 | 93.56 28 | 97.04 2 | 97.27 16 |
|
SR-MVS | | | | | | 96.58 26 | | | 90.99 22 | | | | 92.40 13 | | | | | |
|
EPNet | | | 89.60 47 | 89.91 47 | 89.24 54 | 96.45 27 | 93.61 76 | 92.95 47 | 88.03 40 | 85.74 59 | 83.36 52 | 87.29 36 | 83.05 63 | 80.98 96 | 92.22 56 | 91.85 51 | 93.69 136 | 95.58 52 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CSCG | | | 92.76 26 | 93.16 27 | 92.29 29 | 96.30 28 | 97.74 6 | 94.67 33 | 88.98 36 | 92.46 23 | 89.73 20 | 86.67 37 | 92.15 17 | 88.69 43 | 92.26 55 | 92.92 44 | 95.40 58 | 97.89 9 |
|
CDPH-MVS | | | 91.14 39 | 92.01 32 | 90.11 43 | 96.18 29 | 96.18 39 | 94.89 31 | 88.80 38 | 88.76 48 | 77.88 85 | 89.18 30 | 87.71 47 | 87.29 61 | 93.13 43 | 93.31 37 | 95.62 47 | 95.84 46 |
|
DeepC-MVS | | 87.86 3 | 92.26 31 | 91.86 34 | 92.73 25 | 96.18 29 | 96.87 19 | 95.19 28 | 91.76 15 | 92.17 27 | 86.58 35 | 81.79 52 | 85.85 51 | 90.88 29 | 94.57 22 | 94.61 9 | 95.80 36 | 97.18 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 90.29 43 | 88.38 58 | 92.53 26 | 96.10 31 | 95.19 52 | 92.98 46 | 91.40 17 | 89.08 47 | 88.65 23 | 78.35 72 | 81.44 70 | 91.30 28 | 90.81 83 | 90.21 77 | 94.72 90 | 93.59 89 |
|
MSLP-MVS++ | | | 92.02 34 | 91.40 37 | 92.75 24 | 96.01 32 | 95.88 44 | 93.73 40 | 89.00 34 | 89.89 44 | 90.31 15 | 81.28 58 | 88.85 39 | 91.45 23 | 92.88 48 | 94.24 14 | 96.00 24 | 96.76 30 |
|
3Dnovator+ | | 86.06 4 | 91.60 36 | 90.86 42 | 92.47 27 | 96.00 33 | 96.50 35 | 94.70 32 | 87.83 43 | 90.49 39 | 89.92 18 | 74.68 91 | 89.35 36 | 90.66 30 | 94.02 31 | 94.14 16 | 95.67 44 | 96.85 27 |
|
TSAR-MVS + ACMM | | | 92.97 23 | 94.51 13 | 91.16 37 | 95.88 34 | 96.59 30 | 95.09 29 | 90.45 30 | 93.42 17 | 83.01 53 | 94.68 10 | 90.74 26 | 88.74 42 | 94.75 16 | 93.78 23 | 93.82 131 | 97.63 11 |
|
ACMMP |  | | 92.03 33 | 92.16 31 | 91.87 34 | 95.88 34 | 96.55 31 | 94.47 35 | 89.49 33 | 91.71 31 | 85.26 42 | 91.52 24 | 84.48 57 | 90.21 34 | 92.82 49 | 91.63 53 | 95.92 26 | 96.42 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 94.53 9 | 95.22 7 | 93.73 15 | 95.69 36 | 97.03 14 | 95.77 22 | 91.95 12 | 94.41 7 | 91.35 7 | 94.97 8 | 93.34 7 | 91.80 20 | 94.72 18 | 93.99 19 | 95.82 35 | 98.07 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPM-MVS | | | 91.72 35 | 91.48 35 | 92.00 31 | 95.53 37 | 95.75 45 | 95.94 14 | 91.07 21 | 91.20 34 | 85.58 41 | 81.63 56 | 90.74 26 | 88.40 46 | 93.40 39 | 93.75 24 | 95.45 57 | 93.85 83 |
|
TSAR-MVS + MP. | | | 94.48 10 | 94.97 8 | 93.90 13 | 95.53 37 | 97.01 15 | 96.69 5 | 90.71 24 | 94.24 9 | 90.92 11 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 14 | 93.60 26 | 96.51 13 | 97.97 8 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CPTT-MVS | | | 91.39 37 | 90.95 40 | 91.91 32 | 95.06 39 | 95.24 51 | 95.02 30 | 88.98 36 | 91.02 35 | 86.71 34 | 84.89 43 | 88.58 43 | 91.60 22 | 90.82 82 | 89.67 94 | 94.08 118 | 96.45 35 |
|
CANet | | | 91.33 38 | 91.46 36 | 91.18 36 | 95.01 40 | 96.71 24 | 93.77 38 | 87.39 46 | 87.72 51 | 87.26 31 | 81.77 53 | 89.73 32 | 87.32 60 | 94.43 26 | 93.86 21 | 96.31 18 | 96.02 44 |
|
PHI-MVS | | | 92.05 32 | 93.74 21 | 90.08 44 | 94.96 41 | 97.06 13 | 93.11 45 | 87.71 44 | 90.71 37 | 80.78 68 | 92.40 22 | 91.03 22 | 87.68 54 | 94.32 29 | 94.48 12 | 96.21 20 | 96.16 40 |
|
MAR-MVS | | | 88.39 60 | 88.44 57 | 88.33 65 | 94.90 42 | 95.06 54 | 90.51 66 | 83.59 75 | 85.27 62 | 79.07 77 | 77.13 77 | 82.89 64 | 87.70 52 | 92.19 58 | 92.32 48 | 94.23 115 | 94.20 79 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
3Dnovator | | 85.17 5 | 90.48 42 | 89.90 48 | 91.16 37 | 94.88 43 | 95.74 46 | 93.82 37 | 85.36 57 | 89.28 45 | 87.81 28 | 74.34 93 | 87.40 48 | 88.56 44 | 93.07 44 | 93.74 25 | 96.53 12 | 95.71 48 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 29 | 94.42 16 | 90.56 41 | 94.84 44 | 96.92 18 | 91.31 61 | 89.61 32 | 95.16 4 | 84.55 46 | 89.91 29 | 91.45 21 | 90.15 35 | 95.12 10 | 94.81 6 | 92.90 150 | 97.58 12 |
|
QAPM | | | 89.49 49 | 89.58 51 | 89.38 52 | 94.73 45 | 95.94 42 | 92.35 49 | 85.00 60 | 85.69 60 | 80.03 73 | 76.97 79 | 87.81 46 | 87.87 51 | 92.18 59 | 92.10 49 | 96.33 16 | 96.40 38 |
|
MVS_111021_HR | | | 90.56 41 | 91.29 39 | 89.70 49 | 94.71 46 | 95.63 47 | 91.81 57 | 86.38 51 | 87.53 52 | 81.29 63 | 87.96 32 | 85.43 53 | 87.69 53 | 93.90 34 | 92.93 43 | 96.33 16 | 95.69 49 |
|
abl_6 | | | | | 90.66 40 | 94.65 47 | 96.27 37 | 92.21 50 | 86.94 48 | 90.23 41 | 86.38 37 | 85.50 40 | 92.96 9 | 88.37 47 | | | 95.40 58 | 95.46 54 |
|
OpenMVS |  | 82.53 11 | 87.71 66 | 86.84 73 | 88.73 57 | 94.42 48 | 95.06 54 | 91.02 63 | 83.49 78 | 82.50 76 | 82.24 60 | 67.62 131 | 85.48 52 | 85.56 72 | 91.19 70 | 91.30 56 | 95.67 44 | 94.75 66 |
|
PLC |  | 83.76 9 | 88.61 57 | 86.83 74 | 90.70 39 | 94.22 49 | 92.63 93 | 91.50 59 | 87.19 47 | 89.16 46 | 86.87 33 | 75.51 86 | 80.87 72 | 89.98 36 | 90.01 94 | 89.20 105 | 94.41 110 | 90.45 144 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LS3D | | | 85.96 78 | 84.37 93 | 87.81 68 | 94.13 50 | 93.27 81 | 90.26 70 | 89.00 34 | 84.91 66 | 72.84 108 | 71.74 105 | 72.47 121 | 87.45 58 | 89.53 102 | 89.09 107 | 93.20 146 | 89.60 147 |
|
