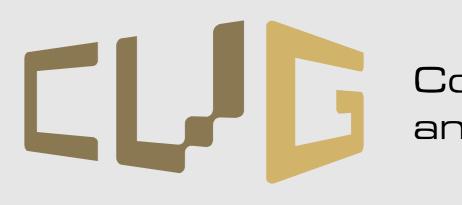
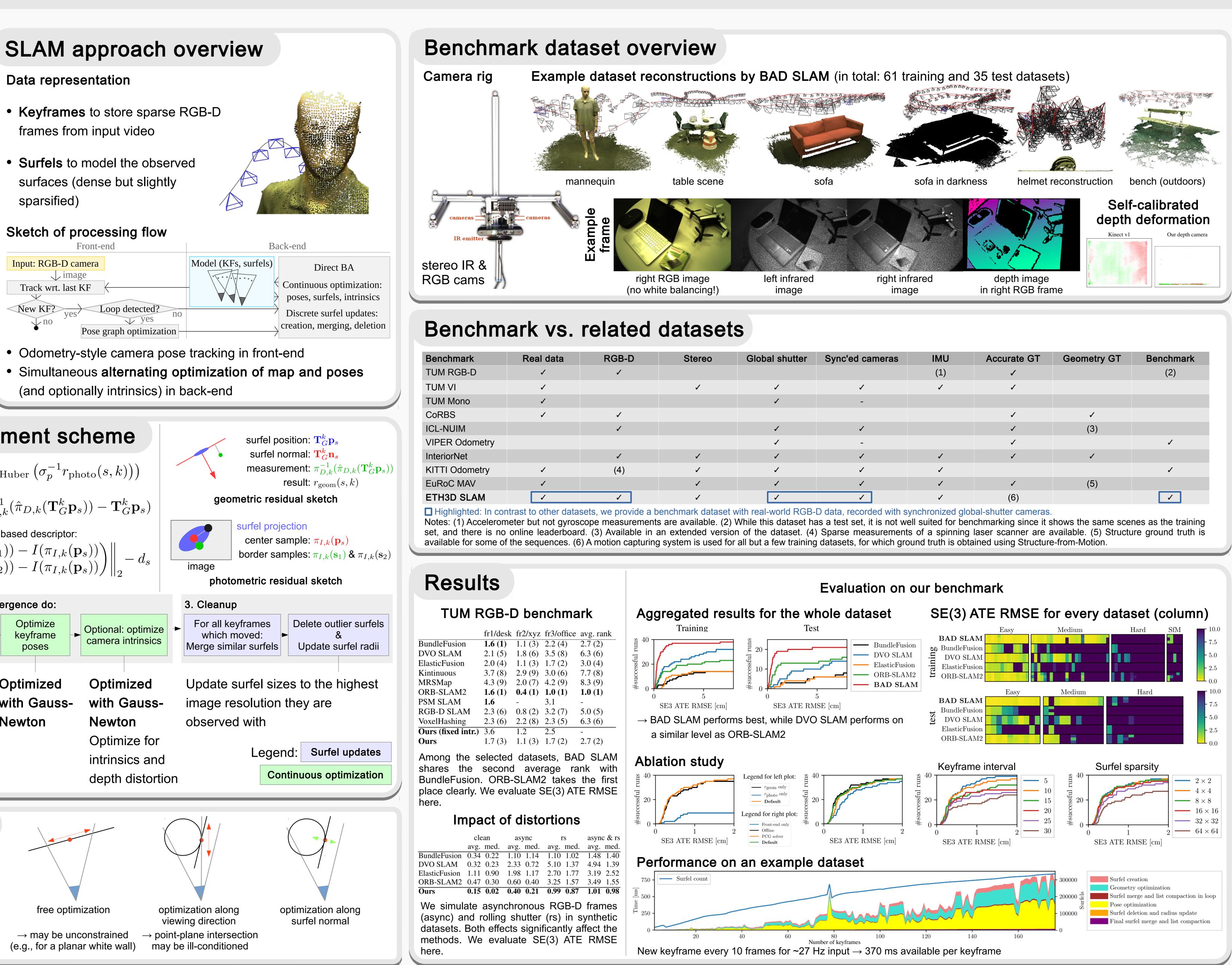
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM

Thomas Schöps¹, Torsten Sattler², Marc Pollefeys^{1,3} ¹Department of Computer Science, ETH Zürich ²Chalmers University of Technology ³Microsoft

