| HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 32 | 96.14 9 | 92.51 8 | 93.87 14 | 90.76 11 | 93.45 18 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 54 | 97.48 14 |
|
| DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 3 | 98.99 1 |
|
| SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 11 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 13 | 94.50 7 | 90.35 13 | 93.46 17 | 92.72 11 | 91.89 17 | 95.89 4 | 95.22 1 | 95.88 31 | 98.10 6 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MP-MVS |  | | 93.35 20 | 93.59 24 | 93.08 22 | 97.39 4 | 96.82 22 | 95.38 24 | 90.71 23 | 90.82 35 | 88.07 26 | 92.83 21 | 90.29 29 | 91.32 27 | 94.03 30 | 93.19 41 | 95.61 52 | 97.16 20 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| NCCC | | | 93.69 19 | 93.66 23 | 93.72 15 | 97.37 5 | 96.66 29 | 95.93 17 | 92.50 9 | 93.40 18 | 88.35 24 | 87.36 34 | 92.33 14 | 92.18 13 | 94.89 15 | 94.09 18 | 96.00 27 | 96.91 28 |
|
| CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 10 | 97.29 6 | 97.11 11 | 96.00 11 | 92.43 10 | 93.45 15 | 89.85 18 | 90.92 25 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 25 | 97.42 16 |
|
| HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 13 | 97.25 7 | 96.85 20 | 95.81 19 | 90.94 22 | 94.12 11 | 90.29 15 | 94.09 14 | 89.98 31 | 92.52 11 | 93.94 33 | 93.49 33 | 95.87 33 | 97.10 23 |
|
| APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 8 | 96.99 16 | 96.53 8 | 92.68 6 | 92.45 23 | 89.96 16 | 94.53 11 | 91.63 21 | 92.89 6 | 94.58 22 | 93.82 23 | 96.31 18 | 97.26 18 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 21 | 97.13 9 | 96.51 33 | 95.35 25 | 91.19 19 | 93.14 20 | 88.14 25 | 85.26 40 | 89.49 35 | 91.45 22 | 95.17 10 | 95.07 2 | 95.85 36 | 96.48 36 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APDe-MVS |  | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 10 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 9 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 9 | 98.17 5 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 93.72 18 | 93.94 20 | 93.48 17 | 97.07 11 | 96.93 17 | 95.78 20 | 90.66 25 | 93.88 13 | 89.24 20 | 93.53 16 | 89.08 38 | 92.24 12 | 93.89 35 | 93.50 31 | 95.88 31 | 96.73 32 |
|
| mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 45 | | | | | |
|
| ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 19 | 97.03 13 | 97.31 10 | 95.96 13 | 91.30 18 | 93.41 17 | 88.55 23 | 93.00 19 | 90.33 28 | 91.43 25 | 95.53 7 | 94.41 14 | 95.53 58 | 97.47 15 |
|
| PGM-MVS | | | 92.76 25 | 93.03 28 | 92.45 27 | 97.03 13 | 96.67 28 | 95.73 22 | 87.92 41 | 90.15 43 | 86.53 35 | 92.97 20 | 88.33 44 | 91.69 20 | 93.62 41 | 93.03 42 | 95.83 37 | 96.41 39 |
|
| SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 18 | 96.97 15 | 97.36 9 | 96.12 10 | 91.78 14 | 92.05 27 | 87.34 29 | 94.42 12 | 90.87 25 | 91.87 18 | 95.47 8 | 94.59 11 | 96.21 23 | 97.77 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 16 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 4 | 98.46 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| X-MVS | | | 92.36 29 | 92.75 30 | 91.90 32 | 96.89 17 | 96.70 25 | 95.25 26 | 90.48 28 | 91.50 32 | 83.95 49 | 88.20 31 | 88.82 40 | 89.11 38 | 93.75 38 | 93.43 34 | 95.75 43 | 96.83 30 |
|
| train_agg | | | 92.87 24 | 93.53 25 | 92.09 29 | 96.88 18 | 95.38 52 | 95.94 15 | 90.59 27 | 90.65 37 | 83.65 52 | 94.31 13 | 91.87 20 | 90.30 32 | 93.38 43 | 92.42 52 | 95.17 77 | 96.73 32 |
|
| SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 19 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 3 |
|
| CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 20 | 96.84 19 | 96.51 33 | 95.52 23 | 90.61 26 | 92.37 24 | 88.88 21 | 90.91 26 | 89.52 34 | 91.91 16 | 93.64 40 | 92.78 47 | 95.69 45 | 97.09 24 |
|
| MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 21 | 97.94 5 | 96.98 5 | 92.37 11 | 95.40 4 | 90.59 12 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 17 | 94.77 8 | 96.37 14 | 97.99 8 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 22 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 6 | 98.25 4 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 16 | 96.79 23 | 96.85 20 | 95.95 14 | 91.69 16 | 92.20 25 | 87.17 31 | 90.83 27 | 93.41 7 | 91.96 14 | 94.49 25 | 93.50 31 | 97.61 1 | 97.12 22 |
|
| SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 24 | 97.07 12 | 95.82 18 | 92.60 7 | 93.98 12 | 91.09 8 | 95.89 6 | 92.54 12 | 91.93 15 | 94.40 27 | 93.56 30 | 97.04 2 | 97.27 17 |
|
| SR-MVS | | | | | | 96.58 25 | | | 90.99 21 | | | | 92.40 13 | | | | | |
|
| EPNet | | | 89.60 49 | 89.91 48 | 89.24 54 | 96.45 26 | 93.61 82 | 92.95 47 | 88.03 39 | 85.74 61 | 83.36 53 | 87.29 35 | 83.05 64 | 80.98 101 | 92.22 60 | 91.85 57 | 93.69 143 | 95.58 55 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TPM-MVS | | | | | | 96.31 27 | 96.02 38 | 94.89 30 | | | 86.52 36 | 87.18 36 | 92.17 16 | 86.76 65 | | | 95.56 55 | 93.85 84 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| CSCG | | | 92.76 25 | 93.16 27 | 92.29 28 | 96.30 28 | 97.74 7 | 94.67 33 | 88.98 35 | 92.46 22 | 89.73 19 | 86.67 37 | 92.15 18 | 88.69 43 | 92.26 59 | 92.92 45 | 95.40 63 | 97.89 10 |
|
| CDPH-MVS | | | 91.14 38 | 92.01 32 | 90.11 41 | 96.18 29 | 96.18 37 | 94.89 30 | 88.80 37 | 88.76 48 | 77.88 87 | 89.18 30 | 87.71 47 | 87.29 61 | 93.13 46 | 93.31 38 | 95.62 50 | 95.84 48 |
|
| DeepC-MVS | | 87.86 3 | 92.26 30 | 91.86 33 | 92.73 24 | 96.18 29 | 96.87 19 | 95.19 27 | 91.76 15 | 92.17 26 | 86.58 34 | 81.79 54 | 85.85 51 | 90.88 30 | 94.57 23 | 94.61 10 | 95.80 39 | 97.18 19 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 90.29 43 | 88.38 60 | 92.53 25 | 96.10 31 | 95.19 57 | 92.98 46 | 91.40 17 | 89.08 47 | 88.65 22 | 78.35 74 | 81.44 71 | 91.30 28 | 90.81 90 | 90.21 83 | 94.72 98 | 93.59 91 |
|
| MSLP-MVS++ | | | 92.02 33 | 91.40 36 | 92.75 23 | 96.01 32 | 95.88 44 | 93.73 40 | 89.00 33 | 89.89 44 | 90.31 14 | 81.28 60 | 88.85 39 | 91.45 22 | 92.88 51 | 94.24 15 | 96.00 27 | 96.76 31 |
|