EPNet_dtu | | | 81.98 113 | 83.82 96 | 79.83 146 | 94.10 51 | 85.97 171 | 87.29 113 | 84.08 68 | 80.61 96 | 59.96 178 | 81.62 57 | 77.19 96 | 62.91 194 | 87.21 125 | 86.38 144 | 90.66 176 | 87.77 164 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 90.88 40 | 91.35 38 | 90.34 42 | 93.91 52 | 96.79 23 | 94.49 34 | 86.54 50 | 86.57 55 | 82.85 55 | 81.68 55 | 89.70 33 | 87.57 56 | 94.64 20 | 93.93 20 | 96.67 10 | 96.15 41 |
|
OPM-MVS | | | 87.56 68 | 85.80 84 | 89.62 50 | 93.90 53 | 94.09 70 | 94.12 36 | 88.18 39 | 75.40 129 | 77.30 88 | 76.41 80 | 77.93 92 | 88.79 41 | 92.20 57 | 90.82 64 | 95.40 58 | 93.72 87 |
|
DELS-MVS | | | 89.71 46 | 89.68 50 | 89.74 47 | 93.75 54 | 96.22 38 | 93.76 39 | 85.84 53 | 82.53 74 | 85.05 44 | 78.96 69 | 84.24 58 | 84.25 77 | 94.91 12 | 94.91 4 | 95.78 39 | 96.02 44 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNLPA | | | 88.40 58 | 87.00 72 | 90.03 45 | 93.73 55 | 94.28 66 | 89.56 80 | 85.81 54 | 91.87 29 | 87.55 29 | 69.53 119 | 81.49 69 | 89.23 37 | 89.45 103 | 88.59 115 | 94.31 114 | 93.82 84 |
|
HQP-MVS | | | 89.13 52 | 89.58 51 | 88.60 60 | 93.53 56 | 93.67 74 | 93.29 43 | 87.58 45 | 88.53 49 | 75.50 90 | 87.60 34 | 80.32 75 | 87.07 62 | 90.66 88 | 89.95 85 | 94.62 97 | 96.35 39 |
|
OMC-MVS | | | 90.23 44 | 90.40 43 | 90.03 45 | 93.45 57 | 95.29 50 | 91.89 56 | 86.34 52 | 93.25 20 | 84.94 45 | 81.72 54 | 86.65 50 | 88.90 39 | 91.69 63 | 90.27 76 | 94.65 95 | 93.95 81 |
|
ACMM | | 83.27 10 | 87.68 67 | 86.09 80 | 89.54 51 | 93.26 58 | 92.19 99 | 91.43 60 | 86.74 49 | 86.02 57 | 82.85 55 | 75.63 85 | 75.14 102 | 88.41 45 | 90.68 87 | 89.99 82 | 94.59 98 | 92.97 96 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS_111021_LR | | | 90.14 45 | 90.89 41 | 89.26 53 | 93.23 59 | 94.05 71 | 90.43 67 | 84.65 62 | 90.16 42 | 84.52 47 | 90.14 28 | 83.80 60 | 87.99 50 | 92.50 53 | 90.92 62 | 94.74 88 | 94.70 68 |
|
XVS | | | | | | 93.11 60 | 96.70 25 | 91.91 54 | | | 83.95 48 | | 88.82 40 | | | | 95.79 37 | |
|
X-MVStestdata | | | | | | 93.11 60 | 96.70 25 | 91.91 54 | | | 83.95 48 | | 88.82 40 | | | | 95.79 37 | |
|
PCF-MVS | | 84.60 6 | 88.66 55 | 87.75 68 | 89.73 48 | 93.06 62 | 96.02 40 | 93.22 44 | 90.00 31 | 82.44 77 | 80.02 74 | 77.96 75 | 85.16 54 | 87.36 59 | 88.54 112 | 88.54 116 | 94.72 90 | 95.61 51 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TAPA-MVS | | 84.37 7 | 88.91 54 | 88.93 54 | 88.89 55 | 93.00 63 | 94.85 58 | 92.00 53 | 84.84 61 | 91.68 32 | 80.05 72 | 79.77 64 | 84.56 56 | 88.17 49 | 90.11 93 | 89.00 111 | 95.30 65 | 92.57 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_Blended_VisFu | | | 87.40 70 | 87.80 65 | 86.92 74 | 92.86 64 | 95.40 48 | 88.56 98 | 83.45 82 | 79.55 104 | 82.26 59 | 74.49 92 | 84.03 59 | 79.24 126 | 92.97 47 | 91.53 55 | 95.15 72 | 96.65 33 |
|
UA-Net | | | 86.07 76 | 87.78 66 | 84.06 100 | 92.85 65 | 95.11 53 | 87.73 106 | 84.38 63 | 73.22 149 | 73.18 103 | 79.99 63 | 89.22 37 | 71.47 170 | 93.22 42 | 93.03 40 | 94.76 87 | 90.69 139 |
|
LGP-MVS_train | | | 88.25 62 | 88.55 55 | 87.89 66 | 92.84 66 | 93.66 75 | 93.35 42 | 85.22 59 | 85.77 58 | 74.03 99 | 86.60 38 | 76.29 99 | 86.62 67 | 91.20 69 | 90.58 72 | 95.29 66 | 95.75 47 |
|
TSAR-MVS + COLMAP | | | 88.40 58 | 89.09 53 | 87.60 71 | 92.72 67 | 93.92 73 | 92.21 50 | 85.57 56 | 91.73 30 | 73.72 100 | 91.75 23 | 73.22 119 | 87.64 55 | 91.49 65 | 89.71 93 | 93.73 134 | 91.82 125 |
|
PVSNet_BlendedMVS | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 68 | 94.82 59 | 89.08 87 | 83.81 70 | 84.91 66 | 86.38 37 | 79.14 66 | 78.11 90 | 82.66 84 | 93.05 45 | 91.10 57 | 95.86 31 | 94.86 64 |
|
PVSNet_Blended | | | 88.19 63 | 88.00 63 | 88.42 63 | 92.71 68 | 94.82 59 | 89.08 87 | 83.81 70 | 84.91 66 | 86.38 37 | 79.14 66 | 78.11 90 | 82.66 84 | 93.05 45 | 91.10 57 | 95.86 31 | 94.86 64 |
|
ACMP | | 83.90 8 | 88.32 61 | 88.06 61 | 88.62 59 | 92.18 70 | 93.98 72 | 91.28 62 | 85.24 58 | 86.69 54 | 81.23 64 | 85.62 39 | 75.13 103 | 87.01 64 | 89.83 96 | 89.77 91 | 94.79 84 | 95.43 55 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSDG | | | 83.87 95 | 81.02 118 | 87.19 73 | 92.17 71 | 89.80 130 | 89.15 85 | 85.72 55 | 80.61 96 | 79.24 76 | 66.66 134 | 68.75 137 | 82.69 83 | 87.95 119 | 87.44 125 | 94.19 116 | 85.92 176 |
|
TSAR-MVS + GP. | | | 92.71 28 | 93.91 20 | 91.30 35 | 91.96 72 | 96.00 41 | 93.43 41 | 87.94 41 | 92.53 22 | 86.27 40 | 93.57 15 | 91.94 18 | 91.44 25 | 93.29 41 | 92.89 45 | 96.78 7 | 97.15 21 |
|
ETV-MVS | | | 89.22 51 | 89.76 49 | 88.60 60 | 91.60 73 | 94.61 63 | 89.48 82 | 83.46 81 | 85.20 63 | 81.58 61 | 82.75 47 | 82.59 65 | 88.80 40 | 94.57 22 | 93.28 38 | 96.68 8 | 95.31 56 |
|
EIA-MVS | | | 87.94 65 | 88.05 62 | 87.81 68 | 91.46 74 | 95.00 56 | 88.67 94 | 82.81 86 | 82.53 74 | 80.81 67 | 80.04 62 | 80.20 76 | 87.48 57 | 92.58 52 | 91.61 54 | 95.63 46 | 94.36 73 |
|
canonicalmvs | | | 89.36 50 | 89.92 46 | 88.70 58 | 91.38 75 | 95.92 43 | 91.81 57 | 82.61 94 | 90.37 40 | 82.73 58 | 82.09 50 | 79.28 85 | 88.30 48 | 91.17 71 | 93.59 27 | 95.36 61 | 97.04 25 |
|
CLD-MVS | | | 88.66 55 | 88.52 56 | 88.82 56 | 91.37 76 | 94.22 67 | 92.82 48 | 82.08 97 | 88.27 50 | 85.14 43 | 81.86 51 | 78.53 89 | 85.93 71 | 91.17 71 | 90.61 70 | 95.55 52 | 95.00 60 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CHOSEN 1792x2688 | | | 82.16 111 | 80.91 121 | 83.61 105 | 91.14 77 | 92.01 100 | 89.55 81 | 79.15 132 | 79.87 100 | 70.29 114 | 52.51 196 | 72.56 120 | 81.39 92 | 88.87 110 | 88.17 119 | 90.15 180 | 92.37 119 |