Contributions & Conclusions 1. A novel RGB-D SLAM approach • Using alternating direct Bundle Adjustment, demonstrating that this is **real-time capable** on a GPU for short videos Released as open source (BSD licensed) 2. A well-calibrated SLAM benchmark • For visual-inertial mono, stereo, and RGB-D SLAM • Using well-calibrated synchronized global-shutter cameras with active infrared stereo for depth estimation • With ground truth poses by a motion capturing system • Consists of a training set (61 datasets), and a test set (35 datasets) without public ground truth • With an online evaluation service Conclusions • To some extent, dense & direct BA is possible in real-time • Direct RGB-D SLAM methods seem to perform better on our benchmark than on existing ones due to its good calibration

Cost function & fast direct Bundle Adjustment scheme


Total cost: $C(K, $	$\overline{k \in K} \ \overline{s \in S_k}$							
Geometric residual: point-plane distance $r_{\text{geom}}(s,k) = (\mathbf{T}_G^k \mathbf{n}_s)^T (\pi_{D,k}^{-1}(t))^T$								
Photometric residual: descriptor differenceGradient magnitude - basbetween surfel and measurement $r_{photo}(s,k) = \left\ \begin{pmatrix} I(\pi_{I,k}(\mathbf{s}_1)) \\ I(\pi_{I,k}(\mathbf{s}_2)) \end{pmatrix} \right\ $								
Bundle Adjustment scheme:								
1. Preparation	2. Optimization: for	$i \in [1, \max \text{ iteration co}]$	ount] or until con	verge				
For all keyframes: create missing surfels	Update surfel normals	 Optimize surfel positions and descriptors 	If <i>i</i> == 1: Merge similar surfels					
Sparse surfel	Treated as	Optimized with	In order to	Ор				
creation	auxiliary	Gauss-Newton	remove	wit				
Default: one surfel	Default: one surfel variables		surfels	Ne				
per 4x4 block of	→ Fast update:	optimization	created					
pixels	Just average all	restricted to surfel	from					
-	observations	normal direction	outliers					


Details: Surfel position parametrization

- Geometric & photometric residual do not always sufficiently constrain surfel positions (e.g., in planar white walls)
- Optimizing only a surfel's depth in its source keyframe seems intuitive, but yields a potentially ill-posed ray-plane intersection problem together with the geometric residual
- \rightarrow Restrict surfel position to move along surfel normal directions

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Computer Vision and Geometry Lab

Benchmark Dataset & Open Source Code: www.eth3d.net

mark	Real data	RGB-D	Stereo	Global shutter	Sync'ed cameras	IMU	Accurate GT	Geometry GT	Benchmark
GB-D	1	✓				(1)	✓		(2)
I	✓		✓	✓	✓	1	\checkmark		
lono	✓			✓	-				
6	1	✓					\checkmark	✓	
JIM		✓		✓	✓		✓	(3)	
Odometry				✓	-		✓		1
Net		✓	✓	✓	✓	1	✓	✓	
Odometry	1	(4)	1	✓	✓	1			1
MAV	1		1	✓	✓	1	✓	(5)	
) SLAM	1	✓	✓	✓	✓	1	(6)		 ✓

	fr1/desk	fr2/xyz	fr3/office	avg. rank
on	1.6 (1)	1.1 (3)	2.2 (4)	2.7 (2)
Λ	2.1 (5)	1.8 (6)	3.5 (8)	6.3 (6)
on	2.0 (4)	1.1 (3)	1.7 (2)	3.0 (4)
	3.7 (8)	2.9 (9)	3.0 (6)	7.7 (8)
	4.3 (9)	2.0 (7)	4.2 (9)	8.3 (9)
М2	1.6 (1)	0.4 (1)	1.0 (1)	1.0 (1)
1	1.6	-	3.1	-
AM	2.3 (6)	0.8 (2)	3.2 (7)	5.0 (5)
ng	2.3 (6)	2.2 (8)	2.3 (5)	6.3 (6)
l intr.)	3.6	1.2	2.5	-
	1.7 (3)	1.1 (3)	1.7 (2)	2.7 (2)

	clean		async		rs		async & rs	
	avg.	med.	avg.	med.	avg.	med.	avg.	med.
n	0.34	0.22	1.10	1.14	1.10	1.02	1.48	1.40
	0.32	0.23	2.33	0.72	5.10	1.37	4.94	1.39
n	1.11	0.90	1.98	1.17	2.70	1.77	3.19	2.52
2	0.47	0.30	0.60	0.40	3.25	1.57	3.49	1.55
	0.15	0.02	0.40	0.21	0.99	0.87	1.01	0.98
ilate asynchronous RGB-D frames								

Acknowledgments:

Thomas Schöps was supported by a Google PhD Fellowship.