| 3Dnovator+ | | 86.06 4 | 91.60 35 | 90.86 42 | 92.47 26 | 96.00 33 | 96.50 35 | 94.70 32 | 87.83 42 | 90.49 38 | 89.92 17 | 74.68 94 | 89.35 36 | 90.66 31 | 94.02 31 | 94.14 17 | 95.67 47 | 96.85 29 |
|
| TSAR-MVS + ACMM | | | 92.97 23 | 94.51 14 | 91.16 36 | 95.88 34 | 96.59 30 | 95.09 28 | 90.45 29 | 93.42 16 | 83.01 55 | 94.68 10 | 90.74 26 | 88.74 42 | 94.75 19 | 93.78 24 | 93.82 138 | 97.63 12 |
|
| ACMMP |  | | 92.03 32 | 92.16 31 | 91.87 33 | 95.88 34 | 96.55 31 | 94.47 35 | 89.49 32 | 91.71 30 | 85.26 42 | 91.52 24 | 84.48 57 | 90.21 34 | 92.82 52 | 91.63 59 | 95.92 30 | 96.42 38 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 14 | 95.69 36 | 97.03 14 | 95.77 21 | 91.95 12 | 94.41 8 | 91.35 7 | 94.97 8 | 93.34 8 | 91.80 19 | 94.72 20 | 93.99 20 | 95.82 38 | 98.07 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DPM-MVS | | | 91.72 34 | 91.48 34 | 92.00 30 | 95.53 37 | 95.75 47 | 95.94 15 | 91.07 20 | 91.20 33 | 85.58 40 | 81.63 58 | 90.74 26 | 88.40 46 | 93.40 42 | 93.75 25 | 95.45 62 | 93.85 84 |
|
| TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 12 | 95.53 37 | 97.01 15 | 96.69 6 | 90.71 23 | 94.24 10 | 90.92 10 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 16 | 93.60 27 | 96.51 13 | 97.97 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CPTT-MVS | | | 91.39 36 | 90.95 40 | 91.91 31 | 95.06 39 | 95.24 56 | 95.02 29 | 88.98 35 | 91.02 34 | 86.71 33 | 84.89 42 | 88.58 43 | 91.60 21 | 90.82 89 | 89.67 99 | 94.08 125 | 96.45 37 |
|
| CANet | | | 91.33 37 | 91.46 35 | 91.18 35 | 95.01 40 | 96.71 24 | 93.77 38 | 87.39 45 | 87.72 52 | 87.26 30 | 81.77 55 | 89.73 32 | 87.32 60 | 94.43 26 | 93.86 22 | 96.31 18 | 96.02 46 |
|
| PHI-MVS | | | 92.05 31 | 93.74 22 | 90.08 42 | 94.96 41 | 97.06 13 | 93.11 45 | 87.71 43 | 90.71 36 | 80.78 71 | 92.40 22 | 91.03 23 | 87.68 54 | 94.32 28 | 94.48 13 | 96.21 23 | 96.16 43 |
|
| MAR-MVS | | | 88.39 61 | 88.44 59 | 88.33 67 | 94.90 42 | 95.06 61 | 90.51 68 | 83.59 79 | 85.27 63 | 79.07 79 | 77.13 79 | 82.89 65 | 87.70 52 | 92.19 62 | 92.32 53 | 94.23 122 | 94.20 80 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 3Dnovator | | 85.17 5 | 90.48 41 | 89.90 49 | 91.16 36 | 94.88 43 | 95.74 48 | 93.82 37 | 85.36 55 | 89.28 45 | 87.81 27 | 74.34 97 | 87.40 48 | 88.56 44 | 93.07 47 | 93.74 26 | 96.53 12 | 95.71 50 |
|
| DeepPCF-MVS | | 88.51 2 | 92.64 28 | 94.42 17 | 90.56 39 | 94.84 44 | 96.92 18 | 91.31 63 | 89.61 31 | 95.16 5 | 84.55 47 | 89.91 29 | 91.45 22 | 90.15 35 | 95.12 11 | 94.81 7 | 92.90 157 | 97.58 13 |
|
| QAPM | | | 89.49 50 | 89.58 53 | 89.38 52 | 94.73 45 | 95.94 41 | 92.35 49 | 85.00 58 | 85.69 62 | 80.03 75 | 76.97 81 | 87.81 46 | 87.87 51 | 92.18 63 | 92.10 55 | 96.33 16 | 96.40 41 |
|
| MVS_111021_HR | | | 90.56 40 | 91.29 38 | 89.70 48 | 94.71 46 | 95.63 49 | 91.81 57 | 86.38 49 | 87.53 53 | 81.29 66 | 87.96 32 | 85.43 53 | 87.69 53 | 93.90 34 | 92.93 44 | 96.33 16 | 95.69 51 |
|
| OpenMVS |  | 82.53 11 | 87.71 69 | 86.84 76 | 88.73 58 | 94.42 47 | 95.06 61 | 91.02 66 | 83.49 82 | 82.50 81 | 82.24 62 | 67.62 135 | 85.48 52 | 85.56 73 | 91.19 74 | 91.30 62 | 95.67 47 | 94.75 66 |
|
| PLC |  | 83.76 9 | 88.61 58 | 86.83 77 | 90.70 38 | 94.22 48 | 92.63 100 | 91.50 60 | 87.19 46 | 89.16 46 | 86.87 32 | 75.51 89 | 80.87 73 | 89.98 36 | 90.01 100 | 89.20 111 | 94.41 117 | 90.45 150 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LS3D | | | 85.96 81 | 84.37 98 | 87.81 69 | 94.13 49 | 93.27 88 | 90.26 72 | 89.00 33 | 84.91 68 | 72.84 112 | 71.74 110 | 72.47 125 | 87.45 58 | 89.53 108 | 89.09 113 | 93.20 153 | 89.60 153 |
|
| EPNet_dtu | | | 81.98 118 | 83.82 103 | 79.83 151 | 94.10 50 | 85.97 177 | 87.29 119 | 84.08 70 | 80.61 102 | 59.96 184 | 81.62 59 | 77.19 101 | 62.91 200 | 87.21 131 | 86.38 150 | 90.66 182 | 87.77 170 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_0304 | | | 90.88 39 | 91.35 37 | 90.34 40 | 93.91 51 | 96.79 23 | 94.49 34 | 86.54 48 | 86.57 57 | 82.85 56 | 81.68 57 | 89.70 33 | 87.57 56 | 94.64 21 | 93.93 21 | 96.67 11 | 96.15 44 |
|
| OPM-MVS | | | 87.56 71 | 85.80 87 | 89.62 49 | 93.90 52 | 94.09 76 | 94.12 36 | 88.18 38 | 75.40 134 | 77.30 90 | 76.41 83 | 77.93 97 | 88.79 41 | 92.20 61 | 90.82 70 | 95.40 63 | 93.72 89 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DELS-MVS | | | 89.71 48 | 89.68 52 | 89.74 46 | 93.75 53 | 96.22 36 | 93.76 39 | 85.84 51 | 82.53 79 | 85.05 44 | 78.96 71 | 84.24 58 | 84.25 79 | 94.91 14 | 94.91 4 | 95.78 42 | 96.02 46 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CNLPA | | | 88.40 59 | 87.00 75 | 90.03 44 | 93.73 54 | 94.28 72 | 89.56 81 | 85.81 52 | 91.87 28 | 87.55 28 | 69.53 124 | 81.49 70 | 89.23 37 | 89.45 109 | 88.59 121 | 94.31 121 | 93.82 86 |
|
| HQP-MVS | | | 89.13 54 | 89.58 53 | 88.60 62 | 93.53 55 | 93.67 80 | 93.29 43 | 87.58 44 | 88.53 49 | 75.50 92 | 87.60 33 | 80.32 76 | 87.07 62 | 90.66 95 | 89.95 91 | 94.62 104 | 96.35 42 |
|
| OMC-MVS | | | 90.23 45 | 90.40 45 | 90.03 44 | 93.45 56 | 95.29 53 | 91.89 55 | 86.34 50 | 93.25 19 | 84.94 45 | 81.72 56 | 86.65 50 | 88.90 39 | 91.69 67 | 90.27 82 | 94.65 102 | 93.95 82 |
|
| ACMM | | 83.27 10 | 87.68 70 | 86.09 83 | 89.54 50 | 93.26 57 | 92.19 106 | 91.43 61 | 86.74 47 | 86.02 59 | 82.85 56 | 75.63 88 | 75.14 107 | 88.41 45 | 90.68 94 | 89.99 88 | 94.59 105 | 92.97 99 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MVS_111021_LR | | | 90.14 46 | 90.89 41 | 89.26 53 | 93.23 58 | 94.05 77 | 90.43 69 | 84.65 61 | 90.16 42 | 84.52 48 | 90.14 28 | 83.80 60 | 87.99 50 | 92.50 56 | 90.92 68 | 94.74 96 | 94.70 68 |
|
| CS-MVS-test | | | 90.29 43 | 90.96 39 | 89.51 51 | 93.18 59 | 95.87 45 | 89.18 86 | 83.72 75 | 88.32 50 | 84.82 46 | 84.89 42 | 85.23 54 | 90.25 33 | 94.04 29 | 92.66 51 | 95.94 29 | 95.69 51 |
|
| CS-MVS | | | 90.34 42 | 90.58 44 | 90.07 43 | 93.11 60 | 95.82 46 | 90.57 67 | 83.62 76 | 87.07 55 | 85.35 41 | 82.98 46 | 83.47 61 | 91.37 26 | 94.94 13 | 93.37 37 | 96.37 14 | 96.41 39 |
|
| XVS | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
| X-MVStestdata | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