|
IB-MVS | | 79.09 12 | 82.60 108 | 82.19 106 | 83.07 111 | 91.08 78 | 93.55 77 | 80.90 176 | 81.35 102 | 76.56 121 | 80.87 66 | 64.81 148 | 69.97 131 | 68.87 177 | 85.64 151 | 90.06 81 | 95.36 61 | 94.74 67 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IS_MVSNet | | | 86.18 75 | 88.18 60 | 83.85 103 | 91.02 79 | 94.72 61 | 87.48 109 | 82.46 95 | 81.05 91 | 70.28 115 | 76.98 78 | 82.20 68 | 76.65 142 | 93.97 32 | 93.38 36 | 95.18 69 | 94.97 61 |
|
HyFIR lowres test | | | 81.62 121 | 79.45 141 | 84.14 99 | 91.00 80 | 93.38 80 | 88.27 100 | 78.19 141 | 76.28 123 | 70.18 116 | 48.78 200 | 73.69 114 | 83.52 79 | 87.05 128 | 87.83 123 | 93.68 137 | 89.15 150 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 127 | 78.49 146 | 82.85 112 | 90.96 81 | 89.65 136 | 86.20 130 | 83.40 83 | 77.15 119 | 66.54 133 | 62.27 156 | 65.62 147 | 77.89 134 | 85.23 158 | 84.70 165 | 92.11 158 | 84.83 180 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CANet_DTU | | | 85.43 81 | 87.72 69 | 82.76 114 | 90.95 82 | 93.01 86 | 89.99 72 | 75.46 165 | 82.67 73 | 64.91 145 | 83.14 45 | 80.09 77 | 80.68 100 | 92.03 61 | 91.03 59 | 94.57 100 | 92.08 120 |
|
FC-MVSNet-train | | | 85.18 83 | 85.31 87 | 85.03 85 | 90.67 83 | 91.62 104 | 87.66 107 | 83.61 73 | 79.75 102 | 74.37 97 | 78.69 70 | 71.21 125 | 78.91 127 | 91.23 67 | 89.96 84 | 94.96 78 | 94.69 69 |
|
baseline1 | | | 84.54 89 | 84.43 92 | 84.67 88 | 90.62 84 | 91.16 107 | 88.63 96 | 83.75 72 | 79.78 101 | 71.16 111 | 75.14 88 | 74.10 109 | 77.84 135 | 91.56 64 | 90.67 69 | 96.04 23 | 88.58 153 |
|
thres600view7 | | | 82.53 110 | 81.02 118 | 84.28 95 | 90.61 85 | 93.05 84 | 88.57 97 | 82.67 90 | 74.12 140 | 68.56 126 | 65.09 145 | 62.13 165 | 80.40 106 | 91.15 73 | 89.02 110 | 94.88 81 | 92.59 110 |
|
thres400 | | | 82.68 107 | 81.15 116 | 84.47 91 | 90.52 86 | 92.89 88 | 88.95 92 | 82.71 88 | 74.33 137 | 69.22 123 | 65.31 142 | 62.61 160 | 80.63 102 | 90.96 80 | 89.50 98 | 94.79 84 | 92.45 118 |
|
EPP-MVSNet | | | 86.55 72 | 87.76 67 | 85.15 84 | 90.52 86 | 94.41 64 | 87.24 115 | 82.32 96 | 81.79 83 | 73.60 101 | 78.57 71 | 82.41 66 | 82.07 90 | 91.23 67 | 90.39 74 | 95.14 73 | 95.48 53 |
|
ACMH | | 78.52 14 | 81.86 115 | 80.45 126 | 83.51 109 | 90.51 88 | 91.22 106 | 85.62 137 | 84.23 65 | 70.29 166 | 62.21 161 | 69.04 124 | 64.05 152 | 84.48 76 | 87.57 123 | 88.45 118 | 94.01 122 | 92.54 114 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 83.65 99 | 86.81 75 | 79.96 144 | 90.46 89 | 92.71 90 | 84.84 145 | 82.00 98 | 80.93 93 | 62.44 160 | 76.29 81 | 82.32 67 | 65.54 190 | 92.29 54 | 91.66 52 | 94.49 105 | 91.47 134 |
|
thres200 | | | 82.77 106 | 81.25 115 | 84.54 89 | 90.38 90 | 93.05 84 | 89.13 86 | 82.67 90 | 74.40 136 | 69.53 120 | 65.69 140 | 63.03 157 | 80.63 102 | 91.15 73 | 89.42 99 | 94.88 81 | 92.04 122 |
|
MS-PatchMatch | | | 81.79 117 | 81.44 112 | 82.19 121 | 90.35 91 | 89.29 142 | 88.08 104 | 75.36 166 | 77.60 117 | 69.00 124 | 64.37 151 | 78.87 88 | 77.14 141 | 88.03 118 | 85.70 155 | 93.19 147 | 86.24 173 |
|
PatchMatch-RL | | | 83.34 101 | 81.36 113 | 85.65 80 | 90.33 92 | 89.52 138 | 84.36 149 | 81.82 99 | 80.87 95 | 79.29 75 | 74.04 94 | 62.85 159 | 86.05 70 | 88.40 115 | 87.04 132 | 92.04 159 | 86.77 169 |
|
thres100view900 | | | 82.55 109 | 81.01 120 | 84.34 92 | 90.30 93 | 92.27 97 | 89.04 90 | 82.77 87 | 75.14 130 | 69.56 118 | 65.72 138 | 63.13 154 | 79.62 121 | 89.97 95 | 89.26 102 | 94.73 89 | 91.61 132 |
|
tfpn200view9 | | | 82.86 104 | 81.46 111 | 84.48 90 | 90.30 93 | 93.09 83 | 89.05 89 | 82.71 88 | 75.14 130 | 69.56 118 | 65.72 138 | 63.13 154 | 80.38 107 | 91.15 73 | 89.51 97 | 94.91 80 | 92.50 116 |
|
casdiffmvs | | | 87.45 69 | 87.15 71 | 87.79 70 | 90.15 95 | 94.22 67 | 89.96 73 | 83.93 69 | 85.08 64 | 80.91 65 | 75.81 84 | 77.88 93 | 86.08 69 | 91.86 62 | 90.86 63 | 95.74 41 | 94.37 72 |
|
CS-MVS | | | 89.50 48 | 90.33 44 | 88.52 62 | 90.14 96 | 94.40 65 | 91.00 64 | 80.28 115 | 84.74 69 | 82.81 57 | 82.72 48 | 87.23 49 | 90.22 33 | 94.66 19 | 93.48 34 | 96.67 10 | 95.07 58 |
|
MVS_Test | | | 86.93 71 | 87.24 70 | 86.56 75 | 90.10 97 | 93.47 78 | 90.31 68 | 80.12 118 | 83.55 71 | 78.12 81 | 79.58 65 | 79.80 80 | 85.45 73 | 90.17 92 | 90.59 71 | 95.29 66 | 93.53 90 |
|
CS-MVS-test | | | 89.10 53 | 90.19 45 | 87.83 67 | 89.93 98 | 94.65 62 | 90.14 71 | 80.14 117 | 85.28 61 | 80.10 71 | 82.83 46 | 85.02 55 | 90.26 32 | 94.48 25 | 92.98 42 | 96.39 14 | 96.05 43 |
|
ACMH+ | | 79.08 13 | 81.84 116 | 80.06 131 | 83.91 102 | 89.92 99 | 90.62 111 | 86.21 129 | 83.48 80 | 73.88 142 | 65.75 138 | 66.38 135 | 65.30 148 | 84.63 75 | 85.90 148 | 87.25 128 | 93.45 142 | 91.13 137 |
|
Effi-MVS+ | | | 85.33 82 | 85.08 88 | 85.63 81 | 89.69 100 | 93.42 79 | 89.90 74 | 80.31 114 | 79.32 105 | 72.48 110 | 73.52 99 | 74.03 110 | 86.55 68 | 90.99 78 | 89.98 83 | 94.83 83 | 94.27 78 |
|
Anonymous202405211 | | | | 82.75 104 | | 89.58 101 | 92.97 87 | 89.04 90 | 84.13 67 | 78.72 110 | | 57.18 183 | 76.64 98 | 83.13 82 | 89.55 101 | 89.92 86 | 93.38 144 | 94.28 77 |
|
GeoE | | | 84.62 88 | 83.98 95 | 85.35 83 | 89.34 102 | 92.83 89 | 88.34 99 | 78.95 133 | 79.29 106 | 77.16 89 | 68.10 128 | 74.56 106 | 83.40 80 | 89.31 105 | 89.23 104 | 94.92 79 | 94.57 71 |