| PCF-MVS | | 84.60 6 | 88.66 56 | 87.75 70 | 89.73 47 | 93.06 63 | 96.02 38 | 93.22 44 | 90.00 30 | 82.44 82 | 80.02 76 | 77.96 77 | 85.16 55 | 87.36 59 | 88.54 119 | 88.54 122 | 94.72 98 | 95.61 54 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TAPA-MVS | | 84.37 7 | 88.91 55 | 88.93 56 | 88.89 56 | 93.00 64 | 94.85 65 | 92.00 52 | 84.84 59 | 91.68 31 | 80.05 74 | 79.77 66 | 84.56 56 | 88.17 49 | 90.11 99 | 89.00 117 | 95.30 70 | 92.57 114 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PVSNet_Blended_VisFu | | | 87.40 73 | 87.80 67 | 86.92 75 | 92.86 65 | 95.40 51 | 88.56 104 | 83.45 86 | 79.55 110 | 82.26 60 | 74.49 96 | 84.03 59 | 79.24 131 | 92.97 50 | 91.53 61 | 95.15 79 | 96.65 35 |
|
| UA-Net | | | 86.07 79 | 87.78 68 | 84.06 104 | 92.85 66 | 95.11 60 | 87.73 112 | 84.38 65 | 73.22 154 | 73.18 108 | 79.99 65 | 89.22 37 | 71.47 176 | 93.22 45 | 93.03 42 | 94.76 95 | 90.69 145 |
|
| LGP-MVS_train | | | 88.25 64 | 88.55 57 | 87.89 68 | 92.84 67 | 93.66 81 | 93.35 42 | 85.22 57 | 85.77 60 | 74.03 103 | 86.60 38 | 76.29 104 | 86.62 67 | 91.20 73 | 90.58 78 | 95.29 71 | 95.75 49 |
|
| TSAR-MVS + COLMAP | | | 88.40 59 | 89.09 55 | 87.60 72 | 92.72 68 | 93.92 79 | 92.21 50 | 85.57 54 | 91.73 29 | 73.72 104 | 91.75 23 | 73.22 123 | 87.64 55 | 91.49 69 | 89.71 98 | 93.73 141 | 91.82 128 |
|
| PVSNet_BlendedMVS | | | 88.19 65 | 88.00 65 | 88.42 64 | 92.71 69 | 94.82 66 | 89.08 91 | 83.81 72 | 84.91 68 | 86.38 37 | 79.14 68 | 78.11 95 | 82.66 87 | 93.05 48 | 91.10 63 | 95.86 34 | 94.86 64 |
|
| PVSNet_Blended | | | 88.19 65 | 88.00 65 | 88.42 64 | 92.71 69 | 94.82 66 | 89.08 91 | 83.81 72 | 84.91 68 | 86.38 37 | 79.14 68 | 78.11 95 | 82.66 87 | 93.05 48 | 91.10 63 | 95.86 34 | 94.86 64 |
|
| ACMP | | 83.90 8 | 88.32 63 | 88.06 63 | 88.62 61 | 92.18 71 | 93.98 78 | 91.28 64 | 85.24 56 | 86.69 56 | 81.23 67 | 85.62 39 | 75.13 108 | 87.01 64 | 89.83 102 | 89.77 96 | 94.79 92 | 95.43 57 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MSDG | | | 83.87 102 | 81.02 124 | 87.19 74 | 92.17 72 | 89.80 135 | 89.15 89 | 85.72 53 | 80.61 102 | 79.24 78 | 66.66 138 | 68.75 141 | 82.69 86 | 87.95 126 | 87.44 131 | 94.19 123 | 85.92 182 |
|
| TSAR-MVS + GP. | | | 92.71 27 | 93.91 21 | 91.30 34 | 91.96 73 | 96.00 40 | 93.43 41 | 87.94 40 | 92.53 21 | 86.27 39 | 93.57 15 | 91.94 19 | 91.44 24 | 93.29 44 | 92.89 46 | 96.78 7 | 97.15 21 |
|
| test2506 | | | 85.20 88 | 84.11 100 | 86.47 78 | 91.84 74 | 95.28 54 | 89.18 86 | 84.49 63 | 82.59 77 | 75.34 96 | 74.66 95 | 58.07 190 | 81.68 94 | 93.76 36 | 92.71 48 | 96.28 21 | 91.71 130 |
|
| ECVR-MVS |  | | 85.25 87 | 84.47 96 | 86.16 80 | 91.84 74 | 95.28 54 | 89.18 86 | 84.49 63 | 82.59 77 | 73.49 106 | 66.12 140 | 69.28 138 | 81.68 94 | 93.76 36 | 92.71 48 | 96.28 21 | 91.58 137 |
|
| test1111 | | | 84.86 93 | 84.21 99 | 85.61 85 | 91.75 76 | 95.14 59 | 88.63 101 | 84.57 62 | 81.88 87 | 71.21 115 | 65.66 147 | 68.51 142 | 81.19 98 | 93.74 39 | 92.68 50 | 96.31 18 | 91.86 127 |
|
| ETV-MVS | | | 89.22 53 | 89.76 50 | 88.60 62 | 91.60 77 | 94.61 69 | 89.48 83 | 83.46 85 | 85.20 65 | 81.58 64 | 82.75 48 | 82.59 66 | 88.80 40 | 94.57 23 | 93.28 39 | 96.68 9 | 95.31 58 |
|
| EIA-MVS | | | 87.94 68 | 88.05 64 | 87.81 69 | 91.46 78 | 95.00 63 | 88.67 98 | 82.81 91 | 82.53 79 | 80.81 70 | 80.04 64 | 80.20 77 | 87.48 57 | 92.58 55 | 91.61 60 | 95.63 49 | 94.36 74 |
|
| sasdasda | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 79 | 95.92 42 | 91.81 57 | 82.61 99 | 90.37 39 | 82.73 58 | 82.09 50 | 79.28 86 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 65 | 97.04 25 |
|
| canonicalmvs | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 79 | 95.92 42 | 91.81 57 | 82.61 99 | 90.37 39 | 82.73 58 | 82.09 50 | 79.28 86 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 65 | 97.04 25 |
|
| CLD-MVS | | | 88.66 56 | 88.52 58 | 88.82 57 | 91.37 81 | 94.22 73 | 92.82 48 | 82.08 104 | 88.27 51 | 85.14 43 | 81.86 53 | 78.53 93 | 85.93 71 | 91.17 75 | 90.61 76 | 95.55 56 | 95.00 60 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MGCFI-Net | | | 88.38 62 | 89.72 51 | 86.83 76 | 91.21 82 | 95.59 50 | 91.14 65 | 82.37 102 | 90.25 41 | 75.33 97 | 81.89 52 | 79.13 88 | 85.69 72 | 90.98 86 | 93.23 40 | 95.23 75 | 96.94 27 |
|
| CHOSEN 1792x2688 | | | 82.16 116 | 80.91 127 | 83.61 109 | 91.14 83 | 92.01 107 | 89.55 82 | 79.15 137 | 79.87 106 | 70.29 119 | 52.51 203 | 72.56 124 | 81.39 96 | 88.87 117 | 88.17 125 | 90.15 186 | 92.37 121 |
|
| IB-MVS | | 79.09 12 | 82.60 113 | 82.19 112 | 83.07 115 | 91.08 84 | 93.55 83 | 80.90 182 | 81.35 110 | 76.56 126 | 80.87 69 | 64.81 155 | 69.97 134 | 68.87 183 | 85.64 157 | 90.06 87 | 95.36 65 | 94.74 67 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| IS_MVSNet | | | 86.18 78 | 88.18 62 | 83.85 107 | 91.02 85 | 94.72 68 | 87.48 115 | 82.46 101 | 81.05 97 | 70.28 120 | 76.98 80 | 82.20 69 | 76.65 148 | 93.97 32 | 93.38 35 | 95.18 76 | 94.97 61 |
|
| HyFIR lowres test | | | 81.62 126 | 79.45 147 | 84.14 103 | 91.00 86 | 93.38 87 | 88.27 106 | 78.19 146 | 76.28 128 | 70.18 121 | 48.78 207 | 73.69 118 | 83.52 81 | 87.05 134 | 87.83 129 | 93.68 144 | 89.15 156 |
|
| COLMAP_ROB |  | 76.78 15 | 80.50 133 | 78.49 152 | 82.85 116 | 90.96 87 | 89.65 141 | 86.20 136 | 83.40 87 | 77.15 124 | 66.54 138 | 62.27 163 | 65.62 151 | 77.89 139 | 85.23 164 | 84.70 171 | 92.11 164 | 84.83 186 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CANet_DTU | | | 85.43 85 | 87.72 71 | 82.76 118 | 90.95 88 | 93.01 93 | 89.99 73 | 75.46 170 | 82.67 76 | 64.91 151 | 83.14 45 | 80.09 78 | 80.68 105 | 92.03 65 | 91.03 65 | 94.57 107 | 92.08 122 |
|
| FC-MVSNet-train | | | 85.18 89 | 85.31 91 | 85.03 90 | 90.67 89 | 91.62 110 | 87.66 113 | 83.61 77 | 79.75 108 | 74.37 101 | 78.69 72 | 71.21 129 | 78.91 132 | 91.23 71 | 89.96 90 | 94.96 85 | 94.69 70 |
|
| baseline1 | | | 84.54 96 | 84.43 97 | 84.67 92 | 90.62 90 | 91.16 113 | 88.63 101 | 83.75 74 | 79.78 107 | 71.16 116 | 75.14 91 | 74.10 113 | 77.84 140 | 91.56 68 | 90.67 75 | 96.04 26 | 88.58 159 |
|
| thres600view7 | | | 82.53 115 | 81.02 124 | 84.28 99 | 90.61 91 | 93.05 91 | 88.57 103 | 82.67 95 | 74.12 145 | 68.56 131 | 65.09 152 | 62.13 170 | 80.40 111 | 91.15 78 | 89.02 116 | 94.88 88 | 92.59 112 |
|
| casdiffmvs_mvg |  | | 87.97 67 | 87.63 72 | 88.37 66 | 90.55 92 | 94.42 70 | 91.82 56 | 84.69 60 | 84.05 71 | 82.08 63 | 76.57 82 | 79.00 89 | 85.49 74 | 92.35 57 | 92.29 54 | 95.55 56 | 94.70 68 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 89.96 47 | 90.77 43 | 89.01 55 | 90.54 93 | 95.15 58 | 91.34 62 | 81.43 109 | 85.27 63 | 83.08 54 | 82.83 47 | 87.22 49 | 90.97 29 | 94.79 18 | 93.38 35 | 96.73 8 | 96.71 34 |
|
| thres400 | | | 82.68 112 | 81.15 122 | 84.47 95 | 90.52 94 | 92.89 95 | 88.95 96 | 82.71 93 | 74.33 142 | 69.22 128 | 65.31 149 | 62.61 165 | 80.63 107 | 90.96 87 | 89.50 103 | 94.79 92 | 92.45 120 |
|
| EPP-MVSNet | | | 86.55 75 | 87.76 69 | 85.15 89 | 90.52 94 | 94.41 71 | 87.24 121 | 82.32 103 | 81.79 89 | 73.60 105 | 78.57 73 | 82.41 67 | 82.07 92 | 91.23 71 | 90.39 80 | 95.14 80 | 95.48 56 |
|
| ACMH | | 78.52 14 | 81.86 120 | 80.45 131 | 83.51 113 | 90.51 96 | 91.22 112 | 85.62 143 | 84.23 67 | 70.29 171 | 62.21 167 | 69.04 128 | 64.05 156 | 84.48 78 | 87.57 129 | 88.45 124 | 94.01 129 | 92.54 116 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Vis-MVSNet (Re-imp) | | | 83.65 105 | 86.81 78 | 79.96 149 | 90.46 97 | 92.71 97 | 84.84 151 | 82.00 105 | 80.93 99 | 62.44 166 | 76.29 84 | 82.32 68 | 65.54 196 | 92.29 58 | 91.66 58 | 94.49 112 | 91.47 139 |
|
| FA-MVS(training) | | | 85.65 84 | 85.79 88 | 85.48 87 | 90.44 98 | 93.47 84 | 88.66 100 | 73.11 178 | 83.34 74 | 82.26 60 | 71.79 109 | 78.39 94 | 83.14 84 | 91.00 83 | 89.47 105 | 95.28 73 | 93.06 97 |
|
| thres200 | | | 82.77 111 | 81.25 121 | 84.54 93 | 90.38 99 | 93.05 91 | 89.13 90 | 82.67 95 | 74.40 141 | 69.53 125 | 65.69 146 | 63.03 162 | 80.63 107 | 91.15 78 | 89.42 106 | 94.88 88 | 92.04 124 |
|
| MS-PatchMatch | | | 81.79 122 | 81.44 118 | 82.19 126 | 90.35 100 | 89.29 147 | 88.08 109 | 75.36 171 | 77.60 122 | 69.00 129 | 64.37 158 | 78.87 92 | 77.14 146 | 88.03 125 | 85.70 161 | 93.19 154 | 86.24 179 |
|
| PatchMatch-RL | | | 83.34 107 | 81.36 119 | 85.65 83 | 90.33 101 | 89.52 143 | 84.36 155 | 81.82 106 | 80.87 101 | 79.29 77 | 74.04 98 | 62.85 164 | 86.05 70 | 88.40 122 | 87.04 138 | 92.04 165 | 86.77 175 |
|
| thres100view900 | | | 82.55 114 | 81.01 126 | 84.34 96 | 90.30 102 | 92.27 104 | 89.04 94 | 82.77 92 | 75.14 135 | 69.56 123 | 65.72 144 | 63.13 159 | 79.62 126 | 89.97 101 | 89.26 109 | 94.73 97 | 91.61 136 |
|
| tfpn200view9 | | | 82.86 109 | 81.46 117 | 84.48 94 | 90.30 102 | 93.09 90 | 89.05 93 | 82.71 93 | 75.14 135 | 69.56 123 | 65.72 144 | 63.13 159 | 80.38 112 | 91.15 78 | 89.51 102 | 94.91 87 | 92.50 118 |
|
| casdiffmvs |  | | 87.45 72 | 87.15 74 | 87.79 71 | 90.15 104 | 94.22 73 | 89.96 74 | 83.93 71 | 85.08 66 | 80.91 68 | 75.81 87 | 77.88 98 | 86.08 69 | 91.86 66 | 90.86 69 | 95.74 44 | 94.37 73 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 86.93 74 | 87.24 73 | 86.56 77 | 90.10 105 | 93.47 84 | 90.31 70 | 80.12 123 | 83.55 73 | 78.12 83 | 79.58 67 | 79.80 81 | 85.45 75 | 90.17 98 | 90.59 77 | 95.29 71 | 93.53 92 |
|
| ACMH+ | | 79.08 13 | 81.84 121 | 80.06 136 | 83.91 106 | 89.92 106 | 90.62 117 | 86.21 135 | 83.48 84 | 73.88 147 | 65.75 143 | 66.38 139 | 65.30 152 | 84.63 77 | 85.90 154 | 87.25 134 | 93.45 149 | 91.13 143 |
|
| Effi-MVS+ | | | 85.33 86 | 85.08 92 | 85.63 84 | 89.69 107 | 93.42 86 | 89.90 75 | 80.31 121 | 79.32 111 | 72.48 114 | 73.52 103 | 74.03 114 | 86.55 68 | 90.99 84 | 89.98 89 | 94.83 90 | 94.27 79 |
|
| Anonymous202405211 | | | | 82.75 110 | | 89.58 108 | 92.97 94 | 89.04 94 | 84.13 69 | 78.72 116 | | 57.18 190 | 76.64 103 | 83.13 85 | 89.55 107 | 89.92 92 | 93.38 151 | 94.28 78 |
|
| GeoE | | | 84.62 95 | 83.98 102 | 85.35 88 | 89.34 109 | 92.83 96 | 88.34 105 | 78.95 138 | 79.29 112 | 77.16 91 | 68.10 132 | 74.56 110 | 83.40 82 | 89.31 111 | 89.23 110 | 94.92 86 | 94.57 72 |
|
| tttt0517 | | | 85.11 91 | 85.81 86 | 84.30 98 | 89.24 110 | 92.68 99 | 87.12 126 | 80.11 124 | 81.98 86 | 74.31 102 | 78.08 76 | 73.57 119 | 79.90 119 | 91.01 82 | 89.58 100 | 95.11 83 | 93.77 87 |
|
| DI_MVS_plusplus_trai | | | 86.41 77 | 85.54 90 | 87.42 73 | 89.24 110 | 93.13 89 | 92.16 51 | 82.65 97 | 82.30 83 | 80.75 72 | 68.30 131 | 80.41 75 | 85.01 76 | 90.56 96 | 90.07 86 | 94.70 100 | 94.01 81 |
|
| thisisatest0530 | | | 85.15 90 | 85.86 85 | 84.33 97 | 89.19 112 | 92.57 103 | 87.22 122 | 80.11 124 | 82.15 85 | 74.41 100 | 78.15 75 | 73.80 117 | 79.90 119 | 90.99 84 | 89.58 100 | 95.13 81 | 93.75 88 |
|
| DCV-MVSNet | | | 85.88 83 | 86.17 81 | 85.54 86 | 89.10 113 | 89.85 133 | 89.34 84 | 80.70 114 | 83.04 75 | 78.08 85 | 76.19 85 | 79.00 89 | 82.42 90 | 89.67 105 | 90.30 81 | 93.63 146 | 95.12 59 |
|
| UGNet | | | 85.90 82 | 88.23 61 | 83.18 114 | 88.96 114 | 94.10 75 | 87.52 114 | 83.60 78 | 81.66 90 | 77.90 86 | 80.76 62 | 83.19 63 | 66.70 193 | 91.13 81 | 90.71 74 | 94.39 118 | 96.06 45 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20231211 | | | 84.42 100 | 83.02 106 | 86.05 81 | 88.85 115 | 92.70 98 | 88.92 97 | 83.40 87 | 79.99 105 | 78.31 82 | 55.83 194 | 78.92 91 | 83.33 83 | 89.06 113 | 89.76 97 | 93.50 148 | 94.90 62 |
|
| MVSTER | | | 86.03 80 | 86.12 82 | 85.93 82 | 88.62 116 | 89.93 131 | 89.33 85 | 79.91 128 | 81.87 88 | 81.35 65 | 81.07 61 | 74.91 109 | 80.66 106 | 92.13 64 | 90.10 85 | 95.68 46 | 92.80 104 |
|
| TDRefinement | | | 79.05 151 | 77.05 170 | 81.39 133 | 88.45 117 | 89.00 154 | 86.92 127 | 82.65 97 | 74.21 144 | 64.41 152 | 59.17 182 | 59.16 186 | 74.52 162 | 85.23 164 | 85.09 166 | 91.37 174 | 87.51 171 |
|
| IterMVS-LS | | | 83.28 108 | 82.95 108 | 83.65 108 | 88.39 118 | 88.63 158 | 86.80 130 | 78.64 143 | 76.56 126 | 73.43 107 | 72.52 108 | 75.35 106 | 80.81 103 | 86.43 149 | 88.51 123 | 93.84 137 | 92.66 109 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| diffmvs |  | | 86.52 76 | 86.76 79 | 86.23 79 | 88.31 119 | 92.63 100 | 89.58 80 | 81.61 108 | 86.14 58 | 80.26 73 | 79.00 70 | 77.27 100 | 83.58 80 | 88.94 114 | 89.06 114 | 94.05 127 | 94.29 75 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Fast-Effi-MVS+ | | | 83.77 104 | 82.98 107 | 84.69 91 | 87.98 120 | 91.87 108 | 88.10 108 | 77.70 152 | 78.10 120 | 73.04 110 | 69.13 126 | 68.51 142 | 86.66 66 | 90.49 97 | 89.85 94 | 94.67 101 | 92.88 101 |