|
tttt0517 | | | 85.11 85 | 85.81 83 | 84.30 94 | 89.24 103 | 92.68 92 | 87.12 120 | 80.11 119 | 81.98 81 | 74.31 98 | 78.08 74 | 73.57 115 | 79.90 114 | 91.01 77 | 89.58 95 | 95.11 76 | 93.77 85 |
|
DI_MVS_plusplus_trai | | | 86.41 74 | 85.54 86 | 87.42 72 | 89.24 103 | 93.13 82 | 92.16 52 | 82.65 92 | 82.30 78 | 80.75 69 | 68.30 127 | 80.41 74 | 85.01 74 | 90.56 89 | 90.07 80 | 94.70 92 | 94.01 80 |
|
thisisatest0530 | | | 85.15 84 | 85.86 82 | 84.33 93 | 89.19 105 | 92.57 96 | 87.22 116 | 80.11 119 | 82.15 80 | 74.41 96 | 78.15 73 | 73.80 113 | 79.90 114 | 90.99 78 | 89.58 95 | 95.13 74 | 93.75 86 |
|
DCV-MVSNet | | | 85.88 80 | 86.17 78 | 85.54 82 | 89.10 106 | 89.85 128 | 89.34 83 | 80.70 107 | 83.04 72 | 78.08 83 | 76.19 82 | 79.00 86 | 82.42 87 | 89.67 99 | 90.30 75 | 93.63 139 | 95.12 57 |
|
UGNet | | | 85.90 79 | 88.23 59 | 83.18 110 | 88.96 107 | 94.10 69 | 87.52 108 | 83.60 74 | 81.66 84 | 77.90 84 | 80.76 60 | 83.19 62 | 66.70 187 | 91.13 76 | 90.71 68 | 94.39 111 | 96.06 42 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 84.42 93 | 83.02 99 | 86.05 78 | 88.85 108 | 92.70 91 | 88.92 93 | 83.40 83 | 79.99 99 | 78.31 80 | 55.83 187 | 78.92 87 | 83.33 81 | 89.06 107 | 89.76 92 | 93.50 141 | 94.90 62 |
|
MVSTER | | | 86.03 77 | 86.12 79 | 85.93 79 | 88.62 109 | 89.93 126 | 89.33 84 | 79.91 123 | 81.87 82 | 81.35 62 | 81.07 59 | 74.91 104 | 80.66 101 | 92.13 60 | 90.10 79 | 95.68 43 | 92.80 102 |
|
test_part1 | | | 83.23 103 | 80.55 125 | 86.35 76 | 88.60 110 | 90.61 112 | 90.78 65 | 81.13 105 | 70.89 160 | 83.01 53 | 55.72 188 | 74.60 105 | 82.19 88 | 87.79 120 | 89.26 102 | 92.39 155 | 95.01 59 |
|
TDRefinement | | | 79.05 145 | 77.05 164 | 81.39 128 | 88.45 111 | 89.00 149 | 86.92 121 | 82.65 92 | 74.21 139 | 64.41 146 | 59.17 175 | 59.16 181 | 74.52 156 | 85.23 158 | 85.09 160 | 91.37 168 | 87.51 165 |
|
IterMVS-LS | | | 83.28 102 | 82.95 102 | 83.65 104 | 88.39 112 | 88.63 153 | 86.80 124 | 78.64 138 | 76.56 121 | 73.43 102 | 72.52 104 | 75.35 101 | 80.81 98 | 86.43 143 | 88.51 117 | 93.84 130 | 92.66 107 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
diffmvs | | | 86.52 73 | 86.76 76 | 86.23 77 | 88.31 113 | 92.63 93 | 89.58 79 | 81.61 101 | 86.14 56 | 80.26 70 | 79.00 68 | 77.27 95 | 83.58 78 | 88.94 108 | 89.06 108 | 94.05 120 | 94.29 74 |
|
Fast-Effi-MVS+ | | | 83.77 97 | 82.98 100 | 84.69 86 | 87.98 114 | 91.87 101 | 88.10 102 | 77.70 147 | 78.10 114 | 73.04 105 | 69.13 121 | 68.51 138 | 86.66 65 | 90.49 90 | 89.85 88 | 94.67 93 | 92.88 98 |
|
DROMVSNet | | | 83.77 97 | 82.98 100 | 84.69 86 | 87.98 114 | 91.87 101 | 88.10 102 | 77.70 147 | 78.10 114 | 73.04 105 | 69.13 121 | 68.51 138 | 86.66 65 | 90.49 90 | 89.85 88 | 94.67 93 | 92.88 98 |
|
gg-mvs-nofinetune | | | 75.64 182 | 77.26 161 | 73.76 187 | 87.92 116 | 92.20 98 | 87.32 112 | 64.67 205 | 51.92 211 | 35.35 215 | 46.44 203 | 77.05 97 | 71.97 167 | 92.64 51 | 91.02 60 | 95.34 63 | 89.53 148 |
|
RPSCF | | | 83.46 100 | 83.36 98 | 83.59 106 | 87.75 117 | 87.35 162 | 84.82 146 | 79.46 128 | 83.84 70 | 78.12 81 | 82.69 49 | 79.87 78 | 82.60 86 | 82.47 182 | 81.13 185 | 88.78 187 | 86.13 174 |
|
Effi-MVS+-dtu | | | 82.05 112 | 81.76 108 | 82.38 118 | 87.72 118 | 90.56 113 | 86.90 123 | 78.05 143 | 73.85 143 | 66.85 132 | 71.29 107 | 71.90 123 | 82.00 91 | 86.64 138 | 85.48 157 | 92.76 152 | 92.58 111 |
|
CostFormer | | | 80.94 124 | 80.21 128 | 81.79 123 | 87.69 119 | 88.58 154 | 87.47 110 | 70.66 181 | 80.02 98 | 77.88 85 | 73.03 100 | 71.40 124 | 78.24 131 | 79.96 191 | 79.63 187 | 88.82 186 | 88.84 151 |
|
baseline2 | | | 82.80 105 | 82.86 103 | 82.73 115 | 87.68 120 | 90.50 114 | 84.92 144 | 78.93 134 | 78.07 116 | 73.06 104 | 75.08 89 | 69.77 132 | 77.31 138 | 88.90 109 | 86.94 133 | 94.50 103 | 90.74 138 |
|
Vis-MVSNet |  | | 84.38 94 | 86.68 77 | 81.70 124 | 87.65 121 | 94.89 57 | 88.14 101 | 80.90 106 | 74.48 135 | 68.23 127 | 77.53 76 | 80.72 73 | 69.98 174 | 92.68 50 | 91.90 50 | 95.33 64 | 94.58 70 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test-LLR | | | 79.47 140 | 79.84 135 | 79.03 150 | 87.47 122 | 82.40 196 | 81.24 173 | 78.05 143 | 73.72 144 | 62.69 157 | 73.76 96 | 74.42 107 | 73.49 161 | 84.61 167 | 82.99 177 | 91.25 170 | 87.01 167 |
|
test0.0.03 1 | | | 76.03 176 | 78.51 145 | 73.12 191 | 87.47 122 | 85.13 182 | 76.32 194 | 78.05 143 | 73.19 151 | 50.98 200 | 70.64 109 | 69.28 135 | 55.53 198 | 85.33 156 | 84.38 169 | 90.39 178 | 81.63 192 |
|
tpmrst | | | 76.55 169 | 75.99 176 | 77.20 164 | 87.32 124 | 83.05 189 | 82.86 159 | 65.62 200 | 78.61 112 | 67.22 131 | 69.19 120 | 65.71 146 | 75.87 146 | 76.75 201 | 75.33 200 | 84.31 205 | 83.28 186 |
|
baseline | | | 84.89 86 | 86.06 81 | 83.52 108 | 87.25 125 | 89.67 135 | 87.76 105 | 75.68 164 | 84.92 65 | 78.40 79 | 80.10 61 | 80.98 71 | 80.20 110 | 86.69 137 | 87.05 131 | 91.86 162 | 92.99 95 |
|
CDS-MVSNet | | | 81.63 120 | 82.09 107 | 81.09 133 | 87.21 126 | 90.28 117 | 87.46 111 | 80.33 113 | 69.06 170 | 70.66 112 | 71.30 106 | 73.87 111 | 67.99 180 | 89.58 100 | 89.87 87 | 92.87 151 | 90.69 139 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm cat1 | | | 77.78 158 | 75.28 184 | 80.70 136 | 87.14 127 | 85.84 173 | 85.81 133 | 70.40 182 | 77.44 118 | 78.80 78 | 63.72 152 | 64.01 153 | 76.55 143 | 75.60 203 | 75.21 201 | 85.51 203 | 85.12 178 |