|
| gg-mvs-nofinetune | | | 75.64 188 | 77.26 167 | 73.76 192 | 87.92 121 | 92.20 105 | 87.32 118 | 64.67 211 | 51.92 216 | 35.35 221 | 46.44 210 | 77.05 102 | 71.97 173 | 92.64 54 | 91.02 66 | 95.34 68 | 89.53 154 |
|
| RPSCF | | | 83.46 106 | 83.36 105 | 83.59 110 | 87.75 122 | 87.35 168 | 84.82 152 | 79.46 133 | 83.84 72 | 78.12 83 | 82.69 49 | 79.87 79 | 82.60 89 | 82.47 188 | 81.13 191 | 88.78 193 | 86.13 180 |
|
| Effi-MVS+-dtu | | | 82.05 117 | 81.76 114 | 82.38 123 | 87.72 123 | 90.56 118 | 86.90 129 | 78.05 148 | 73.85 148 | 66.85 137 | 71.29 112 | 71.90 127 | 82.00 93 | 86.64 144 | 85.48 163 | 92.76 159 | 92.58 113 |
|
| CostFormer | | | 80.94 130 | 80.21 133 | 81.79 128 | 87.69 124 | 88.58 159 | 87.47 116 | 70.66 187 | 80.02 104 | 77.88 87 | 73.03 104 | 71.40 128 | 78.24 136 | 79.96 197 | 79.63 193 | 88.82 192 | 88.84 157 |
|
| baseline2 | | | 82.80 110 | 82.86 109 | 82.73 119 | 87.68 125 | 90.50 119 | 84.92 150 | 78.93 139 | 78.07 121 | 73.06 109 | 75.08 92 | 69.77 135 | 77.31 143 | 88.90 116 | 86.94 139 | 94.50 110 | 90.74 144 |
|
| Vis-MVSNet |  | | 84.38 101 | 86.68 80 | 81.70 129 | 87.65 126 | 94.89 64 | 88.14 107 | 80.90 113 | 74.48 140 | 68.23 132 | 77.53 78 | 80.72 74 | 69.98 180 | 92.68 53 | 91.90 56 | 95.33 69 | 94.58 71 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test-LLR | | | 79.47 146 | 79.84 141 | 79.03 155 | 87.47 127 | 82.40 202 | 81.24 179 | 78.05 148 | 73.72 149 | 62.69 163 | 73.76 100 | 74.42 111 | 73.49 167 | 84.61 173 | 82.99 183 | 91.25 176 | 87.01 173 |
|
| test0.0.03 1 | | | 76.03 182 | 78.51 151 | 73.12 196 | 87.47 127 | 85.13 188 | 76.32 200 | 78.05 148 | 73.19 156 | 50.98 206 | 70.64 114 | 69.28 138 | 55.53 204 | 85.33 162 | 84.38 175 | 90.39 184 | 81.63 198 |
|
| tpmrst | | | 76.55 175 | 75.99 182 | 77.20 169 | 87.32 129 | 83.05 195 | 82.86 165 | 65.62 206 | 78.61 118 | 67.22 136 | 69.19 125 | 65.71 150 | 75.87 152 | 76.75 207 | 75.33 206 | 84.31 211 | 83.28 192 |
|
| baseline | | | 84.89 92 | 86.06 84 | 83.52 112 | 87.25 130 | 89.67 140 | 87.76 111 | 75.68 169 | 84.92 67 | 78.40 81 | 80.10 63 | 80.98 72 | 80.20 115 | 86.69 143 | 87.05 137 | 91.86 168 | 92.99 98 |
|
| CDS-MVSNet | | | 81.63 125 | 82.09 113 | 81.09 138 | 87.21 131 | 90.28 122 | 87.46 117 | 80.33 120 | 69.06 175 | 70.66 117 | 71.30 111 | 73.87 115 | 67.99 186 | 89.58 106 | 89.87 93 | 92.87 158 | 90.69 145 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm cat1 | | | 77.78 164 | 75.28 190 | 80.70 141 | 87.14 132 | 85.84 179 | 85.81 139 | 70.40 188 | 77.44 123 | 78.80 80 | 63.72 159 | 64.01 157 | 76.55 149 | 75.60 209 | 75.21 207 | 85.51 209 | 85.12 184 |
|
| tpm | | | 76.30 181 | 76.05 181 | 76.59 175 | 86.97 133 | 83.01 196 | 83.83 159 | 67.06 202 | 71.83 160 | 63.87 157 | 69.56 123 | 62.88 163 | 73.41 169 | 79.79 198 | 78.59 197 | 84.41 210 | 86.68 176 |
|
| EPMVS | | | 77.53 166 | 78.07 159 | 76.90 173 | 86.89 134 | 84.91 189 | 82.18 174 | 66.64 204 | 81.00 98 | 64.11 155 | 72.75 107 | 69.68 136 | 74.42 164 | 79.36 200 | 78.13 199 | 87.14 201 | 80.68 203 |
|
| PatchmatchNet |  | | 78.67 156 | 78.85 150 | 78.46 163 | 86.85 135 | 86.03 176 | 83.77 160 | 68.11 199 | 80.88 100 | 66.19 140 | 72.90 106 | 73.40 121 | 78.06 137 | 79.25 201 | 77.71 201 | 87.75 198 | 81.75 197 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dmvs_re | | | 81.08 129 | 79.92 139 | 82.44 122 | 86.66 136 | 87.70 164 | 87.91 110 | 83.30 89 | 72.86 157 | 65.29 149 | 65.76 143 | 63.43 158 | 76.69 147 | 88.93 115 | 89.50 103 | 94.80 91 | 91.23 142 |
|
| SCA | | | 79.51 145 | 80.15 135 | 78.75 158 | 86.58 137 | 87.70 164 | 83.07 164 | 68.53 196 | 81.31 92 | 66.40 139 | 73.83 99 | 75.38 105 | 79.30 130 | 80.49 195 | 79.39 196 | 88.63 195 | 82.96 194 |
|
| USDC | | | 80.69 131 | 79.89 140 | 81.62 131 | 86.48 138 | 89.11 152 | 86.53 132 | 78.86 140 | 81.15 96 | 63.48 159 | 72.98 105 | 59.12 188 | 81.16 99 | 87.10 132 | 85.01 167 | 93.23 152 | 84.77 187 |
|
| Fast-Effi-MVS+-dtu | | | 79.95 137 | 80.69 128 | 79.08 154 | 86.36 139 | 89.14 151 | 85.85 138 | 72.28 181 | 72.85 158 | 59.32 187 | 70.43 118 | 68.42 144 | 77.57 141 | 86.14 151 | 86.44 149 | 93.11 155 | 91.39 140 |
|
| tfpnnormal | | | 77.46 167 | 74.86 192 | 80.49 145 | 86.34 140 | 88.92 155 | 84.33 156 | 81.26 111 | 61.39 203 | 61.70 174 | 51.99 204 | 53.66 209 | 74.84 159 | 88.63 118 | 87.38 133 | 94.50 110 | 92.08 122 |
|
| dps | | | 78.02 161 | 75.94 183 | 80.44 146 | 86.06 141 | 86.62 174 | 82.58 166 | 69.98 191 | 75.14 135 | 77.76 89 | 69.08 127 | 59.93 179 | 78.47 134 | 79.47 199 | 77.96 200 | 87.78 197 | 83.40 191 |
|
| IterMVS-SCA-FT | | | 79.41 147 | 80.20 134 | 78.49 162 | 85.88 142 | 86.26 175 | 83.95 158 | 71.94 182 | 73.55 152 | 61.94 170 | 70.48 117 | 70.50 131 | 75.23 154 | 85.81 156 | 84.61 173 | 91.99 167 | 90.18 151 |
|
| LTVRE_ROB | | 74.41 16 | 75.78 187 | 74.72 193 | 77.02 172 | 85.88 142 | 89.22 148 | 82.44 169 | 77.17 155 | 50.57 217 | 45.45 212 | 65.44 148 | 52.29 211 | 81.25 97 | 85.50 160 | 87.42 132 | 89.94 188 | 92.62 110 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EG-PatchMatch MVS | | | 76.40 179 | 75.47 188 | 77.48 168 | 85.86 144 | 90.22 124 | 82.45 168 | 73.96 176 | 59.64 208 | 59.60 186 | 52.75 202 | 62.20 169 | 68.44 185 | 88.23 123 | 87.50 130 | 94.55 108 | 87.78 169 |
|
| CR-MVSNet | | | 78.71 155 | 78.86 149 | 78.55 161 | 85.85 145 | 85.15 186 | 82.30 171 | 68.23 197 | 74.71 138 | 65.37 146 | 64.39 157 | 69.59 137 | 77.18 144 | 85.10 169 | 84.87 168 | 92.34 163 | 88.21 163 |
|
| GA-MVS | | | 79.52 144 | 79.71 144 | 79.30 153 | 85.68 146 | 90.36 121 | 84.55 153 | 78.44 144 | 70.47 170 | 57.87 192 | 68.52 130 | 61.38 171 | 76.21 150 | 89.40 110 | 87.89 126 | 93.04 156 | 89.96 152 |
|
| UniMVSNet_ETH3D | | | 79.24 149 | 76.47 175 | 82.48 121 | 85.66 147 | 90.97 114 | 86.08 137 | 81.63 107 | 64.48 195 | 68.94 130 | 54.47 196 | 57.65 192 | 78.83 133 | 85.20 167 | 88.91 118 | 93.72 142 | 93.60 90 |
|
| TransMVSNet (Re) | | | 76.57 174 | 75.16 191 | 78.22 165 | 85.60 148 | 87.24 169 | 82.46 167 | 81.23 112 | 59.80 207 | 59.05 190 | 57.07 191 | 59.14 187 | 66.60 194 | 88.09 124 | 86.82 140 | 94.37 119 | 87.95 168 |