|
tpm | | | 76.30 175 | 76.05 175 | 76.59 170 | 86.97 128 | 83.01 190 | 83.83 153 | 67.06 196 | 71.83 154 | 63.87 151 | 69.56 118 | 62.88 158 | 73.41 163 | 79.79 192 | 78.59 191 | 84.41 204 | 86.68 170 |
|
EPMVS | | | 77.53 160 | 78.07 153 | 76.90 168 | 86.89 129 | 84.91 183 | 82.18 168 | 66.64 198 | 81.00 92 | 64.11 149 | 72.75 103 | 69.68 133 | 74.42 158 | 79.36 194 | 78.13 193 | 87.14 195 | 80.68 197 |
|
PatchmatchNet |  | | 78.67 150 | 78.85 144 | 78.46 158 | 86.85 130 | 86.03 170 | 83.77 154 | 68.11 193 | 80.88 94 | 66.19 135 | 72.90 102 | 73.40 117 | 78.06 132 | 79.25 195 | 77.71 195 | 87.75 192 | 81.75 191 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 79.51 139 | 80.15 130 | 78.75 153 | 86.58 131 | 87.70 159 | 83.07 158 | 68.53 190 | 81.31 86 | 66.40 134 | 73.83 95 | 75.38 100 | 79.30 125 | 80.49 189 | 79.39 190 | 88.63 189 | 82.96 188 |
|
USDC | | | 80.69 125 | 79.89 134 | 81.62 126 | 86.48 132 | 89.11 147 | 86.53 126 | 78.86 135 | 81.15 90 | 63.48 153 | 72.98 101 | 59.12 183 | 81.16 94 | 87.10 126 | 85.01 161 | 93.23 145 | 84.77 181 |
|
Fast-Effi-MVS+-dtu | | | 79.95 131 | 80.69 122 | 79.08 149 | 86.36 133 | 89.14 146 | 85.85 132 | 72.28 175 | 72.85 152 | 59.32 181 | 70.43 113 | 68.42 140 | 77.57 136 | 86.14 145 | 86.44 143 | 93.11 148 | 91.39 135 |
|
tfpnnormal | | | 77.46 161 | 74.86 186 | 80.49 140 | 86.34 134 | 88.92 150 | 84.33 150 | 81.26 103 | 61.39 198 | 61.70 168 | 51.99 197 | 53.66 203 | 74.84 153 | 88.63 111 | 87.38 127 | 94.50 103 | 92.08 120 |
|
dps | | | 78.02 155 | 75.94 177 | 80.44 141 | 86.06 135 | 86.62 168 | 82.58 160 | 69.98 185 | 75.14 130 | 77.76 87 | 69.08 123 | 59.93 174 | 78.47 129 | 79.47 193 | 77.96 194 | 87.78 191 | 83.40 185 |
|
IterMVS-SCA-FT | | | 79.41 141 | 80.20 129 | 78.49 157 | 85.88 136 | 86.26 169 | 83.95 152 | 71.94 176 | 73.55 147 | 61.94 164 | 70.48 112 | 70.50 128 | 75.23 148 | 85.81 150 | 84.61 167 | 91.99 161 | 90.18 145 |
|
LTVRE_ROB | | 74.41 16 | 75.78 181 | 74.72 187 | 77.02 167 | 85.88 136 | 89.22 143 | 82.44 163 | 77.17 151 | 50.57 212 | 45.45 206 | 65.44 141 | 52.29 205 | 81.25 93 | 85.50 154 | 87.42 126 | 89.94 182 | 92.62 108 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EG-PatchMatch MVS | | | 76.40 173 | 75.47 182 | 77.48 163 | 85.86 138 | 90.22 119 | 82.45 162 | 73.96 171 | 59.64 203 | 59.60 180 | 52.75 195 | 62.20 164 | 68.44 179 | 88.23 116 | 87.50 124 | 94.55 101 | 87.78 163 |
|
CR-MVSNet | | | 78.71 149 | 78.86 143 | 78.55 156 | 85.85 139 | 85.15 180 | 82.30 165 | 68.23 191 | 74.71 133 | 65.37 141 | 64.39 150 | 69.59 134 | 77.18 139 | 85.10 163 | 84.87 162 | 92.34 157 | 88.21 157 |
|
GA-MVS | | | 79.52 138 | 79.71 138 | 79.30 148 | 85.68 140 | 90.36 116 | 84.55 147 | 78.44 139 | 70.47 165 | 57.87 186 | 68.52 126 | 61.38 166 | 76.21 144 | 89.40 104 | 87.89 120 | 93.04 149 | 89.96 146 |
|
UniMVSNet_ETH3D | | | 79.24 143 | 76.47 169 | 82.48 117 | 85.66 141 | 90.97 108 | 86.08 131 | 81.63 100 | 64.48 190 | 68.94 125 | 54.47 190 | 57.65 186 | 78.83 128 | 85.20 161 | 88.91 112 | 93.72 135 | 93.60 88 |
|
TransMVSNet (Re) | | | 76.57 168 | 75.16 185 | 78.22 160 | 85.60 142 | 87.24 163 | 82.46 161 | 81.23 104 | 59.80 202 | 59.05 184 | 57.07 184 | 59.14 182 | 66.60 188 | 88.09 117 | 86.82 134 | 94.37 112 | 87.95 162 |
|
RPMNet | | | 77.07 163 | 77.63 159 | 76.42 171 | 85.56 143 | 85.15 180 | 81.37 170 | 65.27 202 | 74.71 133 | 60.29 177 | 63.71 153 | 66.59 144 | 73.64 160 | 82.71 180 | 82.12 182 | 92.38 156 | 88.39 155 |
|
MDTV_nov1_ep13 | | | 79.14 144 | 79.49 140 | 78.74 154 | 85.40 144 | 86.89 166 | 84.32 151 | 70.29 183 | 78.85 109 | 69.42 121 | 75.37 87 | 73.29 118 | 75.64 147 | 80.61 188 | 79.48 189 | 87.36 193 | 81.91 190 |
|
UniMVSNet (Re) | | | 81.22 122 | 81.08 117 | 81.39 128 | 85.35 145 | 91.76 103 | 84.93 143 | 82.88 85 | 76.13 124 | 65.02 144 | 64.94 146 | 63.09 156 | 75.17 150 | 87.71 122 | 89.04 109 | 94.97 77 | 94.88 63 |
|
UniMVSNet_NR-MVSNet | | | 81.87 114 | 81.33 114 | 82.50 116 | 85.31 146 | 91.30 105 | 85.70 134 | 84.25 64 | 75.89 125 | 64.21 147 | 66.95 133 | 64.65 150 | 80.22 108 | 87.07 127 | 89.18 106 | 95.27 68 | 94.29 74 |
|
IterMVS | | | 78.79 148 | 79.71 138 | 77.71 161 | 85.26 147 | 85.91 172 | 84.54 148 | 69.84 187 | 73.38 148 | 61.25 172 | 70.53 111 | 70.35 129 | 74.43 157 | 85.21 160 | 83.80 172 | 90.95 174 | 88.77 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
NR-MVSNet | | | 80.25 129 | 79.98 133 | 80.56 139 | 85.20 148 | 90.94 109 | 85.65 136 | 83.58 76 | 75.74 126 | 61.36 171 | 65.30 143 | 56.75 191 | 72.38 166 | 88.46 114 | 88.80 113 | 95.16 71 | 93.87 82 |
|
CMPMVS |  | 56.49 17 | 73.84 190 | 71.73 196 | 76.31 174 | 85.20 148 | 85.67 175 | 75.80 195 | 73.23 172 | 62.26 195 | 65.40 140 | 53.40 194 | 59.70 176 | 71.77 169 | 80.25 190 | 79.56 188 | 86.45 199 | 81.28 193 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TinyColmap | | | 76.73 165 | 73.95 189 | 79.96 144 | 85.16 150 | 85.64 176 | 82.34 164 | 78.19 141 | 70.63 163 | 62.06 163 | 60.69 167 | 49.61 208 | 80.81 98 | 85.12 162 | 83.69 173 | 91.22 172 | 82.27 189 |
|
gm-plane-assit | | | 70.29 195 | 70.65 197 | 69.88 196 | 85.03 151 | 78.50 206 | 58.41 213 | 65.47 201 | 50.39 213 | 40.88 211 | 49.60 199 | 50.11 207 | 75.14 151 | 91.43 66 | 89.78 90 | 94.32 113 | 84.73 182 |
|
FC-MVSNet-test | | | 76.53 170 | 81.62 110 | 70.58 195 | 84.99 152 | 85.73 174 | 74.81 197 | 78.85 136 | 77.00 120 | 39.13 213 | 75.90 83 | 73.50 116 | 54.08 202 | 86.54 140 | 85.99 152 | 91.65 164 | 86.68 170 |
|
DU-MVS | | | 81.20 123 | 80.30 127 | 82.25 119 | 84.98 153 | 90.94 109 | 85.70 134 | 83.58 76 | 75.74 126 | 64.21 147 | 65.30 143 | 59.60 178 | 80.22 108 | 86.89 130 | 89.31 100 | 94.77 86 | 94.29 74 |
|
Baseline_NR-MVSNet | | | 79.84 133 | 78.37 150 | 81.55 127 | 84.98 153 | 86.66 167 | 85.06 141 | 83.49 78 | 75.57 128 | 63.31 154 | 58.22 182 | 60.97 168 | 78.00 133 | 86.89 130 | 87.13 129 | 94.47 106 | 93.15 93 |
|
TranMVSNet+NR-MVSNet | | | 80.52 126 | 79.84 135 | 81.33 130 | 84.92 155 | 90.39 115 | 85.53 139 | 84.22 66 | 74.27 138 | 60.68 176 | 64.93 147 | 59.96 173 | 77.48 137 | 86.75 135 | 89.28 101 | 95.12 75 | 93.29 91 |
|
pm-mvs1 | | | 78.51 153 | 77.75 158 | 79.40 147 | 84.83 156 | 89.30 141 | 83.55 156 | 79.38 129 | 62.64 194 | 63.68 152 | 58.73 180 | 64.68 149 | 70.78 173 | 89.79 97 | 87.84 121 | 94.17 117 | 91.28 136 |
|
testgi | | | 71.92 193 | 74.20 188 | 69.27 197 | 84.58 157 | 83.06 188 | 73.40 200 | 74.39 168 | 64.04 192 | 46.17 205 | 68.90 125 | 57.15 189 | 48.89 206 | 84.07 172 | 83.08 176 | 88.18 190 | 79.09 201 |
|
thisisatest0515 | | | 79.76 135 | 80.59 124 | 78.80 152 | 84.40 158 | 88.91 151 | 79.48 182 | 76.94 154 | 72.29 153 | 67.33 130 | 67.82 130 | 65.99 145 | 70.80 172 | 88.50 113 | 87.84 121 | 93.86 129 | 92.75 105 |
|
FMVSNet3 | | | 84.44 92 | 84.64 91 | 84.21 96 | 84.32 159 | 90.13 121 | 89.85 75 | 80.37 110 | 81.17 87 | 75.50 90 | 69.63 115 | 79.69 82 | 79.62 121 | 89.72 98 | 90.52 73 | 95.59 50 | 91.58 133 |
|
GBi-Net | | | 84.51 90 | 84.80 89 | 84.17 97 | 84.20 160 | 89.95 123 | 89.70 76 | 80.37 110 | 81.17 87 | 75.50 90 | 69.63 115 | 79.69 82 | 79.75 118 | 90.73 84 | 90.72 65 | 95.52 54 | 91.71 127 |
|
test1 | | | 84.51 90 | 84.80 89 | 84.17 97 | 84.20 160 | 89.95 123 | 89.70 76 | 80.37 110 | 81.17 87 | 75.50 90 | 69.63 115 | 79.69 82 | 79.75 118 | 90.73 84 | 90.72 65 | 95.52 54 | 91.71 127 |
|
FMVSNet2 | | | 83.87 95 | 83.73 97 | 84.05 101 | 84.20 160 | 89.95 123 | 89.70 76 | 80.21 116 | 79.17 108 | 74.89 94 | 65.91 136 | 77.49 94 | 79.75 118 | 90.87 81 | 91.00 61 | 95.52 54 | 91.71 127 |
|
WR-MVS | | | 76.63 167 | 78.02 155 | 75.02 181 | 84.14 163 | 89.76 132 | 78.34 189 | 80.64 108 | 69.56 167 | 52.32 195 | 61.26 160 | 61.24 167 | 60.66 195 | 84.45 169 | 87.07 130 | 93.99 123 | 92.77 103 |
|
v8 | | | 79.90 132 | 78.39 149 | 81.66 125 | 83.97 164 | 89.81 129 | 87.16 118 | 77.40 150 | 71.49 155 | 67.71 128 | 61.24 161 | 62.49 161 | 79.83 117 | 85.48 155 | 86.17 147 | 93.89 127 | 92.02 124 |
|
v2v482 | | | 79.84 133 | 78.07 153 | 81.90 122 | 83.75 165 | 90.21 120 | 87.17 117 | 79.85 124 | 70.65 162 | 65.93 137 | 61.93 158 | 60.07 172 | 80.82 97 | 85.25 157 | 86.71 136 | 93.88 128 | 91.70 130 |
|
v10 | | | 79.62 136 | 78.19 151 | 81.28 131 | 83.73 166 | 89.69 134 | 87.27 114 | 76.86 155 | 70.50 164 | 65.46 139 | 60.58 168 | 60.47 170 | 80.44 105 | 86.91 129 | 86.63 139 | 93.93 124 | 92.55 113 |
|
v1144 | | | 79.38 142 | 77.83 156 | 81.18 132 | 83.62 167 | 90.23 118 | 87.15 119 | 78.35 140 | 69.13 169 | 64.02 150 | 60.20 170 | 59.41 179 | 80.14 112 | 86.78 133 | 86.57 140 | 93.81 132 | 92.53 115 |
|
v148 | | | 78.59 151 | 76.84 167 | 80.62 138 | 83.61 168 | 89.16 145 | 83.65 155 | 79.24 131 | 69.38 168 | 69.34 122 | 59.88 172 | 60.41 171 | 75.19 149 | 83.81 173 | 84.63 166 | 92.70 153 | 90.63 141 |
|
SixPastTwentyTwo | | | 76.02 177 | 75.72 179 | 76.36 172 | 83.38 169 | 87.54 160 | 75.50 196 | 76.22 159 | 65.50 187 | 57.05 187 | 70.64 109 | 53.97 202 | 74.54 155 | 80.96 187 | 82.12 182 | 91.44 166 | 89.35 149 |
|
CVMVSNet | | | 76.70 166 | 78.46 147 | 74.64 185 | 83.34 170 | 84.48 184 | 81.83 169 | 74.58 167 | 68.88 171 | 51.23 199 | 69.77 114 | 70.05 130 | 67.49 183 | 84.27 170 | 83.81 171 | 89.38 184 | 87.96 161 |
|
v1192 | | | 78.94 146 | 77.33 160 | 80.82 135 | 83.25 171 | 89.90 127 | 86.91 122 | 77.72 146 | 68.63 173 | 62.61 159 | 59.17 175 | 57.53 187 | 80.62 104 | 86.89 130 | 86.47 142 | 93.79 133 | 92.75 105 |
|
DTE-MVSNet | | | 75.14 184 | 75.44 183 | 74.80 183 | 83.18 172 | 87.19 164 | 78.25 191 | 80.11 119 | 66.05 182 | 48.31 202 | 60.88 165 | 54.67 198 | 64.54 191 | 82.57 181 | 86.17 147 | 94.43 109 | 90.53 143 |
|
PEN-MVS | | | 76.02 177 | 76.07 173 | 75.95 176 | 83.17 173 | 87.97 157 | 79.65 180 | 80.07 122 | 66.57 180 | 51.45 197 | 60.94 164 | 55.47 196 | 66.81 186 | 82.72 179 | 86.80 135 | 94.59 98 | 92.03 123 |
|
TAMVS | | | 76.42 171 | 77.16 163 | 75.56 177 | 83.05 174 | 85.55 177 | 80.58 178 | 71.43 178 | 65.40 189 | 61.04 175 | 67.27 132 | 69.22 136 | 67.99 180 | 84.88 165 | 84.78 164 | 89.28 185 | 83.01 187 |
|
pmmvs4 | | | 79.99 130 | 78.08 152 | 82.22 120 | 83.04 175 | 87.16 165 | 84.95 142 | 78.80 137 | 78.64 111 | 74.53 95 | 64.61 149 | 59.41 179 | 79.45 123 | 84.13 171 | 84.54 168 | 92.53 154 | 88.08 159 |
|
v144192 | | | 78.81 147 | 77.22 162 | 80.67 137 | 82.95 176 | 89.79 131 | 86.40 127 | 77.42 149 | 68.26 175 | 63.13 155 | 59.50 173 | 58.13 184 | 80.08 113 | 85.93 147 | 86.08 149 | 94.06 119 | 92.83 101 |
|