|
| RPMNet | | | 77.07 169 | 77.63 165 | 76.42 176 | 85.56 149 | 85.15 186 | 81.37 176 | 65.27 208 | 74.71 138 | 60.29 183 | 63.71 160 | 66.59 148 | 73.64 166 | 82.71 186 | 82.12 188 | 92.38 162 | 88.39 161 |
|
| MDTV_nov1_ep13 | | | 79.14 150 | 79.49 146 | 78.74 159 | 85.40 150 | 86.89 172 | 84.32 157 | 70.29 189 | 78.85 115 | 69.42 126 | 75.37 90 | 73.29 122 | 75.64 153 | 80.61 194 | 79.48 195 | 87.36 199 | 81.91 196 |
|
| UniMVSNet (Re) | | | 81.22 127 | 81.08 123 | 81.39 133 | 85.35 151 | 91.76 109 | 84.93 149 | 82.88 90 | 76.13 129 | 65.02 150 | 64.94 153 | 63.09 161 | 75.17 156 | 87.71 128 | 89.04 115 | 94.97 84 | 94.88 63 |
|
| UniMVSNet_NR-MVSNet | | | 81.87 119 | 81.33 120 | 82.50 120 | 85.31 152 | 91.30 111 | 85.70 140 | 84.25 66 | 75.89 130 | 64.21 153 | 66.95 137 | 64.65 154 | 80.22 113 | 87.07 133 | 89.18 112 | 95.27 74 | 94.29 75 |
|
| IterMVS | | | 78.79 154 | 79.71 144 | 77.71 166 | 85.26 153 | 85.91 178 | 84.54 154 | 69.84 193 | 73.38 153 | 61.25 178 | 70.53 116 | 70.35 132 | 74.43 163 | 85.21 166 | 83.80 178 | 90.95 180 | 88.77 158 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| NR-MVSNet | | | 80.25 135 | 79.98 138 | 80.56 144 | 85.20 154 | 90.94 115 | 85.65 142 | 83.58 80 | 75.74 131 | 61.36 177 | 65.30 150 | 56.75 197 | 72.38 172 | 88.46 121 | 88.80 119 | 95.16 78 | 93.87 83 |
|
| CMPMVS |  | 56.49 17 | 73.84 196 | 71.73 202 | 76.31 179 | 85.20 154 | 85.67 181 | 75.80 201 | 73.23 177 | 62.26 200 | 65.40 145 | 53.40 201 | 59.70 181 | 71.77 175 | 80.25 196 | 79.56 194 | 86.45 205 | 81.28 199 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| TinyColmap | | | 76.73 171 | 73.95 195 | 79.96 149 | 85.16 156 | 85.64 182 | 82.34 170 | 78.19 146 | 70.63 168 | 62.06 169 | 60.69 174 | 49.61 214 | 80.81 103 | 85.12 168 | 83.69 179 | 91.22 178 | 82.27 195 |
|
| gm-plane-assit | | | 70.29 201 | 70.65 203 | 69.88 201 | 85.03 157 | 78.50 212 | 58.41 219 | 65.47 207 | 50.39 218 | 40.88 217 | 49.60 206 | 50.11 213 | 75.14 157 | 91.43 70 | 89.78 95 | 94.32 120 | 84.73 188 |
|
| FC-MVSNet-test | | | 76.53 176 | 81.62 116 | 70.58 200 | 84.99 158 | 85.73 180 | 74.81 203 | 78.85 141 | 77.00 125 | 39.13 219 | 75.90 86 | 73.50 120 | 54.08 208 | 86.54 146 | 85.99 158 | 91.65 170 | 86.68 176 |
|
| DU-MVS | | | 81.20 128 | 80.30 132 | 82.25 124 | 84.98 159 | 90.94 115 | 85.70 140 | 83.58 80 | 75.74 131 | 64.21 153 | 65.30 150 | 59.60 183 | 80.22 113 | 86.89 136 | 89.31 107 | 94.77 94 | 94.29 75 |
|
| Baseline_NR-MVSNet | | | 79.84 139 | 78.37 156 | 81.55 132 | 84.98 159 | 86.66 173 | 85.06 147 | 83.49 82 | 75.57 133 | 63.31 160 | 58.22 189 | 60.97 173 | 78.00 138 | 86.89 136 | 87.13 135 | 94.47 113 | 93.15 95 |
|
| TranMVSNet+NR-MVSNet | | | 80.52 132 | 79.84 141 | 81.33 135 | 84.92 161 | 90.39 120 | 85.53 145 | 84.22 68 | 74.27 143 | 60.68 182 | 64.93 154 | 59.96 178 | 77.48 142 | 86.75 141 | 89.28 108 | 95.12 82 | 93.29 93 |
|
| pm-mvs1 | | | 78.51 159 | 77.75 164 | 79.40 152 | 84.83 162 | 89.30 146 | 83.55 162 | 79.38 134 | 62.64 199 | 63.68 158 | 58.73 187 | 64.68 153 | 70.78 179 | 89.79 103 | 87.84 127 | 94.17 124 | 91.28 141 |
|
| testgi | | | 71.92 199 | 74.20 194 | 69.27 202 | 84.58 163 | 83.06 194 | 73.40 206 | 74.39 173 | 64.04 197 | 46.17 211 | 68.90 129 | 57.15 195 | 48.89 212 | 84.07 178 | 83.08 182 | 88.18 196 | 79.09 207 |
|
| thisisatest0515 | | | 79.76 141 | 80.59 130 | 78.80 157 | 84.40 164 | 88.91 156 | 79.48 188 | 76.94 158 | 72.29 159 | 67.33 135 | 67.82 134 | 65.99 149 | 70.80 178 | 88.50 120 | 87.84 127 | 93.86 136 | 92.75 107 |
|
| FMVSNet3 | | | 84.44 99 | 84.64 95 | 84.21 100 | 84.32 165 | 90.13 126 | 89.85 76 | 80.37 117 | 81.17 93 | 75.50 92 | 69.63 120 | 79.69 83 | 79.62 126 | 89.72 104 | 90.52 79 | 95.59 53 | 91.58 137 |
|
| GBi-Net | | | 84.51 97 | 84.80 93 | 84.17 101 | 84.20 166 | 89.95 128 | 89.70 77 | 80.37 117 | 81.17 93 | 75.50 92 | 69.63 120 | 79.69 83 | 79.75 123 | 90.73 91 | 90.72 71 | 95.52 59 | 91.71 130 |
|
| test1 | | | 84.51 97 | 84.80 93 | 84.17 101 | 84.20 166 | 89.95 128 | 89.70 77 | 80.37 117 | 81.17 93 | 75.50 92 | 69.63 120 | 79.69 83 | 79.75 123 | 90.73 91 | 90.72 71 | 95.52 59 | 91.71 130 |
|
| FMVSNet2 | | | 83.87 102 | 83.73 104 | 84.05 105 | 84.20 166 | 89.95 128 | 89.70 77 | 80.21 122 | 79.17 114 | 74.89 98 | 65.91 141 | 77.49 99 | 79.75 123 | 90.87 88 | 91.00 67 | 95.52 59 | 91.71 130 |
|
| WR-MVS | | | 76.63 173 | 78.02 161 | 75.02 186 | 84.14 169 | 89.76 137 | 78.34 195 | 80.64 115 | 69.56 172 | 52.32 201 | 61.26 167 | 61.24 172 | 60.66 201 | 84.45 175 | 87.07 136 | 93.99 130 | 92.77 105 |
|
| v8 | | | 79.90 138 | 78.39 155 | 81.66 130 | 83.97 170 | 89.81 134 | 87.16 124 | 77.40 154 | 71.49 161 | 67.71 133 | 61.24 168 | 62.49 166 | 79.83 122 | 85.48 161 | 86.17 153 | 93.89 134 | 92.02 126 |
|
| v2v482 | | | 79.84 139 | 78.07 159 | 81.90 127 | 83.75 171 | 90.21 125 | 87.17 123 | 79.85 129 | 70.65 167 | 65.93 142 | 61.93 165 | 60.07 177 | 80.82 102 | 85.25 163 | 86.71 142 | 93.88 135 | 91.70 134 |
|
| v10 | | | 79.62 142 | 78.19 157 | 81.28 136 | 83.73 172 | 89.69 139 | 87.27 120 | 76.86 159 | 70.50 169 | 65.46 144 | 60.58 175 | 60.47 175 | 80.44 110 | 86.91 135 | 86.63 145 | 93.93 131 | 92.55 115 |
|
| v1144 | | | 79.38 148 | 77.83 162 | 81.18 137 | 83.62 173 | 90.23 123 | 87.15 125 | 78.35 145 | 69.13 174 | 64.02 156 | 60.20 177 | 59.41 184 | 80.14 117 | 86.78 139 | 86.57 146 | 93.81 139 | 92.53 117 |
|
| v148 | | | 78.59 157 | 76.84 173 | 80.62 143 | 83.61 174 | 89.16 150 | 83.65 161 | 79.24 136 | 69.38 173 | 69.34 127 | 59.88 179 | 60.41 176 | 75.19 155 | 83.81 179 | 84.63 172 | 92.70 160 | 90.63 147 |
|
| SixPastTwentyTwo | | | 76.02 183 | 75.72 185 | 76.36 177 | 83.38 175 | 87.54 166 | 75.50 202 | 76.22 163 | 65.50 192 | 57.05 193 | 70.64 114 | 53.97 208 | 74.54 161 | 80.96 193 | 82.12 188 | 91.44 172 | 89.35 155 |
|
| CVMVSNet | | | 76.70 172 | 78.46 153 | 74.64 190 | 83.34 176 | 84.48 190 | 81.83 175 | 74.58 172 | 68.88 176 | 51.23 205 | 69.77 119 | 70.05 133 | 67.49 189 | 84.27 176 | 83.81 177 | 89.38 190 | 87.96 167 |