v1921920 | | | 78.57 152 | 76.99 165 | 80.41 142 | 82.93 177 | 89.63 137 | 86.38 128 | 77.14 152 | 68.31 174 | 61.80 167 | 58.89 179 | 56.79 190 | 80.19 111 | 86.50 142 | 86.05 151 | 94.02 121 | 92.76 104 |
|
CHOSEN 280x420 | | | 80.28 128 | 81.66 109 | 78.67 155 | 82.92 178 | 79.24 205 | 85.36 140 | 66.79 197 | 78.11 113 | 70.32 113 | 75.03 90 | 79.87 78 | 81.09 95 | 89.07 106 | 83.16 175 | 85.54 202 | 87.17 166 |
|
WR-MVS_H | | | 75.84 180 | 76.93 166 | 74.57 186 | 82.86 179 | 89.50 139 | 78.34 189 | 79.36 130 | 66.90 178 | 52.51 194 | 60.20 170 | 59.71 175 | 59.73 196 | 83.61 174 | 85.77 154 | 94.65 95 | 92.84 100 |
|
v1240 | | | 78.15 154 | 76.53 168 | 80.04 143 | 82.85 180 | 89.48 140 | 85.61 138 | 76.77 156 | 67.05 177 | 61.18 174 | 58.37 181 | 56.16 194 | 79.89 116 | 86.11 146 | 86.08 149 | 93.92 125 | 92.47 117 |
|
V42 | | | 79.59 137 | 78.43 148 | 80.94 134 | 82.79 181 | 89.71 133 | 86.66 125 | 76.73 157 | 71.38 156 | 67.42 129 | 61.01 163 | 62.30 163 | 78.39 130 | 85.56 153 | 86.48 141 | 93.65 138 | 92.60 109 |
|
CP-MVSNet | | | 76.36 174 | 76.41 170 | 76.32 173 | 82.73 182 | 88.64 152 | 79.39 183 | 79.62 125 | 67.21 176 | 53.70 191 | 60.72 166 | 55.22 197 | 67.91 182 | 83.52 175 | 86.34 145 | 94.55 101 | 93.19 92 |
|
PS-CasMVS | | | 75.90 179 | 75.86 178 | 75.96 175 | 82.59 183 | 88.46 155 | 79.23 186 | 79.56 127 | 66.00 183 | 52.77 193 | 59.48 174 | 54.35 201 | 67.14 185 | 83.37 176 | 86.23 146 | 94.47 106 | 93.10 94 |
|
test20.03 | | | 68.31 198 | 70.05 199 | 66.28 202 | 82.41 184 | 80.84 200 | 67.35 207 | 76.11 161 | 58.44 205 | 40.80 212 | 53.77 193 | 54.54 199 | 42.28 209 | 83.07 177 | 81.96 184 | 88.73 188 | 77.76 203 |
|
FMVSNet1 | | | 81.64 119 | 80.61 123 | 82.84 113 | 82.36 185 | 89.20 144 | 88.67 94 | 79.58 126 | 70.79 161 | 72.63 109 | 58.95 178 | 72.26 122 | 79.34 124 | 90.73 84 | 90.72 65 | 94.47 106 | 91.62 131 |
|
pmmvs6 | | | 74.83 185 | 72.89 192 | 77.09 165 | 82.11 186 | 87.50 161 | 80.88 177 | 76.97 153 | 52.79 210 | 61.91 166 | 46.66 202 | 60.49 169 | 69.28 176 | 86.74 136 | 85.46 158 | 91.39 167 | 90.56 142 |
|
pmmvs5 | | | 76.93 164 | 76.33 171 | 77.62 162 | 81.97 187 | 88.40 156 | 81.32 172 | 74.35 169 | 65.42 188 | 61.42 170 | 63.07 154 | 57.95 185 | 73.23 164 | 85.60 152 | 85.35 159 | 93.41 143 | 88.55 154 |
|
v7n | | | 77.22 162 | 76.23 172 | 78.38 159 | 81.89 188 | 89.10 148 | 82.24 167 | 76.36 158 | 65.96 184 | 61.21 173 | 56.56 185 | 55.79 195 | 75.07 152 | 86.55 139 | 86.68 137 | 93.52 140 | 92.95 97 |
|
our_test_3 | | | | | | 81.81 189 | 83.96 187 | 76.61 193 | | | | | | | | | | |
|
Anonymous20231206 | | | 70.80 194 | 70.59 198 | 71.04 194 | 81.60 190 | 82.49 195 | 74.64 198 | 75.87 163 | 64.17 191 | 49.27 201 | 44.85 206 | 53.59 204 | 54.68 201 | 83.07 177 | 82.34 181 | 90.17 179 | 83.65 184 |
|
ADS-MVSNet | | | 74.53 187 | 75.69 180 | 73.17 190 | 81.57 191 | 80.71 201 | 79.27 185 | 63.03 207 | 79.27 107 | 59.94 179 | 67.86 129 | 68.32 142 | 71.08 171 | 77.33 199 | 76.83 197 | 84.12 207 | 79.53 198 |
|
pmnet_mix02 | | | 71.95 192 | 71.83 195 | 72.10 192 | 81.40 192 | 80.63 202 | 73.78 199 | 72.85 174 | 70.90 159 | 54.89 189 | 62.17 157 | 57.42 188 | 62.92 193 | 76.80 200 | 73.98 204 | 86.74 198 | 80.87 196 |
|
test-mter | | | 77.79 157 | 80.02 132 | 75.18 180 | 81.18 193 | 82.85 191 | 80.52 179 | 62.03 209 | 73.62 146 | 62.16 162 | 73.55 98 | 73.83 112 | 73.81 159 | 84.67 166 | 83.34 174 | 91.37 168 | 88.31 156 |
|
TESTMET0.1,1 | | | 77.78 158 | 79.84 135 | 75.38 179 | 80.86 194 | 82.40 196 | 81.24 173 | 62.72 208 | 73.72 144 | 62.69 157 | 73.76 96 | 74.42 107 | 73.49 161 | 84.61 167 | 82.99 177 | 91.25 170 | 87.01 167 |
|
MDTV_nov1_ep13_2view | | | 73.21 191 | 72.91 191 | 73.56 189 | 80.01 195 | 84.28 186 | 78.62 187 | 66.43 199 | 68.64 172 | 59.12 182 | 60.39 169 | 59.69 177 | 69.81 175 | 78.82 197 | 77.43 196 | 87.36 193 | 81.11 195 |
|
FPMVS | | | 63.63 203 | 60.08 208 | 67.78 199 | 80.01 195 | 71.50 211 | 72.88 202 | 69.41 189 | 61.82 197 | 53.11 192 | 45.12 205 | 42.11 215 | 50.86 204 | 66.69 208 | 63.84 209 | 80.41 209 | 69.46 209 |
|
anonymousdsp | | | 77.94 156 | 79.00 142 | 76.71 169 | 79.03 197 | 87.83 158 | 79.58 181 | 72.87 173 | 65.80 185 | 58.86 185 | 65.82 137 | 62.48 162 | 75.99 145 | 86.77 134 | 88.66 114 | 93.92 125 | 95.68 50 |
|
N_pmnet | | | 66.85 199 | 66.63 200 | 67.11 201 | 78.73 198 | 74.66 209 | 70.53 204 | 71.07 179 | 66.46 181 | 46.54 204 | 51.68 198 | 51.91 206 | 55.48 199 | 74.68 204 | 72.38 205 | 80.29 210 | 74.65 206 |
|
PMMVS | | | 81.65 118 | 84.05 94 | 78.86 151 | 78.56 199 | 82.63 193 | 83.10 157 | 67.22 195 | 81.39 85 | 70.11 117 | 84.91 42 | 79.74 81 | 82.12 89 | 87.31 124 | 85.70 155 | 92.03 160 | 86.67 172 |
|
PatchT | | | 76.42 171 | 77.81 157 | 74.80 183 | 78.46 200 | 84.30 185 | 71.82 203 | 65.03 204 | 73.89 141 | 65.37 141 | 61.58 159 | 66.70 143 | 77.18 139 | 85.10 163 | 84.87 162 | 90.94 175 | 88.21 157 |
|
MVS-HIRNet | | | 68.83 197 | 66.39 201 | 71.68 193 | 77.58 201 | 75.52 208 | 66.45 208 | 65.05 203 | 62.16 196 | 62.84 156 | 44.76 207 | 56.60 193 | 71.96 168 | 78.04 198 | 75.06 202 | 86.18 201 | 72.56 207 |
|
pmmvs-eth3d | | | 74.32 188 | 71.96 194 | 77.08 166 | 77.33 202 | 82.71 192 | 78.41 188 | 76.02 162 | 66.65 179 | 65.98 136 | 54.23 192 | 49.02 210 | 73.14 165 | 82.37 183 | 82.69 179 | 91.61 165 | 86.05 175 |
|
new-patchmatchnet | | | 63.80 202 | 63.31 204 | 64.37 203 | 76.49 203 | 75.99 207 | 63.73 210 | 70.99 180 | 57.27 206 | 43.08 208 | 45.86 204 | 43.80 212 | 45.13 208 | 73.20 205 | 70.68 208 | 86.80 197 | 76.34 205 |
|
FMVSNet5 | | | 75.50 183 | 76.07 173 | 74.83 182 | 76.16 204 | 81.19 199 | 81.34 171 | 70.21 184 | 73.20 150 | 61.59 169 | 58.97 177 | 68.33 141 | 68.50 178 | 85.87 149 | 85.85 153 | 91.18 173 | 79.11 200 |
|
PM-MVS | | | 74.17 189 | 73.10 190 | 75.41 178 | 76.07 205 | 82.53 194 | 77.56 192 | 71.69 177 | 71.04 157 | 61.92 165 | 61.23 162 | 47.30 211 | 74.82 154 | 81.78 185 | 79.80 186 | 90.42 177 | 88.05 160 |
|
MIMVSNet | | | 74.69 186 | 75.60 181 | 73.62 188 | 76.02 206 | 85.31 179 | 81.21 175 | 67.43 194 | 71.02 158 | 59.07 183 | 54.48 189 | 64.07 151 | 66.14 189 | 86.52 141 | 86.64 138 | 91.83 163 | 81.17 194 |
|
EU-MVSNet | | | 69.98 196 | 72.30 193 | 67.28 200 | 75.67 207 | 79.39 204 | 73.12 201 | 69.94 186 | 63.59 193 | 42.80 209 | 62.93 155 | 56.71 192 | 55.07 200 | 79.13 196 | 78.55 192 | 87.06 196 | 85.82 177 |
|
ET-MVSNet_ETH3D | | | 84.65 87 | 85.58 85 | 83.56 107 | 74.99 208 | 92.62 95 | 90.29 69 | 80.38 109 | 82.16 79 | 73.01 107 | 83.41 44 | 71.10 126 | 87.05 63 | 87.77 121 | 90.17 78 | 95.62 47 | 91.82 125 |
|
PMVS |  | 50.48 18 | 55.81 207 | 51.93 209 | 60.33 206 | 72.90 209 | 49.34 215 | 48.78 214 | 69.51 188 | 43.49 215 | 54.25 190 | 36.26 212 | 41.04 217 | 39.71 211 | 65.07 209 | 60.70 210 | 76.85 212 | 67.58 210 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ambc | | | | 61.92 205 | | 70.98 210 | 73.54 210 | 63.64 211 | | 60.06 200 | 52.23 196 | 38.44 210 | 19.17 221 | 57.12 197 | 82.33 184 | 75.03 203 | 83.21 208 | 84.89 179 |
|
pmmvs3 | | | 61.89 204 | 61.74 206 | 62.06 205 | 64.30 211 | 70.83 212 | 64.22 209 | 52.14 213 | 48.78 214 | 44.47 207 | 41.67 209 | 41.70 216 | 63.03 192 | 76.06 202 | 76.02 198 | 84.18 206 | 77.14 204 |
|
MDA-MVSNet-bldmvs | | | 66.22 200 | 64.49 203 | 68.24 198 | 61.67 212 | 82.11 198 | 70.07 205 | 76.16 160 | 59.14 204 | 47.94 203 | 54.35 191 | 35.82 218 | 67.33 184 | 64.94 210 | 75.68 199 | 86.30 200 | 79.36 199 |
|
new_pmnet | | | 59.28 205 | 61.47 207 | 56.73 207 | 61.66 213 | 68.29 213 | 59.57 212 | 54.91 210 | 60.83 199 | 34.38 216 | 44.66 208 | 43.65 213 | 49.90 205 | 71.66 206 | 71.56 207 | 79.94 211 | 69.67 208 |
|
Gipuma |  | | 49.17 208 | 47.05 211 | 51.65 208 | 59.67 214 | 48.39 216 | 41.98 217 | 63.47 206 | 55.64 209 | 33.33 217 | 14.90 215 | 13.78 222 | 41.34 210 | 69.31 207 | 72.30 206 | 70.11 213 | 55.00 214 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 65.00 201 | 66.24 202 | 63.55 204 | 58.41 215 | 80.01 203 | 69.00 206 | 74.03 170 | 55.81 208 | 41.88 210 | 36.81 211 | 49.48 209 | 47.89 207 | 81.32 186 | 82.40 180 | 90.08 181 | 77.88 202 |
|
EMVS | | | 30.49 213 | 25.44 215 | 36.39 211 | 51.47 216 | 29.89 220 | 20.17 221 | 54.00 212 | 26.49 217 | 12.02 221 | 13.94 218 | 8.84 223 | 34.37 213 | 25.04 217 | 34.37 216 | 46.29 219 | 39.53 217 |
|
E-PMN | | | 31.40 211 | 26.80 214 | 36.78 210 | 51.39 217 | 29.96 219 | 20.20 220 | 54.17 211 | 25.93 218 | 12.75 220 | 14.73 216 | 8.58 224 | 34.10 214 | 27.36 216 | 37.83 215 | 48.07 218 | 43.18 216 |
|
PMMVS2 | | | 41.68 210 | 44.74 212 | 38.10 209 | 46.97 218 | 52.32 214 | 40.63 218 | 48.08 214 | 35.51 216 | 7.36 222 | 26.86 214 | 24.64 220 | 16.72 216 | 55.24 213 | 59.03 211 | 68.85 214 | 59.59 213 |
|
tmp_tt | | | | | 32.73 213 | 43.96 219 | 21.15 221 | 26.71 219 | 8.99 218 | 65.67 186 | 51.39 198 | 56.01 186 | 42.64 214 | 11.76 217 | 56.60 212 | 50.81 213 | 53.55 217 | |
|
MVE |  | 30.17 19 | 30.88 212 | 33.52 213 | 27.80 215 | 23.78 220 | 39.16 218 | 18.69 222 | 46.90 215 | 21.88 219 | 15.39 219 | 14.37 217 | 7.31 225 | 24.41 215 | 41.63 215 | 56.22 212 | 37.64 220 | 54.07 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 41.78 209 | 48.10 210 | 34.42 212 | 10.74 221 | 19.78 222 | 44.64 216 | 17.73 217 | 59.83 201 | 38.67 214 | 35.82 213 | 54.41 200 | 34.94 212 | 62.87 211 | 43.13 214 | 59.81 215 | 60.82 212 |
|
GG-mvs-BLEND | | | 57.56 206 | 82.61 105 | 28.34 214 | 0.22 222 | 90.10 122 | 79.37 184 | 0.14 220 | 79.56 103 | 0.40 223 | 71.25 108 | 83.40 61 | 0.30 220 | 86.27 144 | 83.87 170 | 89.59 183 | 83.83 183 |
|
testmvs | | | 1.03 214 | 1.63 216 | 0.34 216 | 0.09 223 | 0.35 223 | 0.61 224 | 0.16 219 | 1.49 220 | 0.10 224 | 3.15 219 | 0.15 226 | 0.86 219 | 1.32 218 | 1.18 217 | 0.20 221 | 3.76 219 |
|
test123 | | | 0.87 215 | 1.40 217 | 0.25 217 | 0.03 224 | 0.25 224 | 0.35 225 | 0.08 221 | 1.21 221 | 0.05 225 | 2.84 220 | 0.03 227 | 0.89 218 | 0.43 219 | 1.16 218 | 0.13 222 | 3.87 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 56.08 188 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 92.16 16 | | | | | |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 22 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 223 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 53 | | | | | | | | |
|
Patchmtry | | | | | | | 85.54 178 | 82.30 165 | 68.23 191 | | 65.37 141 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.31 217 | 48.03 215 | 26.08 216 | 56.42 207 | 25.77 218 | 47.51 201 | 31.31 219 | 51.30 203 | 48.49 214 | | 53.61 216 | 61.52 211 |
|