|
| v1192 | | | 78.94 152 | 77.33 166 | 80.82 140 | 83.25 177 | 89.90 132 | 86.91 128 | 77.72 151 | 68.63 178 | 62.61 165 | 59.17 182 | 57.53 193 | 80.62 109 | 86.89 136 | 86.47 148 | 93.79 140 | 92.75 107 |
|
| DTE-MVSNet | | | 75.14 190 | 75.44 189 | 74.80 188 | 83.18 178 | 87.19 170 | 78.25 197 | 80.11 124 | 66.05 187 | 48.31 208 | 60.88 172 | 54.67 204 | 64.54 197 | 82.57 187 | 86.17 153 | 94.43 116 | 90.53 149 |
|
| PEN-MVS | | | 76.02 183 | 76.07 179 | 75.95 181 | 83.17 179 | 87.97 162 | 79.65 186 | 80.07 127 | 66.57 185 | 51.45 203 | 60.94 171 | 55.47 202 | 66.81 192 | 82.72 185 | 86.80 141 | 94.59 105 | 92.03 125 |
|
| TAMVS | | | 76.42 177 | 77.16 169 | 75.56 182 | 83.05 180 | 85.55 183 | 80.58 184 | 71.43 184 | 65.40 194 | 61.04 181 | 67.27 136 | 69.22 140 | 67.99 186 | 84.88 171 | 84.78 170 | 89.28 191 | 83.01 193 |
|
| pmmvs4 | | | 79.99 136 | 78.08 158 | 82.22 125 | 83.04 181 | 87.16 171 | 84.95 148 | 78.80 142 | 78.64 117 | 74.53 99 | 64.61 156 | 59.41 184 | 79.45 128 | 84.13 177 | 84.54 174 | 92.53 161 | 88.08 165 |
|
| v144192 | | | 78.81 153 | 77.22 168 | 80.67 142 | 82.95 182 | 89.79 136 | 86.40 133 | 77.42 153 | 68.26 180 | 63.13 161 | 59.50 180 | 58.13 189 | 80.08 118 | 85.93 153 | 86.08 155 | 94.06 126 | 92.83 103 |
|
| v1921920 | | | 78.57 158 | 76.99 171 | 80.41 147 | 82.93 183 | 89.63 142 | 86.38 134 | 77.14 156 | 68.31 179 | 61.80 173 | 58.89 186 | 56.79 196 | 80.19 116 | 86.50 148 | 86.05 157 | 94.02 128 | 92.76 106 |
|
| CHOSEN 280x420 | | | 80.28 134 | 81.66 115 | 78.67 160 | 82.92 184 | 79.24 211 | 85.36 146 | 66.79 203 | 78.11 119 | 70.32 118 | 75.03 93 | 79.87 79 | 81.09 100 | 89.07 112 | 83.16 181 | 85.54 208 | 87.17 172 |
|
| WR-MVS_H | | | 75.84 186 | 76.93 172 | 74.57 191 | 82.86 185 | 89.50 144 | 78.34 195 | 79.36 135 | 66.90 183 | 52.51 200 | 60.20 177 | 59.71 180 | 59.73 202 | 83.61 180 | 85.77 160 | 94.65 102 | 92.84 102 |
|
| v1240 | | | 78.15 160 | 76.53 174 | 80.04 148 | 82.85 186 | 89.48 145 | 85.61 144 | 76.77 160 | 67.05 182 | 61.18 180 | 58.37 188 | 56.16 200 | 79.89 121 | 86.11 152 | 86.08 155 | 93.92 132 | 92.47 119 |
|
| V42 | | | 79.59 143 | 78.43 154 | 80.94 139 | 82.79 187 | 89.71 138 | 86.66 131 | 76.73 161 | 71.38 162 | 67.42 134 | 61.01 170 | 62.30 168 | 78.39 135 | 85.56 159 | 86.48 147 | 93.65 145 | 92.60 111 |
|
| CP-MVSNet | | | 76.36 180 | 76.41 176 | 76.32 178 | 82.73 188 | 88.64 157 | 79.39 189 | 79.62 130 | 67.21 181 | 53.70 197 | 60.72 173 | 55.22 203 | 67.91 188 | 83.52 181 | 86.34 151 | 94.55 108 | 93.19 94 |
|
| PS-CasMVS | | | 75.90 185 | 75.86 184 | 75.96 180 | 82.59 189 | 88.46 160 | 79.23 192 | 79.56 132 | 66.00 188 | 52.77 199 | 59.48 181 | 54.35 207 | 67.14 191 | 83.37 182 | 86.23 152 | 94.47 113 | 93.10 96 |
|
| test20.03 | | | 68.31 204 | 70.05 205 | 66.28 207 | 82.41 190 | 80.84 206 | 67.35 213 | 76.11 165 | 58.44 210 | 40.80 218 | 53.77 200 | 54.54 205 | 42.28 215 | 83.07 183 | 81.96 190 | 88.73 194 | 77.76 209 |
|
| FMVSNet1 | | | 81.64 124 | 80.61 129 | 82.84 117 | 82.36 191 | 89.20 149 | 88.67 98 | 79.58 131 | 70.79 166 | 72.63 113 | 58.95 185 | 72.26 126 | 79.34 129 | 90.73 91 | 90.72 71 | 94.47 113 | 91.62 135 |
|
| pmmvs6 | | | 74.83 191 | 72.89 198 | 77.09 170 | 82.11 192 | 87.50 167 | 80.88 183 | 76.97 157 | 52.79 215 | 61.91 172 | 46.66 209 | 60.49 174 | 69.28 182 | 86.74 142 | 85.46 164 | 91.39 173 | 90.56 148 |
|
| pmmvs5 | | | 76.93 170 | 76.33 177 | 77.62 167 | 81.97 193 | 88.40 161 | 81.32 178 | 74.35 174 | 65.42 193 | 61.42 176 | 63.07 161 | 57.95 191 | 73.23 170 | 85.60 158 | 85.35 165 | 93.41 150 | 88.55 160 |
|
| v7n | | | 77.22 168 | 76.23 178 | 78.38 164 | 81.89 194 | 89.10 153 | 82.24 173 | 76.36 162 | 65.96 189 | 61.21 179 | 56.56 192 | 55.79 201 | 75.07 158 | 86.55 145 | 86.68 143 | 93.52 147 | 92.95 100 |
|
| our_test_3 | | | | | | 81.81 195 | 83.96 193 | 76.61 199 | | | | | | | | | | |
|
| Anonymous20231206 | | | 70.80 200 | 70.59 204 | 71.04 199 | 81.60 196 | 82.49 201 | 74.64 204 | 75.87 167 | 64.17 196 | 49.27 207 | 44.85 213 | 53.59 210 | 54.68 207 | 83.07 183 | 82.34 187 | 90.17 185 | 83.65 190 |
|
| ADS-MVSNet | | | 74.53 193 | 75.69 186 | 73.17 195 | 81.57 197 | 80.71 207 | 79.27 191 | 63.03 213 | 79.27 113 | 59.94 185 | 67.86 133 | 68.32 146 | 71.08 177 | 77.33 205 | 76.83 203 | 84.12 213 | 79.53 204 |
|
| pmnet_mix02 | | | 71.95 198 | 71.83 201 | 72.10 197 | 81.40 198 | 80.63 208 | 73.78 205 | 72.85 180 | 70.90 165 | 54.89 195 | 62.17 164 | 57.42 194 | 62.92 199 | 76.80 206 | 73.98 210 | 86.74 204 | 80.87 202 |
|
| test-mter | | | 77.79 163 | 80.02 137 | 75.18 185 | 81.18 199 | 82.85 197 | 80.52 185 | 62.03 215 | 73.62 151 | 62.16 168 | 73.55 102 | 73.83 116 | 73.81 165 | 84.67 172 | 83.34 180 | 91.37 174 | 88.31 162 |
|
| TESTMET0.1,1 | | | 77.78 164 | 79.84 141 | 75.38 184 | 80.86 200 | 82.40 202 | 81.24 179 | 62.72 214 | 73.72 149 | 62.69 163 | 73.76 100 | 74.42 111 | 73.49 167 | 84.61 173 | 82.99 183 | 91.25 176 | 87.01 173 |
|
| MDTV_nov1_ep13_2view | | | 73.21 197 | 72.91 197 | 73.56 194 | 80.01 201 | 84.28 192 | 78.62 193 | 66.43 205 | 68.64 177 | 59.12 188 | 60.39 176 | 59.69 182 | 69.81 181 | 78.82 203 | 77.43 202 | 87.36 199 | 81.11 201 |
|
| FPMVS | | | 63.63 209 | 60.08 214 | 67.78 204 | 80.01 201 | 71.50 217 | 72.88 208 | 69.41 195 | 61.82 202 | 53.11 198 | 45.12 212 | 42.11 221 | 50.86 210 | 66.69 215 | 63.84 216 | 80.41 215 | 69.46 215 |
|
| anonymousdsp | | | 77.94 162 | 79.00 148 | 76.71 174 | 79.03 203 | 87.83 163 | 79.58 187 | 72.87 179 | 65.80 190 | 58.86 191 | 65.82 142 | 62.48 167 | 75.99 151 | 86.77 140 | 88.66 120 | 93.92 132 | 95.68 53 |
|
| N_pmnet | | | 66.85 205 | 66.63 206 | 67.11 206 | 78.73 204 | 74.66 215 | 70.53 210 | 71.07 185 | 66.46 186 | 46.54 210 | 51.68 205 | 51.91 212 | 55.48 205 | 74.68 210 | 72.38 211 | 80.29 216 | 74.65 212 |
|
| PMMVS | | | 81.65 123 | 84.05 101 | 78.86 156 | 78.56 205 | 82.63 199 | 83.10 163 | 67.22 201 | 81.39 91 | 70.11 122 | 84.91 41 | 79.74 82 | 82.12 91 | 87.31 130 | 85.70 161 | 92.03 166 | 86.67 178 |
|
| PatchT | | | 76.42 177 | 77.81 163 | 74.80 188 | 78.46 206 | 84.30 191 | 71.82 209 | 65.03 210 | 73.89 146 | 65.37 146 | 61.58 166 | 66.70 147 | 77.18 144 | 85.10 169 | 84.87 168 | 90.94 181 | 88.21 163 |
|
| MVS-HIRNet | | | 68.83 203 | 66.39 207 | 71.68 198 | 77.58 207 | 75.52 214 | 66.45 214 | 65.05 209 | 62.16 201 | 62.84 162 | 44.76 214 | 56.60 199 | 71.96 174 | 78.04 204 | 75.06 208 | 86.18 207 | 72.56 213 |
|
| pmmvs-eth3d | | | 74.32 194 | 71.96 200 | 77.08 171 | 77.33 208 | 82.71 198 | 78.41 194 | 76.02 166 | 66.65 184 | 65.98 141 | 54.23 198 | 49.02 216 | 73.14 171 | 82.37 189 | 82.69 185 | 91.61 171 | 86.05 181 |
|
| new-patchmatchnet | | | 63.80 208 | 63.31 210 | 64.37 208 | 76.49 209 | 75.99 213 | 63.73 216 | 70.99 186 | 57.27 211 | 43.08 214 | 45.86 211 | 43.80 218 | 45.13 214 | 73.20 211 | 70.68 214 | 86.80 203 | 76.34 211 |
|
| FMVSNet5 | | | 75.50 189 | 76.07 179 | 74.83 187 | 76.16 210 | 81.19 205 | 81.34 177 | 70.21 190 | 73.20 155 | 61.59 175 | 58.97 184 | 68.33 145 | 68.50 184 | 85.87 155 | 85.85 159 | 91.18 179 | 79.11 206 |
|
| PM-MVS | | | 74.17 195 | 73.10 196 | 75.41 183 | 76.07 211 | 82.53 200 | 77.56 198 | 71.69 183 | 71.04 163 | 61.92 171 | 61.23 169 | 47.30 217 | 74.82 160 | 81.78 191 | 79.80 192 | 90.42 183 | 88.05 166 |
|
| MIMVSNet | | | 74.69 192 | 75.60 187 | 73.62 193 | 76.02 212 | 85.31 185 | 81.21 181 | 67.43 200 | 71.02 164 | 59.07 189 | 54.48 195 | 64.07 155 | 66.14 195 | 86.52 147 | 86.64 144 | 91.83 169 | 81.17 200 |
|
| EU-MVSNet | | | 69.98 202 | 72.30 199 | 67.28 205 | 75.67 213 | 79.39 210 | 73.12 207 | 69.94 192 | 63.59 198 | 42.80 215 | 62.93 162 | 56.71 198 | 55.07 206 | 79.13 202 | 78.55 198 | 87.06 202 | 85.82 183 |
|
| WB-MVS | | | 52.27 214 | 57.26 215 | 46.45 214 | 75.64 214 | 65.62 220 | 40.45 225 | 75.80 168 | 47.10 220 | 9.11 228 | 53.83 199 | 38.98 224 | 14.47 223 | 69.44 213 | 68.29 215 | 63.24 221 | 57.56 220 |
|
| ET-MVSNet_ETH3D | | | 84.65 94 | 85.58 89 | 83.56 111 | 74.99 215 | 92.62 102 | 90.29 71 | 80.38 116 | 82.16 84 | 73.01 111 | 83.41 44 | 71.10 130 | 87.05 63 | 87.77 127 | 90.17 84 | 95.62 50 | 91.82 128 |
|
| PMVS |  | 50.48 18 | 55.81 213 | 51.93 216 | 60.33 211 | 72.90 216 | 49.34 222 | 48.78 220 | 69.51 194 | 43.49 221 | 54.25 196 | 36.26 219 | 41.04 223 | 39.71 217 | 65.07 216 | 60.70 217 | 76.85 218 | 67.58 216 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ambc | | | | 61.92 211 | | 70.98 217 | 73.54 216 | 63.64 217 | | 60.06 205 | 52.23 202 | 38.44 217 | 19.17 228 | 57.12 203 | 82.33 190 | 75.03 209 | 83.21 214 | 84.89 185 |
|
| pmmvs3 | | | 61.89 210 | 61.74 212 | 62.06 210 | 64.30 218 | 70.83 218 | 64.22 215 | 52.14 219 | 48.78 219 | 44.47 213 | 41.67 216 | 41.70 222 | 63.03 198 | 76.06 208 | 76.02 204 | 84.18 212 | 77.14 210 |
|
| MDA-MVSNet-bldmvs | | | 66.22 206 | 64.49 209 | 68.24 203 | 61.67 219 | 82.11 204 | 70.07 211 | 76.16 164 | 59.14 209 | 47.94 209 | 54.35 197 | 35.82 225 | 67.33 190 | 64.94 217 | 75.68 205 | 86.30 206 | 79.36 205 |
|
| new_pmnet | | | 59.28 211 | 61.47 213 | 56.73 212 | 61.66 220 | 68.29 219 | 59.57 218 | 54.91 216 | 60.83 204 | 34.38 222 | 44.66 215 | 43.65 219 | 49.90 211 | 71.66 212 | 71.56 213 | 79.94 217 | 69.67 214 |
|
| Gipuma |  | | 49.17 215 | 47.05 218 | 51.65 213 | 59.67 221 | 48.39 223 | 41.98 223 | 63.47 212 | 55.64 214 | 33.33 223 | 14.90 222 | 13.78 229 | 41.34 216 | 69.31 214 | 72.30 212 | 70.11 219 | 55.00 221 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 65.00 207 | 66.24 208 | 63.55 209 | 58.41 222 | 80.01 209 | 69.00 212 | 74.03 175 | 55.81 213 | 41.88 216 | 36.81 218 | 49.48 215 | 47.89 213 | 81.32 192 | 82.40 186 | 90.08 187 | 77.88 208 |
|
| EMVS | | | 30.49 220 | 25.44 222 | 36.39 217 | 51.47 223 | 29.89 227 | 20.17 228 | 54.00 218 | 26.49 223 | 12.02 227 | 13.94 225 | 8.84 230 | 34.37 219 | 25.04 224 | 34.37 223 | 46.29 226 | 39.53 224 |
|
| E-PMN | | | 31.40 218 | 26.80 221 | 36.78 216 | 51.39 224 | 29.96 226 | 20.20 227 | 54.17 217 | 25.93 224 | 12.75 226 | 14.73 223 | 8.58 231 | 34.10 220 | 27.36 223 | 37.83 222 | 48.07 225 | 43.18 223 |
|
| PMMVS2 | | | 41.68 217 | 44.74 219 | 38.10 215 | 46.97 225 | 52.32 221 | 40.63 224 | 48.08 220 | 35.51 222 | 7.36 229 | 26.86 221 | 24.64 227 | 16.72 222 | 55.24 220 | 59.03 218 | 68.85 220 | 59.59 219 |
|
| tmp_tt | | | | | 32.73 219 | 43.96 226 | 21.15 228 | 26.71 226 | 8.99 224 | 65.67 191 | 51.39 204 | 56.01 193 | 42.64 220 | 11.76 224 | 56.60 219 | 50.81 220 | 53.55 224 | |
|
| MVE |  | 30.17 19 | 30.88 219 | 33.52 220 | 27.80 221 | 23.78 227 | 39.16 225 | 18.69 229 | 46.90 221 | 21.88 225 | 15.39 225 | 14.37 224 | 7.31 232 | 24.41 221 | 41.63 222 | 56.22 219 | 37.64 227 | 54.07 222 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 41.78 216 | 48.10 217 | 34.42 218 | 10.74 228 | 19.78 229 | 44.64 222 | 17.73 223 | 59.83 206 | 38.67 220 | 35.82 220 | 54.41 206 | 34.94 218 | 62.87 218 | 43.13 221 | 59.81 222 | 60.82 218 |
|
| GG-mvs-BLEND | | | 57.56 212 | 82.61 111 | 28.34 220 | 0.22 229 | 90.10 127 | 79.37 190 | 0.14 226 | 79.56 109 | 0.40 230 | 71.25 113 | 83.40 62 | 0.30 227 | 86.27 150 | 83.87 176 | 89.59 189 | 83.83 189 |
|
| testmvs | | | 1.03 221 | 1.63 223 | 0.34 222 | 0.09 230 | 0.35 230 | 0.61 231 | 0.16 225 | 1.49 226 | 0.10 231 | 3.15 226 | 0.15 233 | 0.86 226 | 1.32 225 | 1.18 224 | 0.20 228 | 3.76 226 |
|
| test123 | | | 0.87 222 | 1.40 224 | 0.25 223 | 0.03 231 | 0.25 231 | 0.35 232 | 0.08 227 | 1.21 227 | 0.05 232 | 2.84 227 | 0.03 234 | 0.89 225 | 0.43 226 | 1.16 225 | 0.13 229 | 3.87 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| RE-MVS-def | | | | | | | | | | | 56.08 194 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 92.16 17 | | | | | |
|
| MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 23 | | | | | |
|
| MTMP | | | | | | | | | | | 93.14 1 | | 90.21 30 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 8.55 230 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 87.47 54 | | | | | | | | |
|
| Patchmtry | | | | | | | 85.54 184 | 82.30 171 | 68.23 197 | | 65.37 146 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 48.31 224 | 48.03 221 | 26.08 222 | 56.42 212 | 25.77 224 | 47.51 208 | 31.31 226 | 51.30 209 | 48.49 221 | | 53.61 223 | 61.52 217 |